[orx-gradient-descent] convert to MPP

This commit is contained in:
Edwin Jakobs
2021-06-29 15:26:59 +02:00
parent 6d1f2897f7
commit 4f3834df7b
9 changed files with 110 additions and 9 deletions

View File

@@ -0,0 +1,90 @@
package org.openrndr.extra.gradientdescent
import org.openrndr.math.Vector2
import org.openrndr.math.Vector3
import org.openrndr.math.Vector4
/**
* converts a model to an array of doubles
*/
fun <T : Any> modelToArray(model: T): DoubleArray {
val doubles = mutableListOf<Double>()
model::class.java.declaredFields.forEach {
when {
it.type == DoubleArray::class.java -> {
it.isAccessible = true
val da = it.get(model) as DoubleArray
for (d in da) {
doubles.add(d)
}
}
it.type == Double::class.java -> {
it.isAccessible = true
doubles.add(it.getDouble(model))
}
it.type == Vector2::class.java -> {
it.isAccessible = true
val v2 = it.get(model) as Vector2
doubles.add(v2.x)
doubles.add(v2.y)
}
it.type == Vector3::class.java -> {
it.isAccessible = true
val v3 = it.get(model) as Vector3
doubles.add(v3.x)
doubles.add(v3.y)
doubles.add(v3.z)
}
it.type == Vector4::class.java -> {
it.isAccessible = true
val v4 = it.get(model) as Vector4
doubles.add(v4.x)
doubles.add(v4.y)
doubles.add(v4.z)
doubles.add(v4.w)
}
}
}
return doubles.toDoubleArray()
}
/**
* converts array of doubles to model values
*/
fun <T : Any> arrayToModel(data: DoubleArray, model: T) {
var index = 0
model::class.java.declaredFields.forEach {
when {
it.type == DoubleArray::class.java -> {
it.isAccessible = true
//it.setDouble(model, data[index])
val da = it.get(model) as DoubleArray
for (i in 0 until da.size) {
da[i] = data[index]
index++
}
}
it.type == Double::class.java -> {
it.isAccessible = true
it.setDouble(model, data[index])
index++
}
it.type == Vector2::class.java -> {
it.isAccessible = true
it.set(model, Vector2(data[index], data[index+1]))
index+=2
}
it.type == Vector3::class.java -> {
it.isAccessible = true
it.set(model, Vector3(data[index], data[index+1],data[index+2]))
index+=3
}
it.type == Vector4::class.java -> {
it.isAccessible = true
it.set(model, Vector4(data[index], data[index+1],data[index+2],data[index+3]))
index+=3
}
}
}
}

View File

@@ -0,0 +1,12 @@
@file:JvmName("GradientDescentJvmKt")
package org.openrndr.extra.gradientdescent
fun <T : Any> minimizeModel(model: T, endOnLineSearch: Boolean = false, tol: Double = 1e-8, maxIterations: Int = 1000, function: (T) -> Double) {
val doubles = modelToArray(model)
val weights = DoubleArray(doubles.size) { 1.0 }
val solution = minimize(doubles, weights, endOnLineSearch, tol, maxIterations) {
arrayToModel(it, model)
function(model)
}
arrayToModel(solution.solution, model)
}