[orx-triangulation] Add smoothScatter
This commit is contained in:
@@ -33,6 +33,7 @@ kotlin {
|
||||
dependencies {
|
||||
api(libs.openrndr.math)
|
||||
api(libs.openrndr.shape)
|
||||
implementation(project(":orx-noise"))
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
@@ -2,10 +2,6 @@ package org.openrndr.extra.triangulation
|
||||
|
||||
import org.openrndr.math.Vector2
|
||||
import org.openrndr.shape.Rectangle
|
||||
import org.openrndr.shape.Triangle
|
||||
import org.openrndr.shape.contour
|
||||
import org.openrndr.shape.contours
|
||||
import kotlin.js.JsName
|
||||
import kotlin.math.cos
|
||||
import kotlin.math.pow
|
||||
import kotlin.math.sin
|
||||
@@ -77,13 +73,13 @@ class Delaunay(val points: DoubleArray) {
|
||||
init()
|
||||
}
|
||||
|
||||
fun neighbors(i:Int) = sequence<Int> {
|
||||
fun neighbors(i: Int) = sequence {
|
||||
val e0 = inedges.getOrNull(i) ?: return@sequence
|
||||
if (e0 != -1) {
|
||||
var e = e0
|
||||
var p0 = -1
|
||||
var p0 : Int
|
||||
|
||||
loop@do {
|
||||
loop@ do {
|
||||
p0 = triangles[e]
|
||||
yield(p0)
|
||||
e = if (e % 3 == 2) e - 2 else e + 1
|
||||
@@ -109,29 +105,31 @@ class Delaunay(val points: DoubleArray) {
|
||||
}
|
||||
|
||||
fun collinear(): Boolean {
|
||||
for (i in 0 until triangles.size step 3) {
|
||||
for (i in triangles.indices step 3) {
|
||||
val a = 2 * triangles[i]
|
||||
val b = 2 * triangles[i + 1]
|
||||
val c = 2 * triangles[i + 2]
|
||||
val c = 2 * triangles[i + 2]
|
||||
val coords = points
|
||||
val cross = (coords[c] - coords[a]) * (coords[b + 1] - coords[a + 1])
|
||||
- (coords[b] - coords[a]) * (coords[c + 1] - coords[a + 1])
|
||||
if (cross > 1e-10) return false;
|
||||
-(coords[b] - coords[a]) * (coords[c + 1] - coords[a + 1])
|
||||
if (cross > 1e-10) return false
|
||||
}
|
||||
return true
|
||||
}
|
||||
private fun jitter(x:Double, y:Double, r:Double): DoubleArray {
|
||||
return doubleArrayOf(x + sin(x+y) * r, y + cos(x-y)*r)
|
||||
|
||||
private fun jitter(x: Double, y: Double, r: Double): DoubleArray {
|
||||
return doubleArrayOf(x + sin(x + y) * r, y + cos(x - y) * r)
|
||||
}
|
||||
|
||||
fun init() {
|
||||
|
||||
if (hull.size > 2 && collinear()) {
|
||||
println("warning: triangulation is collinear")
|
||||
val r = 1E-8
|
||||
for (i in 0 until points.size step 2) {
|
||||
val p = jitter(points[i], points[i+1], r)
|
||||
for (i in points.indices step 2) {
|
||||
val p = jitter(points[i], points[i + 1], r)
|
||||
points[i] = p[0]
|
||||
points[i+1] = p[1]
|
||||
points[i + 1] = p[1]
|
||||
}
|
||||
|
||||
delaunator = Delaunator(points)
|
||||
|
||||
@@ -14,28 +14,43 @@ class DelaunayTriangulation(val points: List<Vector2>) {
|
||||
|
||||
fun voronoiDiagram(bounds: Rectangle) = VoronoiDiagram(this, bounds)
|
||||
|
||||
fun neighbors(pointIndex: Int) : Sequence<Int> {
|
||||
fun neighbors(pointIndex: Int): Sequence<Int> {
|
||||
return delaunay.neighbors(pointIndex)
|
||||
}
|
||||
|
||||
fun neighborPoints(pointIndex: Int) : List<Vector2> {
|
||||
fun neighborPoints(pointIndex: Int): List<Vector2> {
|
||||
return neighbors(pointIndex).map { points[it] }.toList()
|
||||
}
|
||||
|
||||
fun triangles(): List<Triangle> {
|
||||
fun triangleIndices(): List<IntArray> {
|
||||
val list = mutableListOf<IntArray>()
|
||||
for (i in delaunay.triangles.indices step 3) {
|
||||
list.add(
|
||||
intArrayOf(
|
||||
delaunay.triangles[i],
|
||||
delaunay.triangles[i + 1],
|
||||
delaunay.triangles[i + 2]
|
||||
)
|
||||
)
|
||||
}
|
||||
return list
|
||||
}
|
||||
|
||||
fun triangles(filterPredicate: (Int, Int, Int) -> Boolean = { _, _, _ -> true }): List<Triangle> {
|
||||
val list = mutableListOf<Triangle>()
|
||||
|
||||
for (i in delaunay.triangles.indices step 3 ) {
|
||||
for (i in delaunay.triangles.indices step 3) {
|
||||
val t0 = delaunay.triangles[i]
|
||||
val t1 = delaunay.triangles[i + 1]
|
||||
val t2 = delaunay.triangles[i + 2]
|
||||
|
||||
val p1 = points[t0]
|
||||
val p2 = points[t1]
|
||||
val p3 = points[t2]
|
||||
|
||||
// originally they are defined *counterclockwise*
|
||||
list.add(Triangle(p3, p2, p1))
|
||||
if (filterPredicate(t2, t1, t0)) {
|
||||
val p1 = points[t0]
|
||||
val p2 = points[t1]
|
||||
val p3 = points[t2]
|
||||
list.add(Triangle(p3, p2, p1))
|
||||
}
|
||||
}
|
||||
return list
|
||||
}
|
||||
@@ -61,11 +76,11 @@ class DelaunayTriangulation(val points: List<Vector2>) {
|
||||
close()
|
||||
}
|
||||
|
||||
fun nearest(query: Vector2) : Int = delaunay.find(query.x, query.y)
|
||||
fun nearest(query: Vector2): Int = delaunay.find(query.x, query.y)
|
||||
|
||||
fun nearestPoint(query: Vector2) : Vector2 = points[nearest(query)]
|
||||
fun nearestPoint(query: Vector2): Vector2 = points[nearest(query)]
|
||||
}
|
||||
|
||||
fun List<Vector2>.delaunayTriangulation() : DelaunayTriangulation {
|
||||
fun List<Vector2>.delaunayTriangulation(): DelaunayTriangulation {
|
||||
return DelaunayTriangulation(this)
|
||||
}
|
||||
@@ -17,8 +17,8 @@ import kotlin.math.pow
|
||||
* See https://people.eecs.berkeley.edu/~jrs/papers/robustr.pdf
|
||||
*/
|
||||
internal fun fastTwoDiff(a: Double, b: Double): DoubleArray {
|
||||
val x = a - b;
|
||||
val y = (a - x) - b;
|
||||
val x = a - b
|
||||
val y = (a - x) - b
|
||||
|
||||
return doubleArrayOf(y, x)
|
||||
}
|
||||
@@ -60,11 +60,11 @@ internal fun reduceSignificand(
|
||||
bits: Int
|
||||
): Double {
|
||||
|
||||
val s = 53 - bits;
|
||||
val f = 2.0.pow(s) + 1;
|
||||
val s = 53 - bits
|
||||
val f = 2.0.pow(s) + 1
|
||||
|
||||
val c = f * a;
|
||||
val r = c - (c - a);
|
||||
val c = f * a
|
||||
val r = c - (c - a)
|
||||
|
||||
return r;
|
||||
}
|
||||
@@ -74,7 +74,7 @@ internal fun reduceSignificand(
|
||||
* === 2^Math.ceil(p/2) + 1 where p is the # of significand bits in a double === 53.
|
||||
* @internal
|
||||
*/
|
||||
private const val f = 134217729; // 2**27 + 1;
|
||||
private const val f = 134217729 // 2**27 + 1;
|
||||
|
||||
|
||||
/**
|
||||
@@ -90,9 +90,9 @@ private const val f = 134217729; // 2**27 + 1;
|
||||
* @param a A double floating point number
|
||||
*/
|
||||
private fun split(a: Double): DoubleArray {
|
||||
val c = f * a;
|
||||
val a_h = c - (c - a);
|
||||
val a_l = a - a_h;
|
||||
val c = f * a
|
||||
val a_h = c - (c - a)
|
||||
val a_l = a - a_h
|
||||
|
||||
return doubleArrayOf(a_h, a_l)
|
||||
}
|
||||
@@ -104,9 +104,9 @@ private fun split(a: Double): DoubleArray {
|
||||
* @param b subtrahend - a double-double precision floating point number
|
||||
*/
|
||||
internal fun twoDiff(a: Double, b: Double): DoubleArray {
|
||||
val x = a - b;
|
||||
val bvirt = a - x;
|
||||
val y = (a - (x + bvirt)) + (bvirt - b);
|
||||
val x = a - b
|
||||
val bvirt = a - x
|
||||
val y = (a - (x + bvirt)) + (bvirt - b)
|
||||
|
||||
return doubleArrayOf(y, x)
|
||||
}
|
||||
@@ -130,15 +130,15 @@ internal fun twoProduct(a: Double, b: Double): DoubleArray {
|
||||
val x = a * b;
|
||||
|
||||
//const [ah, al] = split(a);
|
||||
val c = f * a;
|
||||
val ah = c - (c - a);
|
||||
val al = a - ah;
|
||||
val c = f * a
|
||||
val ah = c - (c - a)
|
||||
val al = a - ah
|
||||
//const [bh, bl] = split(b);
|
||||
val d = f * b;
|
||||
val bh = d - (d - b);
|
||||
val bl = b - bh;
|
||||
val d = f * b
|
||||
val bh = d - (d - b)
|
||||
val bl = b - bh
|
||||
|
||||
val y = (al * bl) - ((x - (ah * bh)) - (al * bh) - (ah * bl));
|
||||
val y = (al * bl) - ((x - (ah * bh)) - (al * bh) - (ah * bl))
|
||||
|
||||
//const err1 = x - (ah * bh);
|
||||
//const err2 = err1 - (al * bh);
|
||||
@@ -149,14 +149,14 @@ internal fun twoProduct(a: Double, b: Double): DoubleArray {
|
||||
}
|
||||
|
||||
internal fun twoSquare(a: Double): DoubleArray {
|
||||
val x = a * a;
|
||||
val x = a * a
|
||||
|
||||
//const [ah, al] = split(a);
|
||||
val c = f * a;
|
||||
val ah = c - (c - a);
|
||||
val al = a - ah;
|
||||
val c = f * a
|
||||
val ah = c - (c - a)
|
||||
val al = a - ah
|
||||
|
||||
val y = (al * al) - ((x - (ah * ah)) - 2 * (ah * al));
|
||||
val y = (al * al) - ((x - (ah * ah)) - 2 * (ah * al))
|
||||
|
||||
return doubleArrayOf(y, x)
|
||||
}
|
||||
@@ -174,8 +174,8 @@ internal fun twoSquare(a: Double): DoubleArray {
|
||||
* See https://people.eecs.berkeley.edu/~jrs/papers/robustr.pdf
|
||||
*/
|
||||
internal fun twoSum(a: Double, b: Double): DoubleArray {
|
||||
val x = a + b;
|
||||
val bv = x - a;
|
||||
val x = a + b
|
||||
val bv = x - a
|
||||
|
||||
return doubleArrayOf((a - (x - bv)) + (b - bv), x)
|
||||
}
|
||||
@@ -194,21 +194,21 @@ internal fun twoSum(a: Double, b: Double): DoubleArray {
|
||||
* @param y another double-double precision floating point number
|
||||
*/
|
||||
internal fun ddDiffDd(x: DoubleArray, y: DoubleArray): DoubleArray {
|
||||
val xl = x[0];
|
||||
val xh = x[1];
|
||||
val yl = y[0];
|
||||
val yh = y[1];
|
||||
val xl = x[0]
|
||||
val xh = x[1]
|
||||
val yl = y[0]
|
||||
val yh = y[1]
|
||||
|
||||
//const [sl,sh] = twoSum(xh,yh);
|
||||
val sh = xh - yh; val _1 = sh - xh; val sl = (xh - (sh - _1)) + (-yh - _1);
|
||||
val sh = xh - yh; val _1 = sh - xh; val sl = (xh - (sh - _1)) + (-yh - _1)
|
||||
//const [tl,th] = twoSum(xl,yl);
|
||||
val th = xl - yl; val _2 = th - xl; val tl = (xl - (th - _2)) + (-yl - _2);
|
||||
val c = sl + th;
|
||||
val th = xl - yl; val _2 = th - xl; val tl = (xl - (th - _2)) + (-yl - _2)
|
||||
val c = sl + th
|
||||
//const [vl,vh] = fastTwoSum(sh,c)
|
||||
val vh = sh + c; val vl = c - (vh - sh);
|
||||
val vh = sh + c; val vl = c - (vh - sh)
|
||||
val w = tl + vl
|
||||
//const [zl,zh] = fastTwoSum(vh,w)
|
||||
val zh = vh + w; val zl = w - (zh - vh);
|
||||
val zh = vh + w; val zl = w - (zh - vh)
|
||||
|
||||
return doubleArrayOf(zl, zh)
|
||||
}
|
||||
@@ -229,19 +229,19 @@ internal fun ddMultDd(x: DoubleArray, y: DoubleArray): DoubleArray {
|
||||
|
||||
|
||||
//const xl = x[0];
|
||||
val xh = x[1];
|
||||
val xh = x[1]
|
||||
//const yl = y[0];
|
||||
val yh = y[1];
|
||||
val yh = y[1]
|
||||
|
||||
//const [cl1,ch] = twoProduct(xh,yh);
|
||||
val ch = xh*yh;
|
||||
val c = f * xh; val ah = c - (c - xh); val al = xh - ah;
|
||||
val d = f * yh; val bh = d - (d - yh); val bl = yh - bh;
|
||||
val cl1 = (al*bl) - ((ch - (ah*bh)) - (al*bh) - (ah*bl));
|
||||
val ch = xh*yh
|
||||
val c = f * xh; val ah = c - (c - xh); val al = xh - ah
|
||||
val d = f * yh; val bh = d - (d - yh); val bl = yh - bh
|
||||
val cl1 = (al*bl) - ((ch - (ah*bh)) - (al*bh) - (ah*bl))
|
||||
|
||||
//return fastTwoSum(ch,cl1 + (xh*yl + xl*yh));
|
||||
val b = cl1 + (xh*y[0] + x[0]*yh);
|
||||
val xx = ch + b;
|
||||
val b = cl1 + (xh*y[0] + x[0]*yh)
|
||||
val xx = ch + b
|
||||
|
||||
return doubleArrayOf(b - (xx - ch), xx)
|
||||
}
|
||||
@@ -261,21 +261,21 @@ internal fun ddMultDd(x: DoubleArray, y: DoubleArray): DoubleArray {
|
||||
* @param y another double-double precision floating point number
|
||||
*/
|
||||
internal fun ddAddDd(x: DoubleArray, y: DoubleArray): DoubleArray {
|
||||
val xl = x[0];
|
||||
val xh = x[1];
|
||||
val yl = y[0];
|
||||
val yh = y[1];
|
||||
val xl = x[0]
|
||||
val xh = x[1]
|
||||
val yl = y[0]
|
||||
val yh = y[1]
|
||||
|
||||
//const [sl,sh] = twoSum(xh,yh);
|
||||
val sh = xh + yh; val _1 = sh - xh; val sl = (xh - (sh - _1)) + (yh - _1);
|
||||
val sh = xh + yh; val _1 = sh - xh; val sl = (xh - (sh - _1)) + (yh - _1)
|
||||
//val [tl,th] = twoSum(xl,yl);
|
||||
val th = xl + yl; val _2 = th - xl; val tl = (xl - (th - _2)) + (yl - _2);
|
||||
val c = sl + th;
|
||||
val th = xl + yl; val _2 = th - xl; val tl = (xl - (th - _2)) + (yl - _2)
|
||||
val c = sl + th
|
||||
//val [vl,vh] = fastTwoSum(sh,c)
|
||||
val vh = sh + c; val vl = c - (vh - sh);
|
||||
val vh = sh + c; val vl = c - (vh - sh)
|
||||
val w = tl + vl
|
||||
//val [zl,zh] = fastTwoSum(vh,w)
|
||||
val zh = vh + w; val zl = w - (zh - vh);
|
||||
val zh = vh + w; val zl = w - (zh - vh)
|
||||
|
||||
return doubleArrayOf(zl, zh)
|
||||
}
|
||||
@@ -297,24 +297,24 @@ internal fun ddAddDd(x: DoubleArray, y: DoubleArray): DoubleArray {
|
||||
* @param x a double-double precision floating point number
|
||||
*/
|
||||
internal fun ddMultDouble1(y: Double, x: DoubleArray): DoubleArray {
|
||||
val xl = x[0];
|
||||
val xh = x[1];
|
||||
val xl = x[0]
|
||||
val xh = x[1]
|
||||
|
||||
//val [cl1,ch] = twoProduct(xh,y);
|
||||
val ch = xh*y;
|
||||
val c = f * xh; val ah = c - (c - xh); val al = xh - ah;
|
||||
val d = f * y; val bh = d - (d - y); val bl = y - bh;
|
||||
val cl1 = (al*bl) - ((ch - (ah*bh)) - (al*bh) - (ah*bl));
|
||||
val ch = xh*y
|
||||
val c = f * xh; val ah = c - (c - xh); val al = xh - ah
|
||||
val d = f * y; val bh = d - (d - y); val bl = y - bh
|
||||
val cl1 = (al*bl) - ((ch - (ah*bh)) - (al*bh) - (ah*bl))
|
||||
|
||||
val cl2 = xl*y;
|
||||
val cl2 = xl*y
|
||||
//val [tl1,th] = fastTwoSum(ch,cl2);
|
||||
val th = ch + cl2;
|
||||
val tl1 = cl2 - (th - ch);
|
||||
val th = ch + cl2
|
||||
val tl1 = cl2 - (th - ch)
|
||||
|
||||
val tl2 = tl1 + cl1;
|
||||
val tl2 = tl1 + cl1
|
||||
//val [zl,zh] = fastTwoSum(th,tl2);
|
||||
val zh = th + tl2;
|
||||
val zl = tl2 - (zh - th);
|
||||
val zh = th + tl2
|
||||
val zl = tl2 - (zh - th)
|
||||
|
||||
return doubleArrayOf(zl,zh);
|
||||
return doubleArrayOf(zl,zh)
|
||||
}
|
||||
@@ -1,6 +1,6 @@
|
||||
package org.openrndr.extra.triangulation
|
||||
|
||||
internal fun orient2d(bx: Double, by: Double, ax: Double, ay: Double, cx: Double, cy: Double): Double {
|
||||
fun orient2d(bx: Double, by: Double, ax: Double, ay: Double, cx: Double, cy: Double): Double {
|
||||
// (ax,ay) (bx,by) are swapped such that the sign of the determinant is flipped. which is what Delaunator.kt expects.
|
||||
|
||||
/*
|
||||
@@ -8,12 +8,12 @@ internal fun orient2d(bx: Double, by: Double, ax: Double, ay: Double, cx: Double
|
||||
| c d | | bx - cx by - cy |
|
||||
*/
|
||||
|
||||
val a = ax - cx
|
||||
val b = ay - cy
|
||||
val c = bx - cx
|
||||
val d = by - cy
|
||||
val a = twoDiff(ax, cx)
|
||||
val b = twoDiff(ay, cy)
|
||||
val c = twoDiff(bx, cx)
|
||||
val d = twoDiff(by, cy)
|
||||
|
||||
val determinant = ddDiffDd(twoProduct(a, d), twoProduct(b, c))
|
||||
val determinant = ddDiffDd(ddMultDd(a, d), ddMultDd(b, c))
|
||||
|
||||
return determinant[1]
|
||||
}
|
||||
120
orx-triangulation/src/commonMain/kotlin/SmoothScatter.kt
Normal file
120
orx-triangulation/src/commonMain/kotlin/SmoothScatter.kt
Normal file
@@ -0,0 +1,120 @@
|
||||
package org.openrndr.extra.triangulation
|
||||
|
||||
import org.openrndr.extra.noise.scatter
|
||||
import org.openrndr.math.Vector2
|
||||
import org.openrndr.shape.ShapeProvider
|
||||
import org.openrndr.shape.bounds
|
||||
import kotlin.random.Random
|
||||
|
||||
fun ShapeProvider.smoothScatterSeq(
|
||||
placementRadius: Double,
|
||||
distanceToEdge: Double = placementRadius * 2.0,
|
||||
smoothing: Double = 0.5,
|
||||
random: Random = Random.Default
|
||||
) = sequence {
|
||||
val boundaryPointSets = this@smoothScatterSeq.shape.contours.map {
|
||||
it.equidistantPositions((it.length / placementRadius).toInt())
|
||||
}
|
||||
|
||||
val boundaryPoints = boundaryPointSets.flatten()
|
||||
val interiorPoints = this@smoothScatterSeq.shape.scatter(
|
||||
placementRadius = placementRadius, distanceToEdge = distanceToEdge, random = random
|
||||
)
|
||||
|
||||
val bounds = interiorPoints.bounds.offsetEdges(100.0)
|
||||
var relaxedPoints = interiorPoints
|
||||
|
||||
while (true) {
|
||||
val dt = (relaxedPoints + boundaryPoints)
|
||||
val v = dt.voronoiDiagram(bounds)
|
||||
|
||||
relaxedPoints = relaxedPoints.mapIndexed { index, it ->
|
||||
val c = v.cellCentroid(index)
|
||||
if (c.x == c.x && c.y == c.y) {
|
||||
it * smoothing + c * (1.0 - smoothing)
|
||||
} else {
|
||||
it
|
||||
}
|
||||
}
|
||||
yield(relaxedPoints)
|
||||
}
|
||||
}
|
||||
|
||||
fun ShapeProvider.smoothScatterWeightedSeq(
|
||||
placementRadius: Double,
|
||||
distanceToEdge: Double = placementRadius * 2.0,
|
||||
smoothing: Double = 0.5,
|
||||
random: Random = Random.Default
|
||||
) = sequence {
|
||||
val boundaryPointSets = this@smoothScatterWeightedSeq.shape.contours.map {
|
||||
it.equidistantPositions((it.length / placementRadius).toInt())
|
||||
}
|
||||
|
||||
val boundaryPoints = boundaryPointSets.flatten()
|
||||
val interiorPoints = this@smoothScatterWeightedSeq.shape.scatter(
|
||||
placementRadius = placementRadius, distanceToEdge = distanceToEdge, random = random
|
||||
)
|
||||
|
||||
val bounds = interiorPoints.bounds.offsetEdges(100.0)
|
||||
var relaxedPoints = interiorPoints
|
||||
|
||||
fun isBoundaryPoint(i: Int) = i >= interiorPoints.size
|
||||
|
||||
val targetAreas = interiorPoints.map { if (random.nextDouble() < 0.1) 450.0 else null }
|
||||
|
||||
while (true) {
|
||||
val dt = (relaxedPoints + boundaryPoints)
|
||||
val v = dt.voronoiDiagram(bounds)
|
||||
|
||||
|
||||
relaxedPoints = relaxedPoints.mapIndexed { index, it ->
|
||||
val c = v.cellCentroid(index)
|
||||
if (c.x == c.x && c.y == c.y) {
|
||||
it * smoothing + c * (1.0 - smoothing)
|
||||
} else {
|
||||
it
|
||||
}
|
||||
}
|
||||
val resolvedPoints = relaxedPoints.map { it }.toMutableList()
|
||||
|
||||
|
||||
for (i in interiorPoints.indices) {
|
||||
|
||||
if (targetAreas[i] != null) {
|
||||
|
||||
val targetArea = targetAreas[i]!!
|
||||
val cellArea = v.cellArea(i)
|
||||
val cellCentroid = v.cellCentroid(i)
|
||||
val areaDiff = targetArea - cellArea
|
||||
|
||||
val ns = v.neighbors(i).filter { !isBoundaryPoint(it) }.toList()
|
||||
|
||||
var force: Vector2
|
||||
val scale = 1.0 / ns.size
|
||||
for (n in ns) {
|
||||
force = v.cellCentroid(n) - cellCentroid
|
||||
resolvedPoints[n] += force.normalized * (areaDiff * 0.01) * scale
|
||||
}
|
||||
}
|
||||
relaxedPoints = resolvedPoints
|
||||
}
|
||||
yield(relaxedPoints)
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
fun ShapeProvider.smoothScatter(
|
||||
placementRadius: Double,
|
||||
distanceToEdge: Double = placementRadius * 2.0,
|
||||
iterations: Int = 10,
|
||||
smoothing: Double = 0.5,
|
||||
random: Random = Random.Default
|
||||
): List<Vector2> {
|
||||
|
||||
val seq = smoothScatterSeq(placementRadius, distanceToEdge, smoothing, random).iterator()
|
||||
|
||||
for (i in 0 until iterations - 1) {
|
||||
seq.next()
|
||||
}
|
||||
return seq.next()
|
||||
}
|
||||
@@ -154,11 +154,7 @@ class Voronoi(val delaunay: Delaunay, val bounds: Rectangle) {
|
||||
}
|
||||
|
||||
|
||||
|
||||
private fun cell(i: Int): MutableList<Double>? {
|
||||
|
||||
|
||||
|
||||
val inedges = delaunay.inedges
|
||||
val halfedges = delaunay.halfedges
|
||||
val triangles = delaunay.triangles
|
||||
@@ -195,8 +191,8 @@ class Voronoi(val delaunay: Delaunay, val bounds: Rectangle) {
|
||||
if (cj != null) {
|
||||
val li = ci.size
|
||||
val lj = cj.size
|
||||
loop@ for (ai in 0 until ci.size step 2) {
|
||||
for (aj in 0 until cj.size step 2) {
|
||||
loop@ for (ai in ci.indices step 2) {
|
||||
for (aj in cj.indices step 2) {
|
||||
if (ci[ai] == cj[aj]
|
||||
&& ci[ai + 1] == cj[aj + 1]
|
||||
&& ci[(ai + 2) % li] == cj[(aj + lj - 2) % lj]
|
||||
@@ -256,10 +252,10 @@ class Voronoi(val delaunay: Delaunay, val bounds: Rectangle) {
|
||||
project(P[0], P[1], vx0, vy0)?.let { p -> P!!.add(0, p[1]); P!!.add(0, p[0]) }
|
||||
project(P[P.size - 2], P[P.size - 1], vxn, vyn)?.let { p -> P!!.add(p[0]); P!!.add(p[1]) }
|
||||
|
||||
P = this.clipFinite(i, P!!)
|
||||
P = this.clipFinite(i, P)
|
||||
var n = 0
|
||||
if (P != null) {
|
||||
n = P!!.size
|
||||
n = P.size
|
||||
var c0 = -1
|
||||
var c1 = edgeCode(P[n - 2], P[n - 1])
|
||||
var j = 0
|
||||
@@ -298,7 +294,7 @@ class Voronoi(val delaunay: Delaunay, val bounds: Rectangle) {
|
||||
var y1 = points[n - 1]
|
||||
var c0: Int
|
||||
var c1: Int = regionCode(x1, y1)
|
||||
var e0: Int? = null
|
||||
var e0: Int?
|
||||
var e1: Int? = 0
|
||||
|
||||
for (j in 0 until n step 2) {
|
||||
@@ -360,7 +356,7 @@ class Voronoi(val delaunay: Delaunay, val bounds: Rectangle) {
|
||||
e0 = e1
|
||||
e1 = this.edgeCode(P[0], P[1])
|
||||
|
||||
if (e0.isTruthy() && e1.isTruthy()) this.edge(i, e0!!, e1!!, P, P.size);
|
||||
if (e0.isTruthy() && e1.isTruthy()) this.edge(i, e0!!, e1, P, P.size);
|
||||
} else if (this.contains(i, (bounds.xmin + bounds.xmax) / 2, (bounds.ymin + bounds.ymax) / 2)) {
|
||||
return mutableListOf(
|
||||
bounds.xmax,
|
||||
@@ -398,19 +394,22 @@ class Voronoi(val delaunay: Delaunay, val bounds: Rectangle) {
|
||||
when {
|
||||
(c and 0b1000) != 0 -> {
|
||||
x = nx0 + (nx1 - nx0) * (bounds.ymax - ny0) / (ny1 - ny0)
|
||||
y = bounds.ymax;
|
||||
y = bounds.ymax
|
||||
}
|
||||
|
||||
(c and 0b0100) != 0 -> {
|
||||
x = nx0 + (nx1 - nx0) * (bounds.ymin - ny0) / (ny1 - ny0)
|
||||
y = bounds.ymin
|
||||
}
|
||||
|
||||
(c and 0b0010) != 0 -> {
|
||||
y = ny0 + (ny1 - ny0) * (bounds.xmax - nx0) / (nx1 - nx0)
|
||||
x = bounds.xmax
|
||||
}
|
||||
|
||||
else -> {
|
||||
y = ny0 + (ny1 - ny0) * (bounds.xmin - nx0) / (nx1 - nx0)
|
||||
x = bounds.xmin;
|
||||
x = bounds.xmin
|
||||
}
|
||||
}
|
||||
|
||||
@@ -458,33 +457,40 @@ class Voronoi(val delaunay: Delaunay, val bounds: Rectangle) {
|
||||
e = 0b0100
|
||||
continue@loop
|
||||
}
|
||||
|
||||
0b0100 -> { // top
|
||||
e = 0b0110
|
||||
x = bounds.xmax
|
||||
y = bounds.ymin
|
||||
}
|
||||
|
||||
0b0110 -> { // top-right
|
||||
e = 0b0010
|
||||
continue@loop
|
||||
}
|
||||
|
||||
0b0010 -> { // right
|
||||
e = 0b1010
|
||||
x = bounds.xmax
|
||||
y = bounds.ymax
|
||||
}
|
||||
|
||||
0b1010 -> { // bottom-right
|
||||
e = 0b1000
|
||||
continue@loop
|
||||
}
|
||||
|
||||
0b1000 -> { // bottom
|
||||
e = 0b1001
|
||||
x = bounds.xmin
|
||||
y = bounds.ymax
|
||||
}
|
||||
|
||||
0b1001 -> { // bottom-left
|
||||
e = 0b0001
|
||||
continue@loop
|
||||
}
|
||||
|
||||
0b0001 -> { // left
|
||||
e = 0b0101
|
||||
x = bounds.xmin
|
||||
|
||||
@@ -20,6 +20,37 @@ class VoronoiDiagram(val delaunayTriangulation: DelaunayTriangulation, val bound
|
||||
}
|
||||
}
|
||||
|
||||
fun cellArea(i: Int, contour: ShapeContour = cellPolygon(i)): Double {
|
||||
val segments = contour.segments
|
||||
var sum = 0.0
|
||||
for (j in segments.indices) {
|
||||
val v0 = segments[j].start
|
||||
val v1 = segments[(j + 1).mod(segments.size)].start
|
||||
sum += v0.x * v1.y - v1.x * v0.y
|
||||
}
|
||||
return sum / 2.0
|
||||
}
|
||||
|
||||
fun cellCentroid(i: Int, contour: ShapeContour = cellPolygon(i)): Vector2 {
|
||||
val segments = cellPolygon(i).segments
|
||||
var cx = 0.0
|
||||
var cy = 0.0
|
||||
for (j in segments.indices) {
|
||||
val v0 = segments[j].start
|
||||
val v1 = segments[(j + 1).mod(segments.size)].start
|
||||
cx += (v0.x + v1.x) * (v0.x * v1.y - v1.x * v0.y)
|
||||
cy += (v0.y + v1.y) * (v0.x * v1.y - v1.x * v0.y)
|
||||
}
|
||||
val a = cellArea(i, contour) * 6.0
|
||||
cx /= a
|
||||
cy /= a
|
||||
return Vector2(cx, cy)
|
||||
}
|
||||
|
||||
fun cellCentroids() = (delaunayTriangulation.points.indices).map {
|
||||
cellCentroid(it)
|
||||
}
|
||||
|
||||
fun cellPolygon(i: Int): ShapeContour {
|
||||
val points = voronoi.clip(i)
|
||||
|
||||
|
||||
Reference in New Issue
Block a user