Added PAL TV effect to emulate old CRT televisions. (#120)

This commit is contained in:
IIlIIlIl
2020-05-31 14:37:52 +02:00
committed by GitHub
parent 2faa1e99f7
commit 5ec0b46814
2 changed files with 148 additions and 0 deletions

View File

@@ -0,0 +1,25 @@
package org.openrndr.extra.fx.color
import org.openrndr.draw.Filter
import org.openrndr.draw.filterShaderFromUrl
import org.openrndr.extra.fx.filterFragmentUrl
import org.openrndr.extra.parameters.Description
import org.openrndr.extra.parameters.DoubleParameter
@Description("Pal TV Effect")
class Pal : Filter(filterShaderFromUrl(filterFragmentUrl("color/pal.frag"))) {
@DoubleParameter("amount", 0.0, 1.0)
var amount: Double by parameters
@DoubleParameter("pixelation", 0.0, 1.0)
var pixelation: Double by parameters
@DoubleParameter("filter_gain", 0.0, 10.0)
var filter_gain: Double by parameters
@DoubleParameter("filter_invgain", 0.0, 10.0)
var filter_invgain: Double by parameters
init {
amount = 1.0
pixelation = 0.0
filter_gain = 1.0
filter_invgain = 1.6
}
}

View File

@@ -0,0 +1,123 @@
#version 330 core
// based on https://github.com/svofski/CRT
in vec2 v_texCoord0;
uniform sampler2D tex0; // input
uniform float amount;
uniform float pixelation;
out vec4 o_color;
// Implementation by Evan Wallace (glfx.js)
uniform float filter_gain; // 1.0 is kind of normal
uniform float filter_invgain; // 1.6 is normal
#define PI 3.14159265358
#define FSC 4433618.75
#define FLINE 15625
#define VISIBLELINES 312
#define RGB_to_YIQ mat3x3( 0.299 , 0.595716 , 0.211456 , 0.587 , -0.274453 , -0.522591 , 0.114 , -0.321263 , 0.311135 )
#define YIQ_to_RGB mat3x3( 1.0 , 1.0 , 1.0 , 0.9563 , -0.2721 , -1.1070 , 0.6210 , -0.6474 , 1.7046 )
#define RGB_to_YUV mat3x3( 0.299 , -0.14713 , 0.615 , 0.587 , -0.28886 , -0.514991 , 0.114 , 0.436 , -0.10001 )
#define YUV_to_RGB mat3x3( 1.0 , 1.0 , 1.0 , 0.0 , -0.39465 , 2.03211 , 1.13983 , -0.58060 , 0.0 )
#define fetch(ofs,center,invx) texture(tex0, vec2((ofs) * (invx) + center.x, center.y))
#define FIRTAPS 20
const float FIR[FIRTAPS] = float[FIRTAPS] (-0.008030271,0.003107906,0.016841352,0.032545161,0.049360136,0.066256720,0.082120150,0.095848433,0.106453014,0.113151423,0.115441842,0.113151423,0.106453014,0.095848433,0.082120150,0.066256720,0.049360136,0.032545161,0.016841352,0.003107906);
//#define FIR_GAIN 2.0
//#define FIR_INVGAIN 1.02
#define FIR_GAIN filter_gain
#define FIR_INVGAIN filter_invgain
float width_ratio;
float height_ratio;
float altv;
float invx;
float modulated(vec2 xy, float sinwt, float coswt) {
vec3 rgb = fetch(0.0, xy, invx).xyz;
vec3 yuv = RGB_to_YUV * rgb;
// scanline modulation hack
// yuv.x *= 0.8 + 0.2 * sin(xy.y*2.0*3.1415*200.0);
return clamp(yuv.x + yuv.y * sinwt + yuv.z * coswt, 0.0, 1.0);
}
vec2 modem_uv(vec2 xy, int ofs) {
float t = (xy.x + float(ofs) * invx) * textureSize(tex0, 0).x;
float wt = t * 2.0 * PI / width_ratio;
float sinwt = sin(wt);
float coswt = cos(wt + altv);
vec3 rgb = fetch(float(ofs), xy, invx).xyz;
vec3 yuv = RGB_to_YUV * rgb;
float signal = clamp(yuv.x + yuv.y * sinwt + yuv.z * coswt, 0.0, 1.0);
return vec2(signal * sinwt, signal * coswt);
}
vec3 shadow_mask(vec2 pos){
const mat2 rot = mat2(0.707,0.707,-0.707,0.707);
vec3 offset = vec3( 0. , 1./3. , 2./3. );
vec2 spos = pos * rot * vec2(200.0);
vec3 ret = vec3(1);
ret.r = length( fract( spos + vec2(offset.r) ) -.5);
ret.g = length( fract( spos + vec2(offset.g) ) -.5);
ret.b = length( fract( spos + vec2(offset.b) ) -.5);
return clamp( 1.5-ret*2.5 , 0.0, 1.0 );
}
//
//void mainmaskImage(out vec4 fragColor, in vec2 fragCoord ){
// vec2 xy = fragCoord.st / iResolution.xy;
//
// fragColor.rgb = shadow_mask( fragCoord.st/ iResolution.y ) * texture(iChannel0, xy).rgb;
//
//
// if ( fragCoord.y > iResolution.y*.5 ) {
// fragColor = texture(iChannel0, xy);
// }
//}
void main() {
// vec2 xy = fragCoord.st / iResolution.xy;
vec2 xy = v_texCoord0;
width_ratio = textureSize(tex0, 0).x / (float(FSC) / float(FLINE));
height_ratio = textureSize(tex0, 0).y / float(VISIBLELINES);
altv = mod(floor(xy.y * float(VISIBLELINES) + 0.5), 2.0) * PI;
invx = 0.25 / (float(FSC)/float(FLINE)); // equals 4 samples per Fsc period
// lowpass U/V at baseband
vec2 filtered = vec2(0.0, 0.0);
for (int i = 0; i < FIRTAPS; i++) {
vec2 uv = modem_uv(xy, i - FIRTAPS/2);
filtered += FIR_GAIN * uv * FIR[i];
}
float t = xy.x * textureSize(tex0, 0).x;
float wt = t * 2.0 * PI / width_ratio;
float sinwt = sin(wt);
float coswt = cos(wt + altv);
float luma = modulated(xy, sinwt, coswt) - FIR_INVGAIN * (filtered.x * sinwt + filtered.y * coswt);
vec3 yuv_result = vec3(luma, filtered.x, filtered.y);
vec3 rgbmask = shadow_mask( xy * vec2(1.0, textureSize(tex0,0).x / textureSize(tex0,0).y) ); // needs anisotropy like: fragCoord.st/ iResolution.y );
rgbmask = vec3(1.0,1.0,1.0) * (1.0-pixelation) + rgbmask * pixelation;
o_color = texture(tex0,xy) * (1.0-amount) + amount * vec4(rgbmask * ( YUV_to_RGB * yuv_result ), 1.0);
// if (xy.y>0.5) {
// o_color = texture(tex0, xy);
// }
}