initial commit

This commit is contained in:
2025-11-26 18:58:15 +08:00
commit 3ec494ca69
168 changed files with 16142 additions and 0 deletions

1
android/.gitignore vendored Normal file
View File

@@ -0,0 +1 @@
/build

62
android/build.gradle.kts Normal file
View File

@@ -0,0 +1,62 @@
import org.jetbrains.kotlin.gradle.dsl.JvmTarget
plugins {
alias(libs.plugins.android.application)
alias(libs.plugins.kotlin.android)
}
android {
namespace = "com.icegps.geotools"
compileSdk {
version = release(36)
}
defaultConfig {
applicationId = "com.icegps.geotools"
minSdk = 28
targetSdk = 36
versionCode = 1
versionName = "1.0"
testInstrumentationRunner = "androidx.test.runner.AndroidJUnitRunner"
}
buildTypes {
release {
isMinifyEnabled = false
proguardFiles(
getDefaultProguardFile("proguard-android-optimize.txt"),
"proguard-rules.pro"
)
}
}
buildFeatures {
viewBinding = true
}
compileOptions {
sourceCompatibility = JavaVersion.VERSION_17
targetCompatibility = JavaVersion.VERSION_17
}
}
kotlin {
compilerOptions.jvmTarget = JvmTarget.JVM_17
}
dependencies {
implementation(libs.core.ktx)
implementation(libs.androidx.appcompat)
implementation(libs.material)
implementation(libs.androidx.activity)
implementation(libs.androidx.constraintlayout)
implementation(libs.mapbox.maps)
implementation(project(":math"))
implementation(libs.androidx.lifecycle.runtime.ktx)
implementation(project(":icegps-common"))
implementation(project(":icegps-shared"))
implementation(project(":icegps-triangulation"))
testImplementation(libs.junit)
androidTestImplementation(libs.ext.junit)
androidTestImplementation(libs.androidx.espresso.core)
}

21
android/proguard-rules.pro vendored Normal file
View File

@@ -0,0 +1,21 @@
# Add project specific ProGuard rules here.
# You can control the set of applied configuration files using the
# proguardFiles setting in build.gradle.
#
# For more details, see
# http://developer.android.com/guide/developing/tools/proguard.html
# If your project uses WebView with JS, uncomment the following
# and specify the fully qualified class name to the JavaScript interface
# class:
#-keepclassmembers class fqcn.of.javascript.interface.for.webview {
# public *;
#}
# Uncomment this to preserve the line number information for
# debugging stack traces.
#-keepattributes SourceFile,LineNumberTable
# If you keep the line number information, uncomment this to
# hide the original source file name.
#-renamesourcefileattribute SourceFile

View File

@@ -0,0 +1,24 @@
package com.icegps.geotools
import androidx.test.platform.app.InstrumentationRegistry
import androidx.test.ext.junit.runners.AndroidJUnit4
import org.junit.Test
import org.junit.runner.RunWith
import org.junit.Assert.*
/**
* Instrumented test, which will execute on an Android device.
*
* See [testing documentation](http://d.android.com/tools/testing).
*/
@RunWith(AndroidJUnit4::class)
class ExampleInstrumentedTest {
@Test
fun useAppContext() {
// Context of the app under test.
val appContext = InstrumentationRegistry.getInstrumentation().targetContext
assertEquals("com.icegps.geotools", appContext.packageName)
}
}

View File

@@ -0,0 +1,25 @@
<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android">
<!-- Include this permission to grab user's general location -->
<uses-permission android:name="android.permission.ACCESS_COARSE_LOCATION" />
<!-- Include only if your app benefits from precise location access. -->
<uses-permission android:name="android.permission.ACCESS_FINE_LOCATION" />
<application
android:allowBackup="true"
android:icon="@mipmap/ic_launcher"
android:label="@string/app_name"
android:roundIcon="@mipmap/ic_launcher_round"
android:supportsRtl="true"
android:theme="@style/Theme.Orx">
<activity
android:name=".MainActivity"
android:exported="true">
<intent-filter>
<action android:name="android.intent.action.MAIN" />
<category android:name="android.intent.category.LAUNCHER" />
</intent-filter>
</activity>
</application>
</manifest>

View File

@@ -0,0 +1,427 @@
package com.icegps.geotools
import ColorBrewer2Type
import android.content.Context
import android.util.Log
import colorBrewer2Palettes
import com.icegps.math.geometry.Rectangle
import com.icegps.math.geometry.Vector2D
import com.icegps.math.geometry.Vector3D
import com.icegps.geotools.catmullrom.CatmullRomChain2
import com.icegps.geotools.ktx.area
import com.icegps.geotools.ktx.toColorInt
import com.icegps.geotools.ktx.toMapboxPoint
import com.icegps.geotools.ktx.toast
import com.icegps.geotools.marchingsquares.ShapeContour
import com.icegps.geotools.marchingsquares.findContours
import com.icegps.shared.ktx.TAG
import com.icegps.triangulation.DelaunayTriangulation
import com.icegps.triangulation.Triangle
import com.mapbox.geojson.Feature
import com.mapbox.geojson.FeatureCollection
import com.mapbox.geojson.LineString
import com.mapbox.geojson.Polygon
import com.mapbox.maps.MapView
import com.mapbox.maps.Style
import com.mapbox.maps.extension.style.expressions.generated.Expression
import com.mapbox.maps.extension.style.layers.addLayer
import com.mapbox.maps.extension.style.layers.generated.fillLayer
import com.mapbox.maps.extension.style.layers.generated.lineLayer
import com.mapbox.maps.extension.style.layers.properties.generated.LineCap
import com.mapbox.maps.extension.style.layers.properties.generated.LineJoin
import com.mapbox.maps.extension.style.sources.addSource
import com.mapbox.maps.extension.style.sources.generated.geoJsonSource
import kotlinx.coroutines.CoroutineScope
import kotlinx.coroutines.Dispatchers
import kotlinx.coroutines.Job
import kotlinx.coroutines.async
import kotlinx.coroutines.awaitAll
import kotlinx.coroutines.flow.MutableStateFlow
import kotlinx.coroutines.flow.asStateFlow
import kotlinx.coroutines.launch
import kotlinx.coroutines.withContext
import kotlin.math.max
class ContoursManager(
private val context: Context,
private val mapView: MapView,
private val scope: CoroutineScope
) {
private val sourceId: String = "contours-source-id-10"
private val layerId: String = "contours-layer-id-10"
private val fillSourceId: String = "contours-fill-source-id-10"
private val fillLayerId: String = "contours-fill-layer-id-10"
private val gridSourceId: String = "grid-polygon-source-id"
private val gridLayerId: String = "grid-polygon-layer-id"
private var contourSize: Int = 6
private var heightRange: ClosedFloatingPointRange<Double> = 0.0..100.0
private var cellSize: Double? = 10.0
val simplePalette = SimplePalette(
range = 0.0..100.0
)
private var colors = colorBrewer2Palettes(
numberOfColors = contourSize,
paletteType = ColorBrewer2Type.Any
).first().colors.reversed()
private var points: List<Vector3D> = emptyList()
private val polylineManager = PolylineManager(mapView)
fun updateContourSize(contourSize: Int) {
this.contourSize = contourSize
colors = colorBrewer2Palettes(
numberOfColors = contourSize,
paletteType = ColorBrewer2Type.Any
).first().colors.reversed()
}
fun updateCellSize(value: Double) {
cellSize = value
}
fun updatePoints(
points: List<Vector3D>,
) {
this.points = points
}
fun updateHeightRange(
heightRange: ClosedFloatingPointRange<Double>? = null
) {
if (heightRange == null) {
if (points.isEmpty()) {
return
}
val height = points.map { it.z }
val range = height.min()..height.max()
this.heightRange = range
simplePalette.setRange(range)
} else {
this.heightRange = heightRange
simplePalette.setRange(heightRange)
}
}
private var isGridVisible: Boolean = true
private var _gridModel = MutableStateFlow<GridModel?>(null)
val gridModel = _gridModel.asStateFlow()
fun setGridVisible(visible: Boolean) {
if (visible != isGridVisible) {
isGridVisible = visible
if (visible) {
_gridModel.value?.let { gridModel ->
mapView.displayGridModel(
grid = gridModel,
sourceId = gridSourceId,
layerId = gridLayerId,
palette = simplePalette::palette
)
}
} else {
mapView.mapboxMap.getStyle { style ->
try {
style.removeStyleLayer(gridLayerId)
} catch (_: Exception) {
}
if (style.styleSourceExists(gridSourceId)) {
style.removeStyleSource(gridSourceId)
}
}
}
}
}
private var triangles: List<Triangle> = listOf()
private var isTriangleVisible: Boolean = true
fun setTriangleVisible(visible: Boolean) {
if (visible != isTriangleVisible) {
isTriangleVisible = visible
if (visible) {
polylineManager.update(
triangles.map {
listOf(it.x1, it.x2, it.x3)
.map { Vector3D(it.x, it.y, it.z) }
}
)
} else {
polylineManager.clearContours()
}
}
}
private var job: Job? = null
fun refresh() {
val points = points
if (points.size <= 3) {
context.toast("points size ${points.size}")
return
}
job?.cancel()
scope.launch {
mapView.mapboxMap.getStyle { style ->
val step = heightRange.endInclusive / contourSize
val zip = (0..contourSize).map { index ->
heightRange.start + index * step
}.zipWithNext { a, b -> a..b }
val area = points.area
val triangulation = DelaunayTriangulation(points)
val triangles = triangulation.triangles()
val cellSize: Double = if (cellSize == null || cellSize!! < 0.1) {
(max(triangulation.points.area.width, triangulation.points.area.height) / 50)
} else {
cellSize!!
}
scope.launch {
val gridModel = triangulationToGrid(
delaunator = triangulation,
cellSize = cellSize,
)
this@ContoursManager._gridModel.value = gridModel
if (isGridVisible) mapView.displayGridModel(
grid = gridModel,
sourceId = gridSourceId,
layerId = gridLayerId,
palette = simplePalette::palette
)
}
job = scope.launch(Dispatchers.Default) {
val lineFeatures = mutableListOf<List<Feature>>()
val features = zip.mapIndexed { index, range ->
async {
val contours = findContours(
triangles = triangles,
range = range,
area = area,
cellSize = cellSize
)
val color = colors[index].toColorInt()
lineFeatures.add(contoursToLineFeatures(contours, color).flatten())
contoursToPolygonFeatures(contours, color)
}
}.awaitAll()
withContext(Dispatchers.Main) {
if (false) setupLineLayer(
style = style,
sourceId = sourceId,
layerId = layerId,
features = lineFeatures.flatten()
)
setupFillLayer(
style = style,
sourceId = fillSourceId,
layerId = fillLayerId,
features = features.filterNotNull(),
)
Log.d(TAG, "refresh: 刷新完成")
}
}
}
}
}
fun findContours(
triangles: List<Triangle>,
range: ClosedFloatingPointRange<Double>,
area: Rectangle,
cellSize: Double
): List<ShapeContour> {
return findContours(
f = { v ->
val triangle = triangles.firstOrNull { triangle ->
isPointInTriangle3D(v, listOf(triangle.x1, triangle.x2, triangle.x3))
}
(triangle?.let { triangle ->
val interpolate = interpolateHeight(
point = v,
triangle = listOf(
triangle.x1,
triangle.x2,
triangle.x3,
)
)
if (interpolate.z in range) -1.0
else 1.0
} ?: 1.0).also {
Log.d(TAG, "findContours: ${v} -> ${it}")
}
},
area = area,
cellSize = cellSize,
)
}
private fun setupLineLayer(
style: Style,
sourceId: String,
layerId: String,
features: List<Feature>
) {
style.removeStyleLayer(layerId)
style.removeStyleSource(sourceId)
val source = geoJsonSource(sourceId) {
featureCollection(FeatureCollection.fromFeatures(features))
}
style.addSource(source)
val layer = lineLayer(layerId, sourceId) {
lineColor(Expression.toColor(Expression.Companion.get("color"))) // 从属性获取颜色
lineWidth(1.0)
lineCap(LineCap.ROUND)
lineJoin(LineJoin.ROUND)
lineOpacity(0.8)
}
style.addLayer(layer)
}
private fun setupFillLayer(
style: Style,
sourceId: String,
layerId: String,
features: List<Feature>
) {
style.removeStyleLayer(layerId)
style.removeStyleSource(sourceId)
val source = geoJsonSource(sourceId) {
featureCollection(FeatureCollection.fromFeatures(features))
}
style.addSource(source)
val layer = fillLayer(layerId, sourceId) {
fillColor(Expression.Companion.toColor(Expression.get("color"))) // 从属性获取颜色
fillOpacity(0.5)
fillAntialias(true)
}
style.addLayer(layer)
}
private var useCatmullRom: Boolean = true
fun setCatmullRom(enabled: Boolean) {
useCatmullRom = enabled
}
fun contoursToLineFeatures(contours: List<ShapeContour>, color: Int): List<List<Feature>> {
return contours.drop(1).map { contour ->
contour.segments.map { segment ->
LineString.fromLngLats(
listOf(
segment.start.toMapboxPoint(),
segment.end.toMapboxPoint()
)
)
}.map { lineString ->
Feature.fromGeometry(lineString).apply {
// 将颜色Int转换为十六进制字符串
addStringProperty("color", color.toHexColorString())
}
}
}
}
fun contoursToPolygonFeatures(contours: List<ShapeContour>, color: Int): Feature? {
val lists = contours.drop(0).filter { it.segments.isNotEmpty() }.map { contour ->
val start = contour.segments[0].start
listOf(start) + contour.segments.map { it.end }
}.map {
if (!useCatmullRom) return@map it
val cmr = CatmullRomChain2(it, 1.0, loop = true)
val contour = ShapeContour.fromPoints(cmr.positions(200), true)
val start = contour.segments[0].start
listOf(start) + contour.segments.map { it.end }
}.map { points -> points.map { it.toMapboxPoint() } }
if (lists.isEmpty()) {
Log.w(TAG, "contoursToPolygonFeatures: 没有有效的轮廓数据")
return null
}
val polygon = Polygon.fromLngLats(lists)
return Feature.fromGeometry(polygon).apply {
// 将颜色Int转换为十六进制字符串
addStringProperty("color", color.toHexColorString())
}
}
fun Int.toHexColorString(): String {
return String.format("#%06X", 0xFFFFFF and this)
}
fun clearContours() {
mapView.mapboxMap.getStyle { style ->
try {
style.removeStyleLayer(layerId)
} catch (_: Exception) {
}
try {
style.removeStyleSource(sourceId)
} catch (_: Exception) {
}
}
}
}
fun isPointInTriangle3D(point: Vector2D, triangle: List<Vector3D>): Boolean {
require(triangle.size == 3) { "三角形必须有3个顶点" }
val (v1, v2, v3) = triangle
// 计算重心坐标
val denominator = (v2.y - v3.y) * (v1.x - v3.x) + (v3.x - v2.x) * (v1.y - v3.y)
if (denominator == 0.0) return false // 退化三角形
val alpha = ((v2.y - v3.y) * (point.x - v3.x) + (v3.x - v2.x) * (point.y - v3.y)) / denominator
val beta = ((v3.y - v1.y) * (point.x - v3.x) + (v1.x - v3.x) * (point.y - v3.y)) / denominator
val gamma = 1.0 - alpha - beta
// 点在三角形内当且仅当所有重心坐标都在[0,1]范围内
return alpha >= 0 && beta >= 0 && gamma >= 0 &&
alpha <= 1 && beta <= 1 && gamma <= 1
}
/**
* 使用重心坐标计算点在三角形上的高度
*
* @param point 二维点 (x, y)
* @param triangle 三角形的三个顶点
* @return 三维点 (x, y, z)
*/
fun interpolateHeight(point: Vector2D, triangle: List<Vector3D>): Vector3D {
/**
* 计算点在三角形中的重心坐标
*/
fun calculateBarycentricCoordinates(
point: Vector2D,
v1: Vector3D,
v2: Vector3D,
v3: Vector3D
): Triple<Double, Double, Double> {
val denom = (v2.y - v3.y) * (v1.x - v3.x) + (v3.x - v2.x) * (v1.y - v3.y)
val alpha = ((v2.y - v3.y) * (point.x - v3.x) + (v3.x - v2.x) * (point.y - v3.y)) / denom
val beta = ((v3.y - v1.y) * (point.x - v3.x) + (v1.x - v3.x) * (point.y - v3.y)) / denom
val gamma = 1.0 - alpha - beta
return Triple(alpha, beta, gamma)
}
require(triangle.size == 3) { "三角形必须有3个顶点" }
val (v1, v2, v3) = triangle
// 计算重心坐标
val (alpha, beta, gamma) = calculateBarycentricCoordinates(point, v1, v2, v3)
// 使用重心坐标插值z值
val z = alpha * v1.z + beta * v2.z + gamma * v3.z
return Vector3D(point.x, point.y, z)
}

View File

@@ -0,0 +1,197 @@
package com.icegps.geotools
import com.icegps.math.geometry.Angle
import com.icegps.math.geometry.Vector2D
import com.icegps.geotools.ktx.toMapboxPoint
import com.mapbox.geojson.Feature
import com.mapbox.geojson.FeatureCollection
import com.mapbox.geojson.LineString
import com.mapbox.geojson.Point
import com.mapbox.geojson.Polygon
import com.mapbox.maps.MapView
import com.mapbox.maps.Style
import com.mapbox.maps.extension.style.expressions.generated.Expression
import com.mapbox.maps.extension.style.layers.addLayer
import com.mapbox.maps.extension.style.layers.generated.FillLayer
import com.mapbox.maps.extension.style.layers.generated.LineLayer
import com.mapbox.maps.extension.style.layers.properties.generated.LineCap
import com.mapbox.maps.extension.style.layers.properties.generated.LineJoin
import com.mapbox.maps.extension.style.sources.addSource
import com.mapbox.maps.extension.style.sources.generated.geoJsonSource
import kotlin.math.cos
import kotlin.math.min
import kotlin.math.sin
/**
* 设置趋势箭头图层
*/
fun setupTrendLayer(
style: Style,
trendSourceId: String,
trendLayerId: String,
features: List<Feature>
) {
val trendSource = geoJsonSource(trendSourceId) {
featureCollection(FeatureCollection.fromFeatures(features))
}
try {
style.removeStyleLayer(trendLayerId)
} catch (_: Exception) {
}
try {
style.removeStyleLayer("$trendLayerId-head")
} catch (_: Exception) {
}
if (style.styleSourceExists(trendSourceId)) {
style.removeStyleSource(trendSourceId)
}
style.addSource(trendSource)
val lineLayer = LineLayer(trendLayerId, trendSourceId).apply {
lineColor(Expression.toColor(Expression.get("color")))
lineWidth(4.0)
lineCap(LineCap.ROUND)
lineJoin(LineJoin.ROUND)
}
style.addLayer(lineLayer)
val headLayer = FillLayer("$trendLayerId-head", trendSourceId).apply {
fillColor(Expression.toColor(Expression.get("color")))
}
style.addLayer(headLayer)
}
fun MapView.displayControllableArrow(
grid: GridModel,
sourceId: String = "controllable-source-id-0",
layerId: String = "controllable-layer-id-0",
arrowScale: Double = 0.4,
angle: Angle,
onHeadArrowChange: (List<Point>) -> Unit
) {
mapboxMap.getStyle { style ->
val centerX = (grid.minX + grid.maxX) / 2
val centerY = (grid.minY + grid.maxY) / 2
val regionWidth = grid.maxX - grid.minX
val regionHeight = grid.maxY - grid.minY
val arrowLength = min(regionWidth, regionHeight) * arrowScale * 1.0
val arrowDirectionRad = angle.radians
val endX = centerX + sin(arrowDirectionRad) * arrowLength
val endY = centerY + cos(arrowDirectionRad) * arrowLength
val arrowLine = LineString.fromLngLats(
listOf(
Vector2D(centerX, centerY),
Vector2D(endX, endY)
).map { it.toMapboxPoint() }
)
val arrowFeature = Feature.fromGeometry(arrowLine)
arrowFeature.addStringProperty("color", "#0000FF")
arrowFeature.addStringProperty("type", "overall-trend")
// 创建箭头头部
val headSize = arrowLength * 0.2
val leftRad = arrowDirectionRad + Math.PI * 0.8
val rightRad = arrowDirectionRad - Math.PI * 0.8
val leftX = endX + sin(leftRad) * headSize
val leftY = endY + cos(leftRad) * headSize
val rightX = endX + sin(rightRad) * headSize
val rightY = endY + cos(rightRad) * headSize
val headRing = listOf(
Vector2D(endX, endY),
Vector2D(leftX, leftY),
Vector2D(rightX, rightY),
Vector2D(endX, endY)
).map { it.toMapboxPoint() }
onHeadArrowChange(headRing)
val headPolygon = Polygon.fromLngLats(listOf(headRing))
val headFeature = Feature.fromGeometry(headPolygon)
headFeature.addStringProperty("color", "#0000FF")
headFeature.addStringProperty("type", "overall-trend")
val features = listOf(arrowFeature, headFeature)
// 设置图层
setupTrendLayer(style, sourceId, layerId, features)
}
}
fun calculateArrowData(
grid: GridModel,
angle: Angle,
arrowScale: Double = 0.4
): ArrowData {
val centerX = (grid.minX + grid.maxX) / 2
val centerY = (grid.minY + grid.maxY) / 2
val regionWidth = grid.maxX - grid.minX
val regionHeight = grid.maxY - grid.minY
val arrowLength = min(regionWidth, regionHeight) * arrowScale * 1.0
val arrowDirectionRad = angle.radians
val endX = centerX + sin(arrowDirectionRad) * arrowLength
val endY = centerY + cos(arrowDirectionRad) * arrowLength
val arrowLine = listOf(
Vector2D(centerX, centerY),
Vector2D(endX, endY)
)
// 创建箭头头部
val headSize = arrowLength * 0.2
val leftRad = arrowDirectionRad + Math.PI * 0.8
val rightRad = arrowDirectionRad - Math.PI * 0.8
val leftX = endX + sin(leftRad) * headSize
val leftY = endY + cos(leftRad) * headSize
val rightX = endX + sin(rightRad) * headSize
val rightY = endY + cos(rightRad) * headSize
val headRing = listOf(
Vector2D(endX, endY),
Vector2D(leftX, leftY),
Vector2D(rightX, rightY),
Vector2D(endX, endY)
)
return ArrowData(
arrowLine = arrowLine,
headRing = headRing
)
}
data class ArrowData(
val arrowLine: List<Vector2D>,
val headRing: List<Vector2D>
)
fun MapView.displayControllableArrow(
sourceId: String = "controllable-source-id-0",
layerId: String = "controllable-layer-id-0",
arrowData: ArrowData
) {
mapboxMap.getStyle { style ->
val (arrowLine, headRing) = arrowData
val arrowFeature = Feature.fromGeometry(LineString.fromLngLats(arrowLine.map { it.toMapboxPoint() }))
arrowFeature.addStringProperty("color", "#0000FF")
arrowFeature.addStringProperty("type", "overall-trend")
val headPolygon = Polygon.fromLngLats(listOf(headRing.map { it.toMapboxPoint() }))
val headFeature = Feature.fromGeometry(headPolygon)
headFeature.addStringProperty("color", "#0000FF")
headFeature.addStringProperty("type", "overall-trend")
val features = listOf(arrowFeature, headFeature)
// 设置图层
setupTrendLayer(style, sourceId, layerId, features)
}
}

View File

@@ -0,0 +1,53 @@
package com.icegps.geotools
import com.icegps.math.geometry.Angle
import com.icegps.math.geometry.Vector3D
import com.icegps.math.geometry.degrees
import kotlin.math.cos
import kotlin.math.sin
import kotlin.random.Random
/**
* @author tabidachinokaze
* @date 2025/11/25
*/
fun coordinateGenerate(): List<Vector3D> {
val minX = -20.0
val maxX = 20.0
val minY = -20.0
val maxY = 20.0
val minZ = -20.0
val maxZ = 20.0
val x: () -> Double = { Random.nextDouble(minX, maxX) }
val y: () -> Double = { Random.nextDouble(minY, maxY) }
val z: () -> Double = { Random.nextDouble(minZ, maxZ) }
val dPoints = (0..60).map {
Vector3D(x(), y(), z())
}
return dPoints
}
fun coordinateGenerate1(): List<List<Vector3D>> {
/**
* 绕 Z 轴旋转指定角度(弧度)
*/
fun Vector3D.rotateAroundZ(angle: Angle): Vector3D {
val cosAngle = cos(angle.radians)
val sinAngle = sin(angle.radians)
return Vector3D(
x = x * cosAngle - y * sinAngle,
y = x * sinAngle + y * cosAngle,
z = z
)
}
val center = Vector3D()
val direction = Vector3D(0.0, 1.0, -1.0)
return (0..360).step(10).map {
val nowDirection = direction.rotateAroundZ(it.degrees)
listOf(2, 6, 10).map {
center + nowDirection * it
}
}
}

View File

@@ -0,0 +1,144 @@
package com.icegps.geotools
import android.util.Log
import com.icegps.math.geometry.Vector2D
import com.icegps.geotools.ktx.toMapboxPoint
import com.mapbox.geojson.Feature
import com.mapbox.geojson.FeatureCollection
import com.mapbox.geojson.Polygon
import com.mapbox.maps.MapView
import com.mapbox.maps.Style
import com.mapbox.maps.extension.style.expressions.generated.Expression
import com.mapbox.maps.extension.style.layers.addLayer
import com.mapbox.maps.extension.style.layers.generated.FillLayer
import com.mapbox.maps.extension.style.layers.generated.LineLayer
import com.mapbox.maps.extension.style.sources.addSource
import com.mapbox.maps.extension.style.sources.generated.geoJsonSource
/**
* @author tabidachinokaze
* @date 2025/11/26
*/
/**
* 绘制斜坡设计结果
*/
fun MapView.displaySlopeResult(
originalGrid: GridModel,
slopeResult: SlopeResult,
sourceId: String = "slope-result",
layerId: String = "slope-layer",
palette: (Double?) -> String,
showDesignHeight: Boolean
) {
val elevationList = mutableListOf<Double>()
mapboxMap.getStyle { style ->
val features = mutableListOf<Feature>()
val designGrid = slopeResult.designSurface
// 对比测试,将绘制到原来图形的左边
// val minX = originalGrid.minX * 2 - originalGrid.maxX
val minX = originalGrid.minX
val maxY = originalGrid.maxY
val cellSize = originalGrid.cellSize
for (r in 0 until originalGrid.rows) {
for (c in 0 until originalGrid.cols) {
val originalElev = originalGrid.getValue(r, c) ?: continue
val designElev = designGrid.getValue(r, c) ?: continue
elevationList.add(designElev)
// 计算填挖高度
val heightDiff = designElev - originalElev
// 计算栅格边界
val x0 = minX + c * cellSize
val y0 = maxY - r * cellSize
val x1 = x0 + cellSize
val y1 = y0 - cellSize
// 1. 创建多边形要素(背景色)
val ring = listOf(
Vector2D(x0, y0),
Vector2D(x1, y0),
Vector2D(x1, y1),
Vector2D(x0, y1),
Vector2D(x0, y0)
).map { it.toMapboxPoint() }
val poly = Polygon.fromLngLats(listOf(ring))
val feature = Feature.fromGeometry(poly)
if (showDesignHeight) {
// 显示设计高度,测试坡向是否正确,和高度是否计算正确
feature.addStringProperty("color", palette(designElev))
} else {
// 显示高差
feature.addStringProperty("color", palette(heightDiff))
}
// 显示原始高度
// feature.addStringProperty("color", palette(originalElev))
features.add(feature)
}
}
Log.d("displayGridWithDirectionArrows", "对比区域的土方量计算: ${elevationList.sum()}, 平均值:${elevationList.average()}")
// 设置图层
setupEarthworkLayer(style, sourceId, layerId, features)
}
}
/**
* 完整的土方工程图层设置 - 修正版
*/
private fun setupEarthworkLayer(
style: Style,
sourceId: String,
layerId: String,
features: List<Feature>,
) {
// 创建数据源
val source = geoJsonSource(sourceId) {
featureCollection(FeatureCollection.fromFeatures(features))
}
// 清理旧图层
try {
style.removeStyleLayer(layerId)
} catch (_: Exception) {
}
try {
style.removeStyleLayer("$layerId-arrow")
} catch (_: Exception) {
}
try {
style.removeStyleLayer("$layerId-outline")
} catch (_: Exception) {
}
try {
style.removeStyleLayer("$layerId-text")
} catch (_: Exception) {
}
if (style.styleSourceExists(sourceId)) {
style.removeStyleSource(sourceId)
}
// 添加数据源
style.addSource(source)
// 主填充图层
val fillLayer = FillLayer(layerId, sourceId).apply {
fillColor(Expression.toColor(Expression.get("color")))
fillOpacity(0.7)
}
style.addLayer(fillLayer)
// 边框图层
val outlineLayer = LineLayer("$layerId-outline", sourceId).apply {
lineColor("#333333")
lineWidth(1.0)
lineOpacity(0.5)
}
style.addLayer(outlineLayer)
}

View File

@@ -0,0 +1,438 @@
package com.icegps.geotools
import android.graphics.PointF
import android.util.Log
import com.icegps.common.helper.GeoHelper
import com.icegps.math.geometry.Angle
import com.icegps.math.geometry.Vector2D
import com.icegps.math.geometry.degrees
import com.icegps.shared.ktx.TAG
import com.mapbox.android.gestures.MoveGestureDetector
import com.mapbox.geojson.Point
import com.mapbox.maps.MapView
import com.mapbox.maps.ScreenCoordinate
import com.mapbox.maps.plugin.gestures.OnMoveListener
import com.mapbox.maps.plugin.gestures.addOnMoveListener
import com.mapbox.maps.plugin.gestures.removeOnMoveListener
import kotlinx.coroutines.CoroutineScope
import kotlinx.coroutines.flow.MutableStateFlow
import kotlinx.coroutines.flow.asStateFlow
import kotlinx.coroutines.flow.combine
import kotlinx.coroutines.flow.launchIn
import kotlin.math.abs
import kotlin.math.cos
import kotlin.math.sin
/**
* @author tabidachinokaze
* @date 2025/11/26
*/
object SlopeCalculator {
fun calculateSlope(
grid: GridModel,
slopeDirection: Double,
slopePercentage: Double,
baseHeightOffset: Double = 0.0
): SlopeResult {
val centerX = (grid.minX + grid.maxX) / 2
val centerY = (grid.minY + grid.maxY) / 2
val elevations = grid.cells.filterNotNull()
val baseElevation = elevations.average() + baseHeightOffset
val basePoint = Triple(centerX, centerY, baseElevation)
val earthworkResult = EarthworkCalculator.calculateForSlopeDesign(
grid = grid,
basePoint = basePoint,
slope = slopePercentage,
aspect = slopeDirection
)
return SlopeResult(
slopeDirection = slopeDirection,
slopePercentage = slopePercentage,
baseHeightOffset = baseHeightOffset,
baseElevation = baseElevation,
earthworkResult = earthworkResult,
designSurface = generateSlopeDesignGrid(
grid = grid,
basePoint = basePoint,
slopePercentage = slopePercentage,
slopeDirection = slopeDirection
)
)
}
/**
* 生成斜坡设计面网格(用于可视化)
*/
private fun generateSlopeDesignGrid(
grid: GridModel,
basePoint: Triple<Double, Double, Double>,
slopePercentage: Double,
slopeDirection: Double
): GridModel {
val designCells = Array<Double?>(grid.rows * grid.cols) { null }
val (baseX, baseY, baseElev) = basePoint
val slopeRatio = slopePercentage / 100.0
for (r in 0 until grid.rows) {
for (c in 0 until grid.cols) {
if (grid.getValue(r, c) != null) {
val cellX = grid.minX + (c + 0.5) * (grid.maxX - grid.minX) / grid.cols
val cellY = grid.minY + (r + 0.5) * (grid.maxY - grid.minY) / grid.rows
val designElev = calculateSlopeElevation(
pointX = cellX,
pointY = cellY,
baseX = baseX,
baseY = baseY,
baseElev = baseElev,
slopeRatio = slopeRatio,
slopeDirection = slopeDirection
)
designCells[r * grid.cols + c] = designElev
}
}
}
return GridModel(
minX = grid.minX,
maxX = grid.maxX,
minY = grid.minY,
maxY = grid.maxY,
rows = grid.rows,
cols = grid.cols,
cellSize = grid.cellSize,
cells = designCells
)
}
/**
* 斜坡高程计算
*/
fun calculateSlopeElevation(
pointX: Double,
pointY: Double,
baseX: Double,
baseY: Double,
baseElev: Double,
slopeRatio: Double,
slopeDirection: Double
): Double {
val dx = (pointX - baseX) * cos(Math.toRadians(baseY))
val dy = (pointY - baseY)
val slopeRad = (slopeDirection.degrees - 90.degrees).normalized.radians
val projection = dx * cos(slopeRad) + dy * sin(slopeRad)
val heightDiff = projection * slopeRatio
return baseElev + heightDiff
}
}
/**
* 斜面设计
*
* @property slopeDirection 坡向 (度)
* @property slopePercentage 坡度 (%)
* @property baseHeightOffset 基准面高度偏移 (m)
* @property baseElevation 基准点高程 (m)
* @property earthworkResult 土方量结果
* @property designSurface 设计面网格(用于可视化)
*/
data class SlopeResult(
val slopeDirection: Double,
val slopePercentage: Double,
val baseHeightOffset: Double,
val baseElevation: Double,
val earthworkResult: EarthworkResult,
val designSurface: GridModel
)
object EarthworkCalculator {
/**
* @param grid 栅格网模型
* @param designElevation 设计高程
*/
fun calculateForFlatDesign(
grid: GridModel,
designElevation: Double
): EarthworkResult {
var cutVolume = 0.0
var fillVolume = 0.0
var cutArea = 0.0
var fillArea = 0.0
val cellArea = grid.cellSize * grid.cellSize
for (r in 0 until grid.rows) {
for (c in 0 until grid.cols) {
val originalElev = grid.getValue(r, c) ?: continue
val heightDiff = designElevation - originalElev
val volume = heightDiff * cellArea
if (volume > 0) {
fillVolume += volume
fillArea += cellArea
} else if (volume < 0) {
cutVolume += abs(volume)
cutArea += cellArea
}
}
}
return EarthworkResult(
cutVolume = cutVolume,
fillVolume = fillVolume,
netVolume = fillVolume - cutVolume,
cutArea = cutArea,
fillArea = fillArea,
totalArea = cutArea + fillArea
)
}
/**
* 计算斜面设计的土方量
*/
fun calculateForSlopeDesign(
grid: GridModel,
basePoint: Triple<Double, Double, Double>,
slope: Double,
aspect: Double
): EarthworkResult {
var cutVolume = 0.0
var fillVolume = 0.0
var cutArea = 0.0
var fillArea = 0.0
val cellArea = grid.cellSize * grid.cellSize
val (baseX, baseY, baseElev) = basePoint
val slopeRatio = slope / 100.0
for (r in 0 until grid.rows) {
for (c in 0 until grid.cols) {
val originalElev = grid.getValue(r, c) ?: continue
val cellX = grid.minX + (c + 0.5) * (grid.maxX - grid.minX) / grid.cols
val cellY = grid.minY + (r + 0.5) * (grid.maxY - grid.minY) / grid.rows
val designElev = SlopeCalculator.calculateSlopeElevation(
pointX = cellX,
pointY = cellY,
baseX = baseX,
baseY = baseY,
baseElev = baseElev,
slopeRatio = slopeRatio,
slopeDirection = aspect
)
val heightElev = designElev - originalElev
val volume = heightElev * cellArea
if (volume > 0) {
fillVolume += volume
fillArea += cellArea
} else if (volume < 0) {
cutVolume += abs(volume)
cutArea += cellArea
}
}
}
return EarthworkResult(
cutVolume = cutVolume,
fillVolume = fillVolume,
netVolume = fillVolume - cutVolume,
cutArea = cutArea,
fillArea = fillArea,
totalArea = cutArea + fillArea
)
}
}
/**
* 土方量计算结果
* @property cutVolume 挖方量 (m³)
* @property fillVolume 填方量 (m³)
* @property netVolume 净土方量 (m³)
* @property cutArea 挖方面积 (m²)
* @property fillArea 填方面积 (m²)
* @property totalArea 总面积 (m²)
*/
data class EarthworkResult(
val cutVolume: Double,
val fillVolume: Double,
val netVolume: Double,
val cutArea: Double,
val fillArea: Double,
val totalArea: Double
) {
override fun toString(): String {
return buildString {
appendLine("EarthworkResult")
appendLine("挖方: ${"%.1f".format(cutVolume)}")
appendLine("填方: ${"%.1f".format(fillVolume)}")
appendLine("净土方: ${"%.1f".format(netVolume)}")
appendLine("挖方面积: ${"%.1f".format(cutArea)}")
appendLine("填方面积: ${"%.1f".format(fillArea)}")
appendLine("总面积:${"%.1f".format(totalArea)}")
}
}
}
class EarthworkManager(
private val mapView: MapView,
private val scope: CoroutineScope
) {
private val arrowSourceId: String = "controllable-source-id-0"
private val arrowLayerId: String = "controllable-layer-id-0"
private var listener: OnMoveListener? = null
private var gridModel = MutableStateFlow<GridModel?>(null)
private val arrowHead = MutableStateFlow(emptyList<Vector2D>())
private var arrowCenter = MutableStateFlow(Vector2D(0.0, 0.0))
private var arrowEnd = MutableStateFlow(Vector2D(0.0, 1.0))
private var _slopeDirection = MutableStateFlow(0.degrees)
val slopeDirection = _slopeDirection.asStateFlow()
private val _slopePercentage = MutableStateFlow(90.0)
val slopePercentage = _slopePercentage.asStateFlow()
private val _baseHeightOffset = MutableStateFlow(0.0)
val baseHeightOffset = _baseHeightOffset.asStateFlow()
init {
combine(
arrowCenter,
arrowEnd,
gridModel
) { center, arrow, gridModel ->
gridModel?.let { gridModel ->
// _slopeDirection.value = angle
displayControllableArrow(gridModel, getSlopeDirection(arrow, center))
}
}.launchIn(scope)
combine(
_slopeDirection,
gridModel
) { slopeDirection, gridModel ->
gridModel?.let {
displayControllableArrow(it, slopeDirection)
}
}.launchIn(scope)
}
private fun getSlopeDirection(
arrow: Vector2D,
center: Vector2D
): Angle {
val direction = (arrow - center)
val atan2 = Angle.atan2(direction.x, direction.y, Vector2D.UP)
val angle = atan2.normalized
return angle
}
private fun displayControllableArrow(gridModel: GridModel, slopeDirection: Angle) {
val arrowData = calculateArrowData(
grid = gridModel,
angle = slopeDirection,
)
arrowHead.value = arrowData.headRing
mapView.displayControllableArrow(
sourceId = arrowSourceId,
layerId = arrowLayerId,
arrowData = arrowData,
)
}
fun Point.toVector2D(): Vector2D {
val geoHelper = GeoHelper.getSharedInstance()
val enu = geoHelper.wgs84ToENU(lon = longitude(), lat = latitude(), hgt = 0.0)
return Vector2D(enu.x, enu.y)
}
fun removeOnMoveListener() {
listener?.let(mapView.mapboxMap::removeOnMoveListener)
listener = null
}
fun setupOnMoveListener() {
listener = object : OnMoveListener {
private var beginning: Boolean = false
private var isDragging: Boolean = false
private fun getCoordinate(focalPoint: PointF): Point {
return mapView.mapboxMap.coordinateForPixel(ScreenCoordinate(focalPoint.x.toDouble(), focalPoint.y.toDouble()))
}
override fun onMove(detector: MoveGestureDetector): Boolean {
val focalPoint = detector.focalPoint
val point = mapView.mapboxMap
.coordinateForPixel(ScreenCoordinate(focalPoint.x.toDouble(), focalPoint.y.toDouble()))
.toVector2D()
val isPointInPolygon = RayCastingAlgorithm.isPointInPolygon(
point = point,
polygon = arrowHead.value
)
if (isPointInPolygon) {
isDragging = true
}
if (isDragging) {
arrowEnd.value = point
}
return isDragging
}
override fun onMoveBegin(detector: MoveGestureDetector) {
Log.d(TAG, "onMoveBegin: $detector")
beginning = true
}
override fun onMoveEnd(detector: MoveGestureDetector) {
Log.d(TAG, "onMoveEnd: $detector")
val point = getCoordinate(detector.focalPoint)
val arrow = point.toVector2D()
if (beginning && isDragging) {
arrowEnd.value = arrow
val center = arrowCenter.value
_slopeDirection.value = getSlopeDirection(arrow, center)
}
Log.d(
TAG,
buildString {
appendLine("onMoveEnd: ")
appendLine("${point.longitude()}, ${point.latitude()}")
}
)
isDragging = false
beginning = false
}
}.also(mapView.mapboxMap::addOnMoveListener)
}
fun updateGridModel(gridModel: GridModel) {
this.gridModel.value = gridModel
calculateArrowCenter(gridModel)
}
private fun calculateArrowCenter(gridModel: GridModel) {
val centerX = (gridModel.minX + gridModel.maxX) / 2
val centerY = (gridModel.minY + gridModel.maxY) / 2
arrowCenter.value = Vector2D(centerX, centerY)
}
fun updateSlopeDirection(angle: Angle) {
_slopeDirection.value = angle
}
fun updateSlopePercentage(value: Double) {
_slopePercentage.value = value
}
fun updateDesignHeight(value: Double) {
_baseHeightOffset.value = value
}
}

View File

@@ -0,0 +1,83 @@
package com.icegps.geotools
import com.icegps.common.helper.GeoHelper
import com.icegps.math.geometry.Vector2D
import com.mapbox.geojson.Feature
import com.mapbox.geojson.FeatureCollection
import com.mapbox.geojson.Point
import com.mapbox.geojson.Polygon
import com.mapbox.maps.MapView
import com.mapbox.maps.extension.style.expressions.generated.Expression
import com.mapbox.maps.extension.style.layers.addLayer
import com.mapbox.maps.extension.style.layers.generated.FillLayer
import com.mapbox.maps.extension.style.sources.addSource
import com.mapbox.maps.extension.style.sources.generated.geoJsonSource
/**
* @author tabidachinokaze
* @date 2025/11/25
*/
fun MapView.displayGridModel(
grid: GridModel,
sourceId: String,
layerId: String,
palette: (Double?) -> String,
) {
val geoHelper = GeoHelper.getSharedInstance()
mapboxMap.getStyle { style ->
val polygonFeatures = mutableListOf<Feature>()
val minX = grid.minX
val maxY = grid.maxY
val cellSize = grid.cellSize
for (r in 0 until grid.rows) {
for (c in 0 until grid.cols) {
val idx = r * grid.cols + c
val v = grid.cells[idx] ?: continue
val x0 = minX + c * cellSize
val y0 = maxY - r * cellSize
val x1 = x0 + cellSize
val y1 = y0 - cellSize
val ring = listOf(
Vector2D(x0, y0),
Vector2D(x1, y0),
Vector2D(x1, y1),
Vector2D(x0, y1),
Vector2D(x0, y0),
).map {
geoHelper.enuToWGS84Object(GeoHelper.ENU(it.x, it.y))
}.map {
Point.fromLngLat(it.lon, it.lat)
}
val poly = Polygon.fromLngLats(listOf(ring))
val polyFeature = Feature.fromGeometry(poly)
polyFeature.addStringProperty("color", palette(v))
polyFeature.addNumberProperty("value", v ?: -9999.0)
polygonFeatures.add(polyFeature)
}
}
try {
style.removeStyleLayer(layerId)
} catch (_: Exception) {
}
if (style.styleSourceExists(sourceId)) {
style.removeStyleSource(sourceId)
}
val polygonSource = geoJsonSource(sourceId) {
featureCollection(FeatureCollection.fromFeatures(polygonFeatures))
}
style.addSource(polygonSource)
val fillLayer = FillLayer(layerId, sourceId).apply {
fillColor(Expression.toColor(Expression.get("color")))
fillOpacity(0.5)
}
style.addLayer(fillLayer)
}
}

View File

@@ -0,0 +1,139 @@
package com.icegps.geotools
import com.icegps.math.geometry.Vector2D
import com.icegps.math.geometry.Vector3D
import com.icegps.triangulation.DelaunayTriangulation
import kotlin.math.absoluteValue
import kotlin.math.ceil
/**
* @author tabidachinokaze
* @date 2025/11/25
*/
data class GridModel(
val minX: Double,
val maxX: Double,
val minY: Double,
val maxY: Double,
val rows: Int,
val cols: Int,
val cellSize: Double,
val cells: Array<Double?>
) {
fun getValue(row: Int, col: Int): Double? {
if (row !in 0..<rows || col < 0 || col >= cols) {
return null
}
return cells[row * cols + col]
}
}
fun triangulationToGrid(
delaunator: DelaunayTriangulation,
cellSize: Double = 50.0,
maxSidePixels: Int = 5000
): GridModel {
fun pointInTriangle(pt: Vector2D, a: Vector3D, b: Vector3D, c: Vector3D): Boolean {
val v0x = c.x - a.x
val v0y = c.y - a.y
val v1x = b.x - a.x
val v1y = b.y - a.y
val v2x = pt.x - a.x
val v2y = pt.y - a.y
val dot00 = v0x * v0x + v0y * v0y
val dot01 = v0x * v1x + v0y * v1y
val dot02 = v0x * v2x + v0y * v2y
val dot11 = v1x * v1x + v1y * v1y
val dot12 = v1x * v2x + v1y * v2y
val denom = dot00 * dot11 - dot01 * dot01
if (denom == 0.0) return false
val invDenom = 1.0 / denom
val u = (dot11 * dot02 - dot01 * dot12) * invDenom
val v = (dot00 * dot12 - dot01 * dot02) * invDenom
return u >= 0 && v >= 0 && u + v <= 1
}
fun barycentricInterpolateLegacy(pt: Vector2D, a: Vector3D, b: Vector3D, c: Vector3D, values: DoubleArray): Double {
val area = { p1: Vector2D, p2: Vector3D, p3: Vector3D ->
((p2.x - p1.x) * (p3.y - p1.y) - (p3.x - p1.x) * (p2.y - p1.y)).absoluteValue / 2.0
}
val area2 = { p1: Vector3D, p2: Vector3D, p3: Vector3D ->
((p2.x - p1.x) * (p3.y - p1.y) - (p3.x - p1.x) * (p2.y - p1.y)).absoluteValue / 2.0
}
val areaTotal = area2(a, b, c)
if (areaTotal == 0.0) return values[0]
val wA = area(pt, b, c) / areaTotal
val wB = area(pt, c, a) / areaTotal
val wC = area(pt, a, b) / areaTotal
return values[0] * wA + values[1] * wB + values[2] * wC
}
val pts = delaunator.points
require(pts.isNotEmpty()) { "points empty" }
val x = pts.map { it.x }
val y = pts.map { it.y }
val minX = x.min()
val maxX = x.max()
val minY = y.min()
val maxY = y.max()
val width = maxX - minX
val height = maxY - minY
var cols = ceil(width / cellSize).toInt()
var rows = ceil(height / cellSize).toInt()
// 防止过大
if (cols > maxSidePixels) cols = maxSidePixels
if (rows > maxSidePixels) rows = maxSidePixels
val cells = Array<Double?>(rows * cols) { null }
val triangles = delaunator.triangles()
for (ti in 0 until triangles.size) {
val (a, b, c) = triangles[ti]
val tminX = minOf(a.x, b.x, c.x)
val tmaxX = maxOf(a.x, b.x, c.x)
val tminY = minOf(a.y, b.y, c.y)
val tmaxY = maxOf(a.y, b.y, c.y)
val colMin = ((tminX - minX) / cellSize).toInt().coerceIn(0, cols - 1)
val colMax = ((tmaxX - minX) / cellSize).toInt().coerceIn(0, cols - 1)
val rowMin = ((maxY - tmaxY) / cellSize).toInt().coerceIn(0, rows - 1)
val rowMax = ((maxY - tminY) / cellSize).toInt().coerceIn(0, rows - 1)
val triVertexVals = doubleArrayOf(a.z, b.z, c.z)
for (r in rowMin..rowMax) {
for (cIdx in colMin..colMax) {
val centerX = minX + (cIdx + 0.5) * cellSize
val centerY = maxY - (r + 0.5) * cellSize
val pt = Vector2D(centerX, centerY)
if (pointInTriangle(pt, a, b, c)) {
val idx = r * cols + cIdx
val valInterp = barycentricInterpolateLegacy(pt, a, b, c, triVertexVals)
cells[idx] = valInterp
}
}
}
}
val grid = GridModel(
minX = minX,
minY = minY,
maxX = maxX,
maxY = maxY,
rows = rows,
cols = cols,
cellSize = cellSize,
cells = cells
)
return grid
}

View File

@@ -0,0 +1,265 @@
package com.icegps.geotools
import android.os.Bundle
import androidx.activity.enableEdgeToEdge
import androidx.appcompat.app.AppCompatActivity
import androidx.core.view.ViewCompat
import androidx.core.view.WindowInsetsCompat
import androidx.lifecycle.ViewModelProvider
import androidx.lifecycle.lifecycleScope
import com.google.android.material.slider.RangeSlider
import com.google.android.material.slider.Slider
import com.icegps.common.helper.GeoHelper
import com.icegps.geotools.databinding.ActivityMainBinding
import com.icegps.math.geometry.Angle
import com.icegps.math.geometry.degrees
import com.icegps.shared.model.GeoPoint
import com.mapbox.geojson.Point
import com.mapbox.maps.CameraOptions
import com.mapbox.maps.MapView
import com.mapbox.maps.plugin.gestures.addOnMapClickListener
import kotlinx.coroutines.flow.MutableStateFlow
import kotlinx.coroutines.flow.combine
import kotlinx.coroutines.flow.filterNotNull
import kotlinx.coroutines.flow.launchIn
import kotlinx.coroutines.flow.map
import kotlinx.coroutines.flow.onEach
import kotlin.uuid.ExperimentalUuidApi
import kotlin.uuid.Uuid
class MainActivity : AppCompatActivity() {
private lateinit var binding: ActivityMainBinding
private lateinit var mapView: MapView
private val viewModel: MainViewModel by lazy {
ViewModelProvider(this)[MainViewModel::class.java]
}
private lateinit var contoursManager: ContoursManager
private lateinit var earthworkManager: EarthworkManager
init {
initGeoHelper()
}
override fun onCreate(savedInstanceState: Bundle?) {
super.onCreate(savedInstanceState)
enableEdgeToEdge()
binding = ActivityMainBinding.inflate(layoutInflater)
mapView = binding.mapView
earthworkManager = EarthworkManager(mapView, lifecycleScope)
setContentView(binding.root)
ViewCompat.setOnApplyWindowInsetsListener(findViewById(R.id.main)) { v, insets ->
val systemBars = insets.getInsets(WindowInsetsCompat.Type.systemBars())
v.setPadding(systemBars.left, systemBars.top, systemBars.right, systemBars.bottom)
insets
}
mapView.mapboxMap.setCamera(
CameraOptions.Builder()
.center(Point.fromLngLat(home.longitude, home.latitude))
.pitch(0.0)
.zoom(18.0)
.bearing(0.0)
.build()
)
val points = coordinateGenerate()
// divider
contoursManager = ContoursManager(
context = this,
mapView = mapView,
scope = lifecycleScope
)
contoursManager.updateContourSize(6)
contoursManager.updatePoints(points)
val height = points.map { it.z }
val min = height.min()
val max = height.max()
contoursManager.updateHeightRange((min / 2)..max)
binding.heightRange.values = listOf(min.toFloat() / 2, max.toFloat())
binding.heightRange.valueFrom = min.toFloat()
binding.heightRange.valueTo = max.toFloat()
contoursManager.refresh()
binding.sliderTargetHeight.addOnSliderTouchListener(
object : Slider.OnSliderTouchListener {
override fun onStartTrackingTouch(p0: Slider) {
}
override fun onStopTrackingTouch(p0: Slider) {
val present = p0.value / p0.valueTo
// val targetHeight = ((valueRange.endInclusive - valueRange.start) * present) + valueRange.start
// val contours = findContours(triangles, targetHeight)
// contoursTest.clearContours()
// if (false) contoursTest.updateContours(contours)
}
}
)
binding.heightRange.addOnSliderTouchListener(
object : RangeSlider.OnSliderTouchListener {
override fun onStartTrackingTouch(slider: RangeSlider) {
}
override fun onStopTrackingTouch(slider: RangeSlider) {
contoursManager.updateHeightRange((slider.values.min().toDouble() - 1.0)..(slider.values.max().toDouble() + 1.0))
contoursManager.refresh()
}
}
)
binding.switchGrid.setOnCheckedChangeListener { _, isChecked ->
contoursManager.setGridVisible(isChecked)
}
binding.switchTriangle.setOnCheckedChangeListener { _, isChecked ->
contoursManager.setTriangleVisible(isChecked)
}
binding.update.setOnClickListener {
contoursManager.refresh()
}
binding.cellSize.addOnSliderTouchListener(
object : Slider.OnSliderTouchListener {
override fun onStartTrackingTouch(slider: Slider) {
}
override fun onStopTrackingTouch(slider: Slider) {
contoursManager.updateCellSize(slider.value.toDouble())
contoursManager.refresh()
}
}
)
mapView.mapboxMap.addOnMapClickListener {
viewModel.addPoint(it)
true
}
binding.clearPoints.setOnClickListener {
viewModel.clearPoints()
}
binding.slopeDirection.addOnSliderTouchListener(
object : Slider.OnSliderTouchListener {
override fun onStartTrackingTouch(slider: Slider) {
}
override fun onStopTrackingTouch(slider: Slider) {
earthworkManager.updateSlopeDirection(slider.value.degrees)
}
}
)
binding.slopePercentage.addOnSliderTouchListener(
object : Slider.OnSliderTouchListener {
override fun onStartTrackingTouch(slider: Slider) {
}
override fun onStopTrackingTouch(slider: Slider) {
earthworkManager.updateSlopePercentage(slider.value.toDouble())
}
}
)
binding.designHeight.addOnSliderTouchListener(
object : Slider.OnSliderTouchListener {
override fun onStartTrackingTouch(slider: Slider) {
}
override fun onStopTrackingTouch(slider: Slider) {
earthworkManager.updateDesignHeight(slider.value.toDouble())
}
}
)
binding.switchDesignSurface.setOnCheckedChangeListener { button, isChecked ->
showDesignHeight.value = isChecked
}
earthworkManager.setupOnMoveListener()
binding.switchSlopeResult.setOnCheckedChangeListener { _, isChecked ->
slopeResultVisible.value = isChecked
}
initData()
}
private val showDesignHeight = MutableStateFlow(false)
private val slopeResultVisible = MutableStateFlow(false)
@OptIn(ExperimentalUuidApi::class)
private fun initData() {
viewModel.points.onEach {
contoursManager.updatePoints(it)
contoursManager.updateHeightRange()
contoursManager.refresh()
}.launchIn(lifecycleScope)
contoursManager.gridModel.filterNotNull().onEach {
earthworkManager.updateGridModel(it)
}.launchIn(lifecycleScope)
earthworkManager.slopeDirection.onEach {
binding.slopeDirection.value = it.degrees.toFloat()
}.launchIn(lifecycleScope)
val slopeResultSourceId: String = Uuid.random().toString()
val slopeResultLayerId: String = Uuid.random().toString()
combine(
earthworkManager.slopeDirection,
earthworkManager.slopePercentage,
earthworkManager.baseHeightOffset,
contoursManager.gridModel,
showDesignHeight,
slopeResultVisible
) {
Params6(
p1 = it[0] as Angle,
p2 = it[1] as Double,
p3 = it[2] as Double,
p4 = it[3] as? GridModel?,
p5 = it[4] as Boolean,
p6 = it[5] as Boolean
)
}.map { (slopeDirection, slopePercentage, baseHeightOffset, gridModel, showDesignHeight, slopeResultVisible) ->
if (!slopeResultVisible) {
mapView.mapboxMap.getStyle { style ->
style.removeStyleLayer(slopeResultLayerId)
style.removeStyleLayer("${slopeResultLayerId}-outline")
style.removeStyleSource(slopeResultSourceId)
}
} else gridModel?.let { gridModel ->
val slopeResult: SlopeResult = SlopeCalculator.calculateSlope(
grid = gridModel,
slopeDirection = slopeDirection.degrees,
slopePercentage = slopePercentage,
baseHeightOffset = baseHeightOffset
)
mapView.displaySlopeResult(
originalGrid = gridModel,
slopeResult = slopeResult,
sourceId = slopeResultSourceId,
layerId = slopeResultLayerId,
palette = contoursManager.simplePalette::palette,
showDesignHeight = showDesignHeight
)
}
}.launchIn(lifecycleScope)
}
}
data class Params6<
out P1,
out P2,
out P3,
out P4,
out P5,
out P6,
>(
val p1: P1,
val p2: P2,
val p3: P3,
val p4: P4,
val p5: P5,
val p6: P6,
)
val home = GeoPoint(114.476060, 22.771073, 30.897)
fun initGeoHelper(base: GeoPoint = home) {
val geoHelper = GeoHelper.getSharedInstance()
geoHelper.wgs84ToENU(
lon = base.longitude,
lat = base.latitude,
hgt = base.altitude
)
}

View File

@@ -0,0 +1,59 @@
package com.icegps.geotools
import android.app.Application
import android.util.Log
import androidx.lifecycle.AndroidViewModel
import androidx.lifecycle.viewModelScope
import com.icegps.common.helper.GeoHelper
import com.icegps.math.geometry.Vector3D
import com.icegps.geotools.ktx.toast
import com.icegps.shared.SharedHttpClient
import com.icegps.shared.SharedJson
import com.icegps.shared.api.OpenElevation
import com.icegps.shared.api.OpenElevationApi
import com.icegps.shared.ktx.TAG
import com.icegps.shared.model.GeoPoint
import com.mapbox.geojson.Point
import kotlinx.coroutines.flow.MutableStateFlow
import kotlinx.coroutines.flow.SharingStarted
import kotlinx.coroutines.flow.catch
import kotlinx.coroutines.flow.debounce
import kotlinx.coroutines.flow.filter
import kotlinx.coroutines.flow.map
import kotlinx.coroutines.flow.stateIn
import kotlinx.coroutines.flow.update
class MainViewModel(private val context: Application) : AndroidViewModel(context) {
private val geoHelper = GeoHelper.Companion.getSharedInstance()
private val openElevation: OpenElevationApi = OpenElevation(SharedHttpClient(SharedJson()))
private val _points = MutableStateFlow<List<Point>>(emptyList())
val points = _points.filter { it.size > 3 }.debounce(1000).map {
openElevation.lookup(it.map { GeoPoint(it.longitude(), it.latitude(), it.altitude()) })
}.catch {
Log.e(TAG, "高程请求失败", it)
context.toast("高程请求失败")
}.map {
it.map {
val enu = geoHelper.wgs84ToENU(lon = it.longitude, lat = it.latitude, hgt = it.altitude)
Vector3D(enu.x, enu.y, enu.z)
}
}.stateIn(
scope = viewModelScope,
started = SharingStarted.Companion.Eagerly,
initialValue = emptyList()
)
fun addPoint(point: Point) {
context.toast("${point.longitude()}, ${point.latitude()}")
_points.update {
it.toMutableList().apply {
add(point)
}
}
}
fun clearPoints() {
_points.value = emptyList()
}
}

View File

@@ -0,0 +1,121 @@
package com.icegps.geotools
import android.graphics.Color
import com.icegps.math.geometry.Line3D
import com.icegps.math.geometry.Vector3D
import com.icegps.geotools.ktx.toMapboxPoint
import com.mapbox.geojson.Feature
import com.mapbox.geojson.FeatureCollection
import com.mapbox.geojson.LineString
import com.mapbox.maps.MapView
import com.mapbox.maps.Style
import com.mapbox.maps.extension.style.layers.addLayer
import com.mapbox.maps.extension.style.layers.generated.lineLayer
import com.mapbox.maps.extension.style.layers.properties.generated.LineCap
import com.mapbox.maps.extension.style.layers.properties.generated.LineJoin
import com.mapbox.maps.extension.style.sources.addSource
import com.mapbox.maps.extension.style.sources.generated.geoJsonSource
class PolylineManager(
private val mapView: MapView
) {
private val sourceId: String = "polyline-source-id-0"
private val layerId: String = "polyline-layer-id-0"
fun update(
points: List<List<Vector3D>>
) {
val lineStrings: List<List<Feature>> = points.map {
val lines = fromPoints(it, true)
lines.map {
LineString.fromLngLats(listOf(it.a.toMapboxPoint(), it.b.toMapboxPoint()))
}
}.map {
it.map { Feature.fromGeometry(it) }
}
mapView.mapboxMap.getStyle { style ->
setupLineLayer(
style = style,
sourceId = sourceId,
layerId = layerId,
features = lineStrings.flatten()
)
}
}
fun updateFeatures(
features: List<Feature>
) {
mapView.mapboxMap.getStyle { style ->
setupLineLayer(
style = style,
sourceId = sourceId,
layerId = layerId,
features = features
)
}
}
private fun setupLineLayer(
style: Style,
sourceId: String,
layerId: String,
features: List<Feature>
) {
style.removeStyleLayer(layerId)
style.removeStyleSource(sourceId)
val source = geoJsonSource(sourceId) {
featureCollection(FeatureCollection.fromFeatures(features))
}
style.addSource(source)
val layer = lineLayer(layerId, sourceId) {
lineColor(Color.RED)
lineWidth(2.0)
lineCap(LineCap.Companion.ROUND)
lineJoin(LineJoin.Companion.ROUND)
lineOpacity(0.8)
}
style.addLayer(layer)
}
fun clearContours() {
mapView.mapboxMap.getStyle { style ->
try {
style.removeStyleLayer(layerId)
} catch (_: Exception) {
}
try {
style.removeStyleSource(sourceId)
} catch (_: Exception) {
}
}
}
}
fun fromPoints(
points: List<Vector3D>,
closed: Boolean,
) = if (points.isEmpty()) {
emptyList()
} else {
if (!closed) {
(0 until points.size - 1).map {
Line3D(
points[it],
points[it + 1]
)
}
} else {
val d = (points.last() - points.first()).length
val usePoints = if (d > 1E-6) points else points.dropLast(1)
(usePoints.indices).map {
Line3D(
usePoints[it],
usePoints[(it + 1) % usePoints.size]
)
}
}
}

View File

@@ -0,0 +1,44 @@
package com.icegps.geotools
import com.icegps.math.geometry.Vector2D
import com.icegps.math.geometry.Vector3D
import com.icegps.math.geometry.toVector2D
/**
* @author tabidachinokaze
* @date 2025/11/26
*/
object RayCastingAlgorithm {
/**
* 使用射线法判断点是否在多边形内
* @param point 测试点
* @param polygon 多边形顶点列表
* @return true如果在多边形内
*/
fun isPointInPolygon(point: Vector2D, polygon: List<Vector2D>): Boolean {
if (polygon.size < 3) return false
val x = point.x
val y = point.y
var inside = false
var j = polygon.size - 1
for (i in polygon.indices) {
val xi = polygon[i].x
val yi = polygon[i].y
val xj = polygon[j].x
val yj = polygon[j].y
val intersect = ((yi > y) != (yj > y)) && (x < (xj - xi) * (y - yi) / (yj - yi) + xi)
if (intersect) inside = !inside
j = i
}
return inside
}
fun isPointInPolygon(point: Vector3D, polygon: List<Vector3D>): Boolean {
return isPointInPolygon(point.toVector2D(), polygon.map { it.toVector2D() })
}
}

View File

@@ -0,0 +1,123 @@
package com.icegps.geotools
import android.util.Log
/**
* @author tabidachinokaze
* @date 2025/11/25
*/
class SimplePalette(
private var range: ClosedFloatingPointRange<Double>
) {
fun setRange(range: ClosedFloatingPointRange<Double>) {
this.range = range
}
private val colors: Map<Int, String>
init {
colors = generateTerrainColorMap()
}
fun palette(value: Double?): String {
if (value == null) return "#00000000"
val minH = range.start
val maxH = range.endInclusive
val normalized = ((value - minH) / (maxH - minH)).coerceIn(0.0, 1.0)
return colors[(normalized * 255).toInt()] ?: "#00000000"
}
fun palette1(value: Double?): String {
return if (value == null) "#00000000" else {
// 假设您已经知道高度范围,或者动态计算
val minH = range.start
val maxH = range.endInclusive
val normalized = ((value - minH) / (maxH - minH)).coerceIn(0.0, 1.0)
val alpha = (normalized * 255).toInt()
String.format("#%02X%02X%02X", alpha, 0, 0)
}.also {
Log.d("simplePalette", "$value -> $it")
}
}
fun generateGrayscaleColorMap2(): MutableMap<Int, String> {
val colorMap = mutableMapOf<Int, String>()
// 定义关键灰度点
val black = Color(0, 0, 0) // 低地势 - 黑色
val darkGray = Color(64, 64, 64) // 过渡
val midGray = Color(128, 128, 128) // 中间
val lightGray = Color(192, 192, 192) // 过渡
val white = Color(255, 255, 255) // 高地势 - 白色
for (i in 0..255) {
val position = i / 255.0
val color = when {
position < 0.25 -> interpolateColor(black, darkGray, position / 0.25)
position < 0.5 -> interpolateColor(darkGray, midGray, (position - 0.25) / 0.25)
position < 0.75 -> interpolateColor(midGray, lightGray, (position - 0.5) / 0.25)
else -> interpolateColor(lightGray, white, (position - 0.75) / 0.25)
}
colorMap[i] = color.toHex()
}
return colorMap
}
fun generateGrayscaleColorMap(): MutableMap<Int, String> {
val colorMap = mutableMapOf<Int, String>()
for (i in 0..255) {
// 从黑色到白色的线性渐变
val grayValue = i
val color = Color(grayValue, grayValue, grayValue)
colorMap[i] = color.toHex()
}
return colorMap
}
fun generateTerrainColorMap(): MutableMap<Int, String> {
val colorMap = mutableMapOf<Int, String>()
// 定义关键颜色点
val blue = Color(0, 0, 255) // 低地势 - 蓝色
val cyan = Color(0, 255, 255) // 中间过渡
val green = Color(0, 255, 0) // 中间过渡
val yellow = Color(255, 255, 0) // 中间过渡
val red = Color(255, 0, 0) // 高地势 - 红色
for (i in 0..255) {
val position = i / 255.0
val color = when {
position < 0.25 -> interpolateColor(blue, cyan, position / 0.25)
position < 0.5 -> interpolateColor(cyan, green, (position - 0.25) / 0.25)
position < 0.75 -> interpolateColor(green, yellow, (position - 0.5) / 0.25)
else -> interpolateColor(yellow, red, (position - 0.75) / 0.25)
}
colorMap[i] = color.toHex()
}
return colorMap
}
fun interpolateColor(start: Color, end: Color, fraction: Double): Color {
val r = (start.red + (end.red - start.red) * fraction).toInt()
val g = (start.green + (end.green - start.green) * fraction).toInt()
val b = (start.blue + (end.blue - start.blue) * fraction).toInt()
return Color(r, g, b)
}
// Color类简化实现
class Color(val red: Int, val green: Int, val blue: Int) {
fun toArgb(): Int {
return (0xFF shl 24) or (red shl 16) or (green shl 8) or blue
}
fun toHex(): String {
return String.format("#%06X", toArgb() and 0xFFFFFF)
}
}
}

View File

@@ -0,0 +1,135 @@
package com.icegps.geotools.catmullrom
import com.icegps.math.geometry.Vector2D
import com.icegps.geotools.marchingsquares.Segment2D
import com.icegps.geotools.marchingsquares.ShapeContour
import kotlin.math.min
import kotlin.math.pow
private const val almostZero = 0.00000001
private const val almostOne = 0.99999999
/**
* Creates a 2D Catmull-Rom spline curve.
*
* Can be represented as a segment drawn between [p1] and [p2],
* while [p0] and [p3] are used as control points.
*
* Under some circumstances alpha can have
* no perceptible effect, for example,
* when creating closed shapes with the vertices
* forming a regular 2D polygon.
*
* @param p0 The first control point.
* @param p1 The starting anchor point.
* @param p2 The ending anchor point.
* @param p3 The second control point.
* @param alpha The *tension* of the curve.
* Use `0.0` for the uniform spline, `0.5` for the centripetal spline, `1.0` for the chordal spline.
*/
class CatmullRom2(val p0: Vector2D, val p1: Vector2D, val p2: Vector2D, val p3: Vector2D, val alpha: Double = 0.5) {
/** Value of t for p0. */
val t0: Double = 0.0
/** Value of t for p1. */
val t1: Double = calculateT(t0, p0, p1)
/** Value of t for p2. */
val t2: Double = calculateT(t1, p1, p2)
/** Value of t for p3. */
val t3: Double = calculateT(t2, p2, p3)
fun position(rt: Double): Vector2D {
val t = t1 + rt * (t2 - t1)
val a1 = p0 * ((t1 - t) / (t1 - t0)) + p1 * ((t - t0) / (t1 - t0))
val a2 = p1 * ((t2 - t) / (t2 - t1)) + p2 * ((t - t1) / (t2 - t1))
val a3 = p2 * ((t3 - t) / (t3 - t2)) + p3 * ((t - t2) / (t3 - t2))
val b1 = a1 * ((t2 - t) / (t2 - t0)) + a2 * ((t - t0) / (t2 - t0))
val b2 = a2 * ((t3 - t) / (t3 - t1)) + a3 * ((t - t1) / (t3 - t1))
val c = b1 * ((t2 - t) / (t2 - t1)) + b2 * ((t - t1) / (t2 - t1))
return c
}
private fun calculateT(t: Double, p0: Vector2D, p1: Vector2D): Double {
val a = (p1.x - p0.x).pow(2.0) + (p1.y - p0.y).pow(2.0)
val b = a.pow(0.5)
val c = b.pow(alpha)
return c + t
}
}
/**
* Calculates the 2D CatmullRom spline for a chain of points and returns the combined curve.
*
* For more details, see [CatmullRom2].
*
* @param points The [List] of 2D points where [CatmullRom2] is applied in groups of 4.
* @param alpha The *tension* of the curve.
* Use `0.0` for the uniform spline, `0.5` for the centripetal spline, `1.0` for the chordal spline.
* @param loop Whether to connect the first and last point, such that it forms a closed shape.
*/
class CatmullRomChain2(points: List<Vector2D>, alpha: Double = 0.5, val loop: Boolean = false) {
val segments = if (!loop) {
val startPoints = points.take(2)
val endPoints = points.takeLast(2)
val mirrorStart =
startPoints.first() - (startPoints.last() - startPoints.first()).normalized
val mirrorEnd = endPoints.last() + (endPoints.last() - endPoints.first()).normalized
(listOf(mirrorStart) + points + listOf(mirrorEnd)).windowed(4, 1).map {
CatmullRom2(it[0], it[1], it[2], it[3], alpha)
}
} else {
val cleanPoints = if (loop && points.first().distanceTo(points.last()) <= 1.0E-6) {
points.dropLast(1)
} else {
points
}
(cleanPoints + cleanPoints.take(3)).windowed(4, 1).map {
CatmullRom2(it[0], it[1], it[2], it[3], alpha)
}
}
fun positions(steps: Int = segments.size * 4): List<Vector2D> {
return (0..steps).map {
position(it.toDouble() / steps)
}
}
fun position(rt: Double): Vector2D {
val st = if (loop) rt.mod(1.0) else rt.coerceIn(0.0, 1.0)
val segmentIndex = (min(almostOne, st) * segments.size).toInt()
val t = (min(almostOne, st) * segments.size) - segmentIndex
return segments[segmentIndex].position(t)
}
}
fun List<Vector2D>.catmullRom(alpha: Double = 0.5, closed: Boolean) = CatmullRomChain2(this, alpha, closed)
/** Converts spline to a [Segment]. */
fun CatmullRom2.toSegment(): Segment2D {
val d1a2 = (p1 - p0).length.pow(2 * alpha)
val d2a2 = (p2 - p1).length.pow(2 * alpha)
val d3a2 = (p3 - p2).length.pow(2 * alpha)
val d1a = (p1 - p0).length.pow(alpha)
val d2a = (p2 - p1).length.pow(alpha)
val d3a = (p3 - p2).length.pow(alpha)
val b0 = p1
val b1 = (p2 * d1a2 - p0 * d2a2 + p1 * (2 * d1a2 + 3 * d1a * d2a + d2a2)) / (3 * d1a * (d1a + d2a))
val b2 = (p1 * d3a2 - p3 * d2a2 + p2 * (2 * d3a2 + 3 * d3a * d2a + d2a2)) / (3 * d3a * (d3a + d2a))
val b3 = p2
return Segment2D(b0, b1, b2, b3)
}
/**
* Converts chain to a [ShapeContour].
*/
@Suppress("unused")
fun CatmullRomChain2.toContour(): ShapeContour =
ShapeContour(segments.map { it.toSegment() }, this.loop)

View File

@@ -0,0 +1,427 @@
package com.icegps.geotools.color
import com.icegps.math.geometry.Vector3D
import com.icegps.math.geometry.Vector4D
import kotlinx.serialization.Serializable
import kotlin.math.pow
@Serializable
enum class Linearity(val certainty: Int) {
/**
* Represents a linear color space.
*
* LINEAR typically signifies that the values in the color space are in a linear relationship,
* meaning there is no gamma correction or transformation applied to the data.
*/
LINEAR(1),
/**
* Represents a standard RGB (sRGB) color space.
*
* SRGB typically refers to a non-linear color space with gamma correction applied,
* designed for consistent color representation across devices.
*/
SRGB(1),
;
fun leastCertain(other: Linearity): Linearity {
return if (this.certainty <= other.certainty) {
this
} else {
other
}
}
fun isEquivalent(other: Linearity): Boolean {
return this == other
}
}
/**
* Represents a color in the RGBA color space. Each component, including red, green, blue, and alpha (opacity),
* is represented as a `Double` in the range `[0.0, 1.0]`. The color can be defined in either linear or sRGB space,
* determined by the `linearity` property.
*
* This class provides a wide variety of utility functions for manipulating and converting colors, such as shading,
* opacity adjustment, and format transformations. It also includes methods for parsing colors from hexadecimal
* notation or vectors.
*
* @property r Red component of the color as a value between `0.0` and `1.0`.
* @property g Green component of the color as a value between `0.0` and `1.0`.
* @property b Blue component of the color as a value between `0.0` and `1.0`.
* @property alpha Alpha (opacity) component of the color as a value between `0.0` and `1.0`. Defaults to `1.0`.
* @property linearity Indicates whether the color is defined in linear or sRGB space. Defaults to [Linearity.LINEAR].
*/
@Serializable
@Suppress("EqualsOrHashCode") // generated equals() is ok, only hashCode() needs to be overridden
data class ColorRGBa(
val r: Double,
val g: Double,
val b: Double,
val alpha: Double = 1.0,
val linearity: Linearity = Linearity.LINEAR
) {
enum class Component {
R,
G,
B
}
companion object {
/**
* Calculates a color from hexadecimal value. For values with transparency
* use the [String] variant of this function.
*/
fun fromHex(hex: Int): ColorRGBa {
val r = hex and (0xff0000) shr 16
val g = hex and (0x00ff00) shr 8
val b = hex and (0x0000ff)
return ColorRGBa(r / 255.0, g / 255.0, b / 255.0, 1.0, Linearity.SRGB)
}
/**
* Calculates a color from hexadecimal notation, like in CSS.
*
* Supports the following formats
* * `RGB`
* * `RGBA`
* * `RRGGBB`
* * `RRGGBBAA`
*
* where every character is a valid hex digit between `0..f` (case-insensitive).
* Supports leading "#" or "0x".
*/
fun fromHex(hex: String): ColorRGBa {
val pos = when {
hex.startsWith("#") -> 1
hex.startsWith("0x") -> 2
else -> 0
}
fun fromHex1(str: String, pos: Int): Double {
return 17 * str[pos].digitToInt(16) / 255.0
}
fun fromHex2(str: String, pos: Int): Double {
return (16 * str[pos].digitToInt(16) + str[pos + 1].digitToInt(16)) / 255.0
}
return when (hex.length - pos) {
3 -> ColorRGBa(fromHex1(hex, pos), fromHex1(hex, pos + 1), fromHex1(hex, pos + 2), 1.0, Linearity.SRGB)
4 -> ColorRGBa(
fromHex1(hex, pos),
fromHex1(hex, pos + 1),
fromHex1(hex, pos + 2),
fromHex1(hex, pos + 3),
Linearity.SRGB
)
6 -> ColorRGBa(fromHex2(hex, pos), fromHex2(hex, pos + 2), fromHex2(hex, pos + 4), 1.0, Linearity.SRGB)
8 -> ColorRGBa(
fromHex2(hex, pos),
fromHex2(hex, pos + 2),
fromHex2(hex, pos + 4),
fromHex2(hex, pos + 6),
Linearity.SRGB
)
else -> throw IllegalArgumentException("Invalid hex length/format for '$hex'")
}
}
/** @suppress */
val PINK = fromHex(0xffc0cb)
/** @suppress */
val BLACK = ColorRGBa(0.0, 0.0, 0.0, 1.0, Linearity.SRGB)
/** @suppress */
val WHITE = ColorRGBa(1.0, 1.0, 1.0, 1.0, Linearity.SRGB)
/** @suppress */
val RED = ColorRGBa(1.0, 0.0, 0.0, 1.0, Linearity.SRGB)
/** @suppress */
val BLUE = ColorRGBa(0.0, 0.0, 1.0, 1.0, Linearity.SRGB)
/** @suppress */
val GREEN = ColorRGBa(0.0, 1.0, 0.0, 1.0, Linearity.SRGB)
/** @suppress */
val YELLOW = ColorRGBa(1.0, 1.0, 0.0, 1.0, Linearity.SRGB)
/** @suppress */
val CYAN = ColorRGBa(0.0, 1.0, 1.0, 1.0, Linearity.SRGB)
/** @suppress */
val MAGENTA = ColorRGBa(1.0, 0.0, 1.0, 1.0, Linearity.SRGB)
/** @suppress */
val GRAY = ColorRGBa(0.5, 0.5, 0.5, 1.0, Linearity.SRGB)
/** @suppress */
val TRANSPARENT = ColorRGBa(0.0, 0.0, 0.0, 0.0, Linearity.LINEAR)
/**
* Create a ColorRGBa object from a [Vector3]
* @param vector input vector, `[x, y, z]` is mapped to `[r, g, b]`
* @param alpha optional alpha value, default is 1.0
*/
fun fromVector(vector: Vector3D, alpha: Double = 1.0, linearity: Linearity = Linearity.LINEAR): ColorRGBa {
return ColorRGBa(vector.x, vector.y, vector.z, alpha, linearity)
}
/**
* Create a ColorRGBa object from a [Vector4]
* @param vector input vector, `[x, y, z, w]` is mapped to `[r, g, b, a]`
*/
fun fromVector(vector: Vector4D, linearity: Linearity = Linearity.LINEAR): ColorRGBa {
return ColorRGBa(vector.x, vector.y, vector.z, vector.w, linearity)
}
}
@Deprecated("Legacy alpha parameter name", ReplaceWith("alpha"))
val a = alpha
/**
* Creates a copy of color with adjusted opacity
* @param factor a scaling factor used for the opacity
* @return A [ColorRGBa] with scaled opacity
* @see shade
*/
fun opacify(factor: Double): ColorRGBa = ColorRGBa(r, g, b, alpha * factor, linearity)
/**
* Creates a copy of color with adjusted color
* @param factor a scaling factor used for the opacity
* @return A [ColorRGBa] with scaled colors
* @see opacify
*/
fun shade(factor: Double): ColorRGBa = ColorRGBa(r * factor, g * factor, b * factor, alpha, linearity)
/**
* Copy of the color with all of its fields clamped to `[0, 1]`
*/
@Deprecated("Use clip() instead", replaceWith = ReplaceWith("clip()"))
val saturated: ColorRGBa
get() = clip()
/**
* Copy of the color with all of its fields clamped to `[0, 1]`
*/
fun clip(): ColorRGBa = copy(
r = r.coerceIn(0.0..1.0),
g = g.coerceIn(0.0..1.0),
b = b.coerceIn(0.0..1.0),
alpha = alpha.coerceIn(0.0..1.0)
)
/**
* Returns a new instance of [ColorRGBa] where the red, green, and blue components
* are multiplied by the alpha value of the original color. The alpha value and linearity
* remain unchanged.
*
* This computed property is commonly used for adjusting the color intensity based
* on its transparency.
*/
val alphaMultiplied: ColorRGBa
get() = ColorRGBa(r * alpha, g * alpha, b * alpha, alpha, linearity)
/**
* The minimum value over `r`, `g`, `b`
* @see maxValue
*/
val minValue get() = r.coerceAtMost(g).coerceAtMost(b)
/**
* The maximum value over `r`, `g`, `b`
* @see minValue
*/
val maxValue get() = r.coerceAtLeast(g).coerceAtLeast(b)
/**
* calculate luminance value
* luminance value is according to <a>https://www.w3.org/TR/2008/REC-WCAG20-20081211/#relativeluminancedef</a>
*/
val luminance: Double
get() = when (linearity) {
Linearity.SRGB -> toLinear().luminance
else -> 0.2126 * r + 0.7152 * g + 0.0722 * b
}
/**
* Converts this color to the specified linearity.
*
* @param linearity The target linearity to which the color should be converted.
* Supported values are [Linearity.SRGB] and [Linearity.LINEAR].
* @return A [ColorRGBa] instance in the specified linearity.
*/
fun toLinearity(linearity: Linearity): ColorRGBa {
return when (linearity) {
Linearity.SRGB -> toSRGB()
Linearity.LINEAR -> toLinear()
}
}
/**
* calculate the contrast value between this color and the given color
* contrast value is accordingo to <a>// see http://www.w3.org/TR/2008/REC-WCAG20-20081211/#contrast-ratiodef</a>
*/
fun getContrastRatio(other: ColorRGBa): Double {
val l1 = luminance
val l2 = other.luminance
return if (l1 > l2) (l1 + 0.05) / (l2 + 0.05) else (l2 + 0.05) / (l1 + 0.05)
}
fun toLinear(): ColorRGBa {
fun t(x: Double): Double {
return if (x <= 0.04045) x / 12.92 else ((x + 0.055) / (1 + 0.055)).pow(2.4)
}
return when (linearity) {
Linearity.SRGB -> ColorRGBa(t(r), t(g), t(b), alpha, Linearity.LINEAR)
else -> this
}
}
/**
* Convert to SRGB
* @see toLinear
*/
fun toSRGB(): ColorRGBa {
fun t(x: Double): Double {
return if (x <= 0.0031308) 12.92 * x else (1 + 0.055) * x.pow(1.0 / 2.4) - 0.055
}
return when (linearity) {
Linearity.LINEAR -> ColorRGBa(t(r), t(g), t(b), alpha, Linearity.SRGB)
else -> this
}
}
fun toRGBa(): ColorRGBa = this
// This is here because the default hashing of enums on the JVM is not stable.
override fun hashCode(): Int {
var result = r.hashCode()
result = 31 * result + g.hashCode()
result = 31 * result + b.hashCode()
result = 31 * result + alpha.hashCode()
// here we overcome the unstable hash by using the ordinal value
result = 31 * result + linearity.ordinal.hashCode()
return result
}
fun plus(right: ColorRGBa) = copy(
r = r + right.r,
g = g + right.g,
b = b + right.b,
alpha = alpha + right.alpha
)
fun minus(right: ColorRGBa) = copy(
r = r - right.r,
g = g - right.g,
b = b - right.b,
alpha = alpha - right.alpha
)
fun times(scale: Double) = copy(r = r * scale, g = g * scale, b = b * scale, alpha = alpha * scale)
fun mix(other: ColorRGBa, factor: Double): ColorRGBa {
return mix(this, other, factor)
}
fun toVector4(): Vector4D = Vector4D(r, g, b, alpha)
/**
* Retrieves the color's RGBA component value based on the specified index:
* [index] should be 0 for red, 1 for green, 2 for blue, 3 for alpha.
* Other index values throw an [IndexOutOfBoundsException].
*/
operator fun get(index: Int) = when (index) {
0 -> r
1 -> g
2 -> b
3 -> alpha
else -> throw IllegalArgumentException("unsupported index")
}
}
/**
* Weighted mix between two colors in the generic RGB color space.
* @param x the weighting of colors, a value 0.0 is equivalent to [left],
* 1.0 is equivalent to [right] and at 0.5 both colors contribute to the result equally
* @return a mix of [left] and [right] weighted by [x]
*/
fun mix(left: ColorRGBa, right: ColorRGBa, x: Double): ColorRGBa {
val sx = x.coerceIn(0.0, 1.0)
if (left.linearity.isEquivalent(right.linearity)) {
return ColorRGBa(
(1.0 - sx) * left.r + sx * right.r,
(1.0 - sx) * left.g + sx * right.g,
(1.0 - sx) * left.b + sx * right.b,
(1.0 - sx) * left.alpha + sx * right.alpha,
linearity = left.linearity.leastCertain(right.linearity)
)
} else {
return when (right.linearity) {
Linearity.LINEAR -> {
mix(left.toLinear(), right.toLinear(), x)
}
Linearity.SRGB -> {
mix(left.toSRGB(), right.toSRGB(), x)
}
}
}
}
/**
* Shorthand for calling [ColorRGBa].
* Specify only one value to obtain a shade of gray.
* @param r red in `[0,1]`
* @param g green in `[0,1]`
* @param b blue in `[0,1]`
* @param a alpha in `[0,1]`, defaults to `1.0`
*/
fun rgb(r: Double, g: Double, b: Double, a: Double = 1.0) = ColorRGBa(r, g, b, a, linearity = Linearity.LINEAR)
/**
* Shorthand for calling [ColorRGBa].
* @param gray shade of gray in `[0,1]`
* @param a alpha in `[0,1]`, defaults to `1.0`
*/
fun rgb(gray: Double, a: Double = 1.0) = ColorRGBa(gray, gray, gray, a, linearity = Linearity.LINEAR)
/**
* Create a color in RGBa space
* This function is a shorthand for using the ColorRGBa constructor
* @param r red in `[0,1]`
* @param g green in `[0,1]`
* @param b blue in `[0,1]`
* @param a alpha in `[0,1]`
*/
@Deprecated("Use rgb(r, g, b, a)", ReplaceWith("rgb(r, g, b, a)"), DeprecationLevel.WARNING)
fun rgba(r: Double, g: Double, b: Double, a: Double) = ColorRGBa(r, g, b, a, linearity = Linearity.LINEAR)
/**
* Shorthand for calling [ColorRGBa.fromHex].
* Creates a [ColorRGBa] with [Linearity.SRGB] from a hex string.
* @param hex string encoded hex value, for example `"ffc0cd"`
*/
fun rgb(hex: String) = ColorRGBa.fromHex(hex)
/**
* Converts RGB integer color values into a ColorRGBa object with sRGB linearity.
*
* @param red The red component of the color, in the range 0-255.
* @param green The green component of the color, in the range 0-255.
* @param blue The blue component of the color, in the range 0-255.
* @param alpha The alpha (transparency) component of the color, in the range 0-255. Default value is 255 (fully opaque).
*/
fun rgb(red: Int, green: Int, blue: Int, alpha: Int = 255) =
ColorRGBa(red / 255.0, green / 255.0, blue / 255.0, alpha / 255.0, Linearity.SRGB)

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,23 @@
package com.icegps.geotools.ktx
import com.icegps.geotools.color.ColorRGBa
/**
* @author tabidachinokaze
* @date 2025/11/25
*/
fun ColorRGBa.toColorInt(): Int {
val clampedR = r.coerceIn(0.0, 1.0)
val clampedG = g.coerceIn(0.0, 1.0)
val clampedB = b.coerceIn(0.0, 1.0)
val clampedAlpha = alpha.coerceIn(0.0, 1.0)
return ((clampedAlpha * 255).toInt() shl 24) or
((clampedR * 255).toInt() shl 16) or
((clampedG * 255).toInt() shl 8) or
((clampedB * 255).toInt())
}
fun ColorRGBa.toColorHex(): String {
return String.format("#%06X", 0xFFFFFF and toColorInt())
}

View File

@@ -0,0 +1,12 @@
package com.icegps.geotools.ktx
import android.content.Context
import android.widget.Toast
/**
* @author tabidachinokaze
* @date 2025/11/25
*/
fun Context.toast(text: String, duration: Int = Toast.LENGTH_SHORT) {
Toast.makeText(this, text, duration).show()
}

View File

@@ -0,0 +1,24 @@
package com.icegps.geotools.ktx
import com.icegps.common.helper.GeoHelper
import com.icegps.math.geometry.Vector2D
import com.mapbox.geojson.Point
/**
* @author tabidachinokaze
* @date 2025/11/26
*/
fun Vector2D.toMapboxPoint(): Point {
val geoHelper = GeoHelper.getSharedInstance()
val wgs84 = geoHelper.enuToWGS84Object(GeoHelper.ENU(x = x, y = y))
return Point.fromLngLat(wgs84.lon, wgs84.lat)
}
/**
* Interpolates between the current vector and the given vector `o` by the specified mixing factor.
*
* @param o The target vector to interpolate towards.
* @param mix A mixing factor between 0 and 1 where `0` results in the current vector and `1` results in the vector `o`.
* @return A new vector that is the result of the interpolation.
*/
fun Vector2D.mix(o: Vector2D, mix: Double): Vector2D = this * (1 - mix) + o * mix

View File

@@ -0,0 +1,32 @@
package com.icegps.geotools.ktx
import com.icegps.common.helper.GeoHelper
import com.icegps.math.geometry.Rectangle
import com.icegps.math.geometry.Vector3D
import com.mapbox.geojson.Point
fun Vector3D.niceStr(): String {
return "[$x, $y, $z]".format(this)
}
fun List<Vector3D>.niceStr(): String {
return joinToString(", ", "[", "]") {
it.niceStr()
}
}
fun Vector3D.toMapboxPoint(): Point {
val geoHelper = GeoHelper.getSharedInstance()
return geoHelper.enuToWGS84Object(GeoHelper.ENU(x, y, z)).run {
Point.fromLngLat(lon, lat, hgt)
}
}
val List<Vector3D>.area: Rectangle
get() {
val minX = minOf { it.x }
val maxX = maxOf { it.x }
val minY = minOf { it.y }
val maxY = maxOf { it.y }
return Rectangle(x = minX, y = minY, width = maxX - minX, height = maxY - minY)
}

View File

@@ -0,0 +1,219 @@
package com.icegps.geotools.marchingsquares
import com.icegps.math.geometry.Rectangle
import com.icegps.math.geometry.Vector2D
import com.icegps.math.geometry.Vector2I
import com.icegps.geotools.ktx.mix
import kotlin.math.max
import kotlin.math.min
private const val closeEpsilon = 1E-6
data class Segment2D(
val start: Vector2D,
val control: List<Vector2D>,
val end: Vector2D,
val corner: Boolean = false
)
fun Segment2D(start: Vector2D, end: Vector2D, corner: Boolean = true) =
Segment2D(start, emptyList(), end, corner)
fun Segment2D(start: Vector2D, c0: Vector2D, c1: Vector2D, end: Vector2D, corner: Boolean = true) =
Segment2D(start, listOf(c0, c1), end, corner)
data class ShapeContour(
val segments: List<Segment2D>,
val closed: Boolean,
) {
companion object {
val EMPTY = ShapeContour(
segments = emptyList(),
closed = false,
)
/**
* Creates a ShapeContour from a list of points, specifying whether the contour is closed and its y-axis polarity.
*
* @param points A list of points (Vector2) defining the vertices of the contour.
* @param closed Boolean indicating whether the contour should be closed (forms a loop).
* @return A ShapeContour object representing the resulting contour.
*/
fun fromPoints(
points: List<Vector2D>,
closed: Boolean,
): ShapeContour = if (points.isEmpty()) {
EMPTY
} else {
if (!closed) {
ShapeContour((0 until points.size - 1).map {
Segment2D(
points[it],
points[it + 1]
)
}, false)
} else {
val d = (points.last() - points.first()).lengthSquared
val usePoints = if (d > closeEpsilon) points else points.dropLast(1)
ShapeContour((usePoints.indices).map {
Segment2D(
usePoints[it],
usePoints[(it + 1) % usePoints.size]
)
}, true)
}
}
}
}
data class LineSegment(val start: Vector2D, val end: Vector2D)
/**
* Find contours for a function [f] using the marching squares algorithm. A contour is found when f(x) crosses zero.
* @param f the function
* @param area a rectangular area in which the function should be evaluated
* @param cellSize the size of the cells, smaller size gives higher resolution
* @param useInterpolation intersection points will be interpolated if true, default true
* @return a list of [ShapeContour] instances
*/
fun findContours(
f: (Vector2D) -> Double,
area: Rectangle,
cellSize: Double,
useInterpolation: Boolean = true
): List<ShapeContour> {
val segments = mutableListOf<LineSegment>()
val values = mutableMapOf<Vector2I, Double>()
val segmentsMap = mutableMapOf<Vector2D, MutableList<LineSegment>>()
for (y in 0 until (area.height / cellSize).toInt()) {
for (x in 0 until (area.width / cellSize).toInt()) {
values[Vector2I(x, y)] = f(Vector2D(x * cellSize + area.x, y * cellSize + area.y))
}
}
val zero = 0.0
for (y in 0 until (area.height / cellSize).toInt()) {
for (x in 0 until (area.width / cellSize).toInt()) {
// Here we check if we are at a right or top border. This is to ensure we create closed contours
// later on in the process.
val v00 = if (x == 0 || y == 0) zero else (values[Vector2I(x, y)] ?: zero)
val v10 = if (y == 0) zero else (values[Vector2I(x + 1, y)] ?: zero)
val v01 = if (x == 0) zero else (values[Vector2I(x, y + 1)] ?: zero)
val v11 = (values[Vector2I(x + 1, y + 1)] ?: zero)
val p00 = Vector2D(x.toDouble(), y.toDouble()) * cellSize + area.topLeft
val p10 = Vector2D((x + 1).toDouble(), y.toDouble()) * cellSize + area.topLeft
val p01 = Vector2D(x.toDouble(), (y + 1).toDouble()) * cellSize + area.topLeft
val p11 = Vector2D((x + 1).toDouble(), (y + 1).toDouble()) * cellSize + area.topLeft
val index = (if (v00 >= 0.0) 1 else 0) +
(if (v10 >= 0.0) 2 else 0) +
(if (v01 >= 0.0) 4 else 0) +
(if (v11 >= 0.0) 8 else 0)
fun blend(v1: Double, v2: Double): Double {
if (useInterpolation) {
require(!v1.isNaN() && !v2.isNaN()) {
"Input values v1=$v1 or v2=$v2 are NaN, which is not allowed."
}
val f1 = min(v1, v2)
val f2 = max(v1, v2)
val v = (-f1) / (f2 - f1)
require(v == v && v in 0.0..1.0) {
"Invalid value calculated during interpolation: v=$v"
}
return if (f1 == v1) {
v
} else {
1.0 - v
}
} else {
return 0.5
}
}
fun emitLine(
p00: Vector2D, p01: Vector2D, v00: Double, v01: Double,
p10: Vector2D, p11: Vector2D, v10: Double, v11: Double
) {
val r0 = blend(v00, v01)
val r1 = blend(v10, v11)
val v0 = p00.mix(p01, r0)
val v1 = p10.mix(p11, r1)
val l0 = LineSegment(v0, v1)
segmentsMap.getOrPut(v1) { mutableListOf() }.add(l0)
segmentsMap.getOrPut(v0) { mutableListOf() }.add(l0)
segments.add(l0)
}
when (index) {
0, 15 -> {}
1, 15 xor 1 -> {
emitLine(p00, p01, v00, v01, p00, p10, v00, v10)
}
2, 15 xor 2 -> {
emitLine(p00, p10, v00, v10, p10, p11, v10, v11)
}
3, 15 xor 3 -> {
emitLine(p00, p01, v00, v01, p10, p11, v10, v11)
}
4, 15 xor 4 -> {
emitLine(p00, p01, v00, v01, p01, p11, v01, v11)
}
5, 15 xor 5 -> {
emitLine(p00, p10, v00, v10, p01, p11, v01, v11)
}
6, 15 xor 6 -> {
emitLine(p00, p01, v00, v01, p00, p10, v00, v10)
emitLine(p01, p11, v01, v11, p10, p11, v10, v11)
}
7, 15 xor 7 -> {
emitLine(p01, p11, v01, v11, p10, p11, v10, v11)
}
}
}
}
val processedSegments = mutableSetOf<LineSegment>()
val contours = mutableListOf<ShapeContour>()
for (segment in segments) {
if (segment in processedSegments) {
continue
} else {
val collected = mutableListOf<Vector2D>()
var current: LineSegment? = segment
var closed = true
var lastVertex = Vector2D.INFINITY
do {
current!!
if (lastVertex.squaredDistanceTo(current.start) > 1E-5) {
collected.add(current.start)
}
lastVertex = current.start
processedSegments.add(current)
if (segmentsMap[current.start]!!.size < 2) {
closed = false
}
val hold = current
current = segmentsMap[current.start]?.firstOrNull { it !in processedSegments }
if (current == null) {
current = segmentsMap[hold.end]?.firstOrNull { it !in processedSegments }
}
} while (current != segment && current != null)
contours.add(ShapeContour.fromPoints(collected, closed = closed))
}
}
return contours
}

View File

@@ -0,0 +1,170 @@
<?xml version="1.0" encoding="utf-8"?>
<vector xmlns:android="http://schemas.android.com/apk/res/android"
android:width="108dp"
android:height="108dp"
android:viewportWidth="108"
android:viewportHeight="108">
<path
android:fillColor="#3DDC84"
android:pathData="M0,0h108v108h-108z" />
<path
android:fillColor="#00000000"
android:pathData="M9,0L9,108"
android:strokeWidth="0.8"
android:strokeColor="#33FFFFFF" />
<path
android:fillColor="#00000000"
android:pathData="M19,0L19,108"
android:strokeWidth="0.8"
android:strokeColor="#33FFFFFF" />
<path
android:fillColor="#00000000"
android:pathData="M29,0L29,108"
android:strokeWidth="0.8"
android:strokeColor="#33FFFFFF" />
<path
android:fillColor="#00000000"
android:pathData="M39,0L39,108"
android:strokeWidth="0.8"
android:strokeColor="#33FFFFFF" />
<path
android:fillColor="#00000000"
android:pathData="M49,0L49,108"
android:strokeWidth="0.8"
android:strokeColor="#33FFFFFF" />
<path
android:fillColor="#00000000"
android:pathData="M59,0L59,108"
android:strokeWidth="0.8"
android:strokeColor="#33FFFFFF" />
<path
android:fillColor="#00000000"
android:pathData="M69,0L69,108"
android:strokeWidth="0.8"
android:strokeColor="#33FFFFFF" />
<path
android:fillColor="#00000000"
android:pathData="M79,0L79,108"
android:strokeWidth="0.8"
android:strokeColor="#33FFFFFF" />
<path
android:fillColor="#00000000"
android:pathData="M89,0L89,108"
android:strokeWidth="0.8"
android:strokeColor="#33FFFFFF" />
<path
android:fillColor="#00000000"
android:pathData="M99,0L99,108"
android:strokeWidth="0.8"
android:strokeColor="#33FFFFFF" />
<path
android:fillColor="#00000000"
android:pathData="M0,9L108,9"
android:strokeWidth="0.8"
android:strokeColor="#33FFFFFF" />
<path
android:fillColor="#00000000"
android:pathData="M0,19L108,19"
android:strokeWidth="0.8"
android:strokeColor="#33FFFFFF" />
<path
android:fillColor="#00000000"
android:pathData="M0,29L108,29"
android:strokeWidth="0.8"
android:strokeColor="#33FFFFFF" />
<path
android:fillColor="#00000000"
android:pathData="M0,39L108,39"
android:strokeWidth="0.8"
android:strokeColor="#33FFFFFF" />
<path
android:fillColor="#00000000"
android:pathData="M0,49L108,49"
android:strokeWidth="0.8"
android:strokeColor="#33FFFFFF" />
<path
android:fillColor="#00000000"
android:pathData="M0,59L108,59"
android:strokeWidth="0.8"
android:strokeColor="#33FFFFFF" />
<path
android:fillColor="#00000000"
android:pathData="M0,69L108,69"
android:strokeWidth="0.8"
android:strokeColor="#33FFFFFF" />
<path
android:fillColor="#00000000"
android:pathData="M0,79L108,79"
android:strokeWidth="0.8"
android:strokeColor="#33FFFFFF" />
<path
android:fillColor="#00000000"
android:pathData="M0,89L108,89"
android:strokeWidth="0.8"
android:strokeColor="#33FFFFFF" />
<path
android:fillColor="#00000000"
android:pathData="M0,99L108,99"
android:strokeWidth="0.8"
android:strokeColor="#33FFFFFF" />
<path
android:fillColor="#00000000"
android:pathData="M19,29L89,29"
android:strokeWidth="0.8"
android:strokeColor="#33FFFFFF" />
<path
android:fillColor="#00000000"
android:pathData="M19,39L89,39"
android:strokeWidth="0.8"
android:strokeColor="#33FFFFFF" />
<path
android:fillColor="#00000000"
android:pathData="M19,49L89,49"
android:strokeWidth="0.8"
android:strokeColor="#33FFFFFF" />
<path
android:fillColor="#00000000"
android:pathData="M19,59L89,59"
android:strokeWidth="0.8"
android:strokeColor="#33FFFFFF" />
<path
android:fillColor="#00000000"
android:pathData="M19,69L89,69"
android:strokeWidth="0.8"
android:strokeColor="#33FFFFFF" />
<path
android:fillColor="#00000000"
android:pathData="M19,79L89,79"
android:strokeWidth="0.8"
android:strokeColor="#33FFFFFF" />
<path
android:fillColor="#00000000"
android:pathData="M29,19L29,89"
android:strokeWidth="0.8"
android:strokeColor="#33FFFFFF" />
<path
android:fillColor="#00000000"
android:pathData="M39,19L39,89"
android:strokeWidth="0.8"
android:strokeColor="#33FFFFFF" />
<path
android:fillColor="#00000000"
android:pathData="M49,19L49,89"
android:strokeWidth="0.8"
android:strokeColor="#33FFFFFF" />
<path
android:fillColor="#00000000"
android:pathData="M59,19L59,89"
android:strokeWidth="0.8"
android:strokeColor="#33FFFFFF" />
<path
android:fillColor="#00000000"
android:pathData="M69,19L69,89"
android:strokeWidth="0.8"
android:strokeColor="#33FFFFFF" />
<path
android:fillColor="#00000000"
android:pathData="M79,19L79,89"
android:strokeWidth="0.8"
android:strokeColor="#33FFFFFF" />
</vector>

View File

@@ -0,0 +1,30 @@
<vector xmlns:android="http://schemas.android.com/apk/res/android"
xmlns:aapt="http://schemas.android.com/aapt"
android:width="108dp"
android:height="108dp"
android:viewportWidth="108"
android:viewportHeight="108">
<path android:pathData="M31,63.928c0,0 6.4,-11 12.1,-13.1c7.2,-2.6 26,-1.4 26,-1.4l38.1,38.1L107,108.928l-32,-1L31,63.928z">
<aapt:attr name="android:fillColor">
<gradient
android:endX="85.84757"
android:endY="92.4963"
android:startX="42.9492"
android:startY="49.59793"
android:type="linear">
<item
android:color="#44000000"
android:offset="0.0" />
<item
android:color="#00000000"
android:offset="1.0" />
</gradient>
</aapt:attr>
</path>
<path
android:fillColor="#FFFFFF"
android:fillType="nonZero"
android:pathData="M65.3,45.828l3.8,-6.6c0.2,-0.4 0.1,-0.9 -0.3,-1.1c-0.4,-0.2 -0.9,-0.1 -1.1,0.3l-3.9,6.7c-6.3,-2.8 -13.4,-2.8 -19.7,0l-3.9,-6.7c-0.2,-0.4 -0.7,-0.5 -1.1,-0.3C38.8,38.328 38.7,38.828 38.9,39.228l3.8,6.6C36.2,49.428 31.7,56.028 31,63.928h46C76.3,56.028 71.8,49.428 65.3,45.828zM43.4,57.328c-0.8,0 -1.5,-0.5 -1.8,-1.2c-0.3,-0.7 -0.1,-1.5 0.4,-2.1c0.5,-0.5 1.4,-0.7 2.1,-0.4c0.7,0.3 1.2,1 1.2,1.8C45.3,56.528 44.5,57.328 43.4,57.328L43.4,57.328zM64.6,57.328c-0.8,0 -1.5,-0.5 -1.8,-1.2s-0.1,-1.5 0.4,-2.1c0.5,-0.5 1.4,-0.7 2.1,-0.4c0.7,0.3 1.2,1 1.2,1.8C66.5,56.528 65.6,57.328 64.6,57.328L64.6,57.328z"
android:strokeWidth="1"
android:strokeColor="#00000000" />
</vector>

View File

@@ -0,0 +1,190 @@
<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
xmlns:tools="http://schemas.android.com/tools"
android:id="@+id/main"
android:layout_width="match_parent"
android:layout_height="match_parent"
android:orientation="vertical"
tools:context=".MainActivity">
<com.mapbox.maps.MapView
android:id="@+id/map_view"
android:layout_width="match_parent"
android:layout_height="0dp"
android:layout_weight="3" />
<ScrollView
android:layout_width="match_parent"
android:layout_height="0dp"
android:layout_weight="1">
<LinearLayout
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:orientation="vertical">
<com.google.android.material.slider.Slider
android:id="@+id/slider_target_height"
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:value="0"
android:valueFrom="0"
android:valueTo="100" />
<LinearLayout
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:gravity="center_vertical"
android:orientation="horizontal">
<TextView
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="栅格大小:" />
<com.google.android.material.slider.Slider
android:id="@+id/cell_size"
android:layout_width="0dp"
android:layout_height="wrap_content"
android:layout_weight="1"
android:value="1"
android:valueFrom="1"
android:valueTo="100" />
</LinearLayout>
<LinearLayout
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:gravity="center_vertical"
android:orientation="horizontal">
<TextView
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="高度范围:" />
<com.google.android.material.slider.RangeSlider
android:id="@+id/height_range"
android:layout_width="0dp"
android:layout_height="wrap_content"
android:layout_weight="1"
android:valueFrom="0"
android:valueTo="100" />
</LinearLayout>
<Switch
android:id="@+id/switch_grid"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:switchPadding="16dp"
android:text="栅格网" />
<Switch
android:id="@+id/switch_triangle"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:switchPadding="16dp"
android:text="三角网" />
<LinearLayout
android:layout_width="match_parent"
android:layout_height="wrap_content">
<TextView
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="坐标数量:" />
<TextView
android:id="@+id/point_count"
android:layout_width="wrap_content"
android:layout_height="wrap_content" />
</LinearLayout>
<Button
android:id="@+id/update"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="刷新界面" />
<Button
android:id="@+id/clear_points"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="清除所有点" />
<LinearLayout
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:gravity="center_vertical"
android:orientation="horizontal">
<TextView
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="坡向(角度)" />
<com.google.android.material.slider.Slider
android:id="@+id/slope_direction"
android:layout_width="0dp"
android:layout_height="wrap_content"
android:layout_weight="1"
android:valueFrom="0"
android:valueTo="360" />
</LinearLayout>
<LinearLayout
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:gravity="center_vertical"
android:orientation="horizontal">
<TextView
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="坡度(%)" />
<com.google.android.material.slider.Slider
android:id="@+id/slope_percentage"
android:layout_width="0dp"
android:layout_height="wrap_content"
android:layout_weight="1"
android:valueFrom="0"
android:valueTo="100" />
</LinearLayout>
<LinearLayout
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:gravity="center_vertical">
<TextView
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="设计面高度(m)" />
<com.google.android.material.slider.Slider
android:id="@+id/design_height"
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:value="0"
android:valueFrom="-100"
android:valueTo="100" />
</LinearLayout>
<Switch
android:id="@+id/switch_design_surface"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:switchPadding="16dp"
android:text="显示设计面" />
<Switch
android:id="@+id/switch_slope_result"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:switchPadding="16dp"
android:text="显示计算的坡面" />
</LinearLayout>
</ScrollView>
</LinearLayout>

View File

@@ -0,0 +1,186 @@
<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
xmlns:tools="http://schemas.android.com/tools"
android:id="@+id/main"
android:layout_width="match_parent"
android:layout_height="match_parent"
android:orientation="horizontal"
tools:context=".MainActivity">
<LinearLayout
android:layout_width="0dp"
android:layout_height="match_parent"
android:layout_weight="1"
android:orientation="vertical"
android:paddingTop="32dp">
<com.google.android.material.slider.Slider
android:id="@+id/slider_target_height"
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:value="0"
android:valueFrom="0"
android:valueTo="100" />
<LinearLayout
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:gravity="center_vertical"
android:orientation="horizontal">
<TextView
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="栅格大小:" />
<com.google.android.material.slider.Slider
android:id="@+id/cell_size"
android:layout_width="0dp"
android:layout_height="wrap_content"
android:layout_weight="1"
android:value="1"
android:valueFrom="1"
android:valueTo="100" />
</LinearLayout>
<LinearLayout
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:gravity="center_vertical"
android:orientation="horizontal">
<TextView
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="高度范围:" />
<com.google.android.material.slider.RangeSlider
android:id="@+id/height_range"
android:layout_width="0dp"
android:layout_height="wrap_content"
android:layout_weight="1"
android:valueFrom="0"
android:valueTo="100" />
</LinearLayout>
<Switch
android:id="@+id/switch_grid"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:switchPadding="16dp"
android:text="栅格网" />
<Switch
android:id="@+id/switch_triangle"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:switchPadding="16dp"
android:text="三角网" />
<LinearLayout
android:layout_width="match_parent"
android:layout_height="wrap_content">
<TextView
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="坐标数量:" />
<TextView
android:id="@+id/point_count"
android:layout_width="wrap_content"
android:layout_height="wrap_content" />
</LinearLayout>
<Button
android:id="@+id/update"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="刷新界面" />
<Button
android:id="@+id/clear_points"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="清除所有点" />
<LinearLayout
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:gravity="center_vertical"
android:orientation="horizontal">
<TextView
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="坡向(角度)" />
<com.google.android.material.slider.Slider
android:id="@+id/slope_direction"
android:layout_width="0dp"
android:layout_height="wrap_content"
android:layout_weight="1"
android:valueFrom="0"
android:valueTo="360" />
</LinearLayout>
<LinearLayout
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:gravity="center_vertical"
android:orientation="horizontal">
<TextView
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="坡度(%)" />
<com.google.android.material.slider.Slider
android:id="@+id/slope_percentage"
android:layout_width="0dp"
android:layout_height="wrap_content"
android:layout_weight="1"
android:valueFrom="0"
android:valueTo="100" />
</LinearLayout>
<LinearLayout
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:gravity="center_vertical">
<TextView
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="设计面高度(m)" />
<com.google.android.material.slider.Slider
android:id="@+id/design_height"
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:value="0"
android:valueFrom="-100"
android:valueTo="100" />
</LinearLayout>
<Switch
android:id="@+id/switch_design_surface"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:switchPadding="16dp"
android:text="显示设计面" />
<Switch
android:id="@+id/switch_slope_result"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:switchPadding="16dp"
android:text="显示计算的坡面" />
</LinearLayout>
<com.mapbox.maps.MapView
android:id="@+id/map_view"
android:layout_width="0dp"
android:layout_height="match_parent"
android:layout_weight="3" />
</LinearLayout>

View File

@@ -0,0 +1,6 @@
<?xml version="1.0" encoding="utf-8"?>
<adaptive-icon xmlns:android="http://schemas.android.com/apk/res/android">
<background android:drawable="@drawable/ic_launcher_background" />
<foreground android:drawable="@drawable/ic_launcher_foreground" />
<monochrome android:drawable="@drawable/ic_launcher_foreground" />
</adaptive-icon>

View File

@@ -0,0 +1,6 @@
<?xml version="1.0" encoding="utf-8"?>
<adaptive-icon xmlns:android="http://schemas.android.com/apk/res/android">
<background android:drawable="@drawable/ic_launcher_background" />
<foreground android:drawable="@drawable/ic_launcher_foreground" />
<monochrome android:drawable="@drawable/ic_launcher_foreground" />
</adaptive-icon>

Binary file not shown.

After

Width:  |  Height:  |  Size: 1.4 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 2.8 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 982 B

Binary file not shown.

After

Width:  |  Height:  |  Size: 1.7 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 1.9 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 3.8 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 2.8 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 5.8 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 3.8 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 7.6 KiB

View File

@@ -0,0 +1,7 @@
<resources xmlns:tools="http://schemas.android.com/tools">
<!-- Base application theme. -->
<style name="Base.Theme.Orx" parent="Theme.Material3.DayNight.NoActionBar">
<!-- Customize your dark theme here. -->
<!-- <item name="colorPrimary">@color/my_dark_primary</item> -->
</style>
</resources>

View File

@@ -0,0 +1,5 @@
<?xml version="1.0" encoding="utf-8"?>
<resources>
<color name="black">#FF000000</color>
<color name="white">#FFFFFFFF</color>
</resources>

View File

@@ -0,0 +1,4 @@
<?xml version="1.0" encoding="utf-8"?>
<resources xmlns:tools="http://schemas.android.com/tools">
<string name="mapbox_access_token" translatable="false" tools:ignore="UnusedResources">pk.eyJ1IjoienpxMSIsImEiOiJjbWYzbzV1MzQwMHJvMmpvbG1wbjJwdjUyIn0.LvKjIrCv9dAFcGxOM52f2Q</string>
</resources>

View File

@@ -0,0 +1,3 @@
<resources>
<string name="app_name">icegps-orx</string>
</resources>

View File

@@ -0,0 +1,9 @@
<resources xmlns:tools="http://schemas.android.com/tools">
<!-- Base application theme. -->
<style name="Base.Theme.Orx" parent="Theme.Material3.DayNight.NoActionBar">
<!-- Customize your light theme here. -->
<!-- <item name="colorPrimary">@color/my_light_primary</item> -->
</style>
<style name="Theme.Orx" parent="Base.Theme.Orx" />
</resources>

View File

@@ -0,0 +1,17 @@
package com.icegps.geotools
import org.junit.Test
import org.junit.Assert.*
/**
* Example local unit test, which will execute on the development machine (host).
*
* See [testing documentation](http://d.android.com/tools/testing).
*/
class ExampleUnitTest {
@Test
fun addition_isCorrect() {
assertEquals(4, 2 + 2)
}
}

View File

@@ -0,0 +1,71 @@
package com.icegps.geotools
import com.icegps.geotools.ktx.area
import com.icegps.geotools.ktx.niceStr
import com.icegps.math.geometry.Vector3D
import com.icegps.triangulation.delaunayTriangulation
import org.junit.Test
import kotlin.math.max
/**
* @author tabidachinokaze
* @date 2025/11/26
*/
class TriangulationToGridTest {
@Test
fun testTriangulationToGrid() {
val points = listOf(
Vector3D(-10.0, 10.0, 0.0),
Vector3D(10.0, 10.0, 10.0),
Vector3D(-10.0, -10.0, 20.0),
Vector3D(10.0, -10.0, 30.0),
)
points.map {
it / 8
}.niceStr().let(::println)
val area = points.area
val cellSize = max(area.x + area.width, area.y + area.height) / 10
val triangulation = points.delaunayTriangulation()
val triangles = triangulation.triangles()
val grid = triangulationToGrid(
delaunator = triangulation,
cellSize = cellSize,
)
grid.string().let(::println)
val slopeResult = SlopeCalculator.calculateSlope(
grid = grid,
slopeDirection = 0.0,
slopePercentage = 100.0,
baseHeightOffset = 0.0
)
slopeResult.designSurface.string().let(::println)
println("原来的 Volume: ${grid.volumeSum()}")
println("做坡的 Volume: ${slopeResult.designSurface.volumeSum()}")
println(slopeResult.earthworkResult)
}
}
fun GridModel.string() = buildString {
for (r in 0 until rows) {
for (c in 0 until cols) {
val originalElev = getValue(r, c) ?: continue
append("${originalElev.format()}, ")
}
appendLine()
}
}
fun GridModel.volumeSum(): Double {
var volume = 0.0
for (r in 0 until rows) {
for (c in 0 until cols) {
val height = getValue(r, c) ?: continue
volume += height
}
}
return volume
}
fun Double.format(): String {
return "%.1f".format(this)
}