[orx-shapes] Add Hobby curves (#200)
This commit is contained in:
committed by
GitHub
parent
ec70511f2f
commit
8808e62431
148
orx-shapes/src/commonMain/kotlin/HobbyCurve.kt
Normal file
148
orx-shapes/src/commonMain/kotlin/HobbyCurve.kt
Normal file
@@ -0,0 +1,148 @@
|
||||
package org.openrndr.extra.shapes
|
||||
// Code adapted from http://weitz.de/hobby/
|
||||
|
||||
import org.openrndr.math.Vector2
|
||||
import org.openrndr.shape.Segment
|
||||
import org.openrndr.shape.ShapeContour
|
||||
import kotlin.math.atan2
|
||||
import kotlin.math.cos
|
||||
import kotlin.math.sin
|
||||
import kotlin.math.sqrt
|
||||
|
||||
/**
|
||||
* Uses Hobby's algorithm to construct a [ShapeContour] through a given list of points.
|
||||
* @param points The list of points through which the curve should go.
|
||||
* @param closed Whether to construct a closed or open curve.
|
||||
* @param curl The 'curl' at the endpoints of the curve; this is only applicable when [closed] is false. Best results for values in [-1, 1], where a higher value makes segments closer to circular arcs.
|
||||
* @return A [ShapeContour] through [points].
|
||||
*/
|
||||
fun hobbyCurve(points: List<Vector2>, closed: Boolean = false, curl: Double = 0.0): ShapeContour {
|
||||
if (points.size <= 1) return ShapeContour.EMPTY
|
||||
|
||||
val m = points.size
|
||||
val n = if (closed) m else m - 1
|
||||
|
||||
val diffs = arrayOfNulls<Vector2>(n)
|
||||
val distances = arrayOfNulls<Double>(n)
|
||||
for (i in 0 until n){
|
||||
diffs[i] = points[(i+1) % m] - points[i]
|
||||
distances[i] = diffs[i]!!.length
|
||||
}
|
||||
|
||||
val gamma = arrayOfNulls<Double>(m)
|
||||
for (i in (if (closed) 0 else 1) until n){
|
||||
val k = (i + m - 1) % m
|
||||
val n1 = diffs[k]!!.normalized
|
||||
val s = n1.y
|
||||
val c = n1.x
|
||||
val v = rotate(diffs[i]!!, -s, c)
|
||||
gamma[i] = atan2(v.y, v.x)
|
||||
}
|
||||
if (!closed) gamma[n] = 0.0
|
||||
|
||||
val a = arrayOfNulls<Double>(m)
|
||||
val b = arrayOfNulls<Double>(m)
|
||||
val c = arrayOfNulls<Double>(m)
|
||||
val d = arrayOfNulls<Double>(m)
|
||||
|
||||
for (i in (if (closed) 0 else 1) until n){
|
||||
val j = (i + 1) % m
|
||||
val k = (i + m - 1) % m
|
||||
|
||||
a[i] = 1 / distances[k]!!
|
||||
b[i] = (2 * distances[k]!! + 2 * distances[i]!!) / (distances[k]!! * distances[i]!!)
|
||||
c[i] = 1 / distances[i]!!
|
||||
d[i] = -(2 * gamma[i]!! * distances[i]!! + gamma[j]!! * distances[k]!!) / (distances[k]!! * distances[i]!!)
|
||||
}
|
||||
|
||||
lateinit var alpha: Array<Double>
|
||||
lateinit var beta: Array<Double?>
|
||||
|
||||
if (!closed) {
|
||||
a[0] = 0.0
|
||||
b[0] = 2 + curl
|
||||
c[0] = 2 * curl + 1
|
||||
d[0] = -c[0]!! * gamma[1]!!
|
||||
|
||||
a[n] = 2 * curl + 1
|
||||
b[n] = 2 + curl
|
||||
c[n] = 0.0
|
||||
d[n] = 0.0
|
||||
|
||||
alpha = thomas(a.requireNoNulls(), b.requireNoNulls(), c.requireNoNulls(), d.requireNoNulls())
|
||||
beta = arrayOfNulls(n)
|
||||
for (i in 0 until n-1){
|
||||
beta[i] = -gamma[i+1]!! - alpha[i+1]
|
||||
}
|
||||
beta[n-1] = -alpha[n]
|
||||
} else {
|
||||
val s = a[0]!!
|
||||
a[0] = 0.0
|
||||
val t = c[n-1]!!
|
||||
c[n-1] = 0.0
|
||||
alpha = sherman(a.requireNoNulls(), b.requireNoNulls(), c.requireNoNulls(), d.requireNoNulls(), s, t)
|
||||
beta = arrayOfNulls(n)
|
||||
for (i in 0 until n){
|
||||
val j = (i+1) % n
|
||||
beta[i] = -gamma[j]!! - alpha[j]
|
||||
}
|
||||
}
|
||||
|
||||
val c1s = mutableListOf<Vector2>()
|
||||
val c2s = mutableListOf<Vector2>()
|
||||
for (i in 0 until n){
|
||||
val v1 = rotateAngle(diffs[i]!!, alpha[i]).normalized
|
||||
val v2 = rotateAngle(diffs[i]!!, -beta[i]!!).normalized
|
||||
c1s.add(points[i % m] + v1 * rho(alpha[i], beta[i]!!) * distances[i]!! / 3.0)
|
||||
c2s.add(points[(i+1) % m] - v2 * rho(beta[i]!!, alpha[i]) * distances[i]!! / 3.0)
|
||||
}
|
||||
|
||||
return ShapeContour(List(n) { Segment(points[it], c1s[it], c2s[it], points[(it+1)%m]) }, closed=closed)
|
||||
}
|
||||
|
||||
private fun thomas(a: Array<Double>, b: Array<Double>, c: Array<Double>, d: Array<Double>): Array<Double> {
|
||||
val n = a.size
|
||||
val cc = arrayOfNulls<Double>(n)
|
||||
val dd = arrayOfNulls<Double>(n)
|
||||
cc[0] = c[0] / b[0]
|
||||
dd[0] = d[0] / b[0]
|
||||
for (i in 1 until n){
|
||||
val den = b[i] - cc[i-1]!! * a[i]
|
||||
cc[i] = c[i] / den
|
||||
dd[i] = (d[i] - dd[i-1]!!*a[i]) / den
|
||||
}
|
||||
val x = arrayOfNulls<Double>(n)
|
||||
x[n-1] = dd[n-1]
|
||||
for (i in n-2 downTo 0){
|
||||
x[i] = dd[i]!! - cc[i]!! * x[i+1]!!
|
||||
}
|
||||
return x.requireNoNulls()
|
||||
}
|
||||
|
||||
private fun sherman(a: Array<Double>, b: Array<Double>, c: Array<Double>, d: Array<Double>, s: Double, t: Double): Array<Double> {
|
||||
val n = a.size
|
||||
val u = Array(n) { if (it == 0 || it == n-1) 1.0 else 0.0 }
|
||||
val v = Array(n) { when (it){ 0 -> t; n-1 -> s; else -> 0.0 } }
|
||||
b[0] -= t
|
||||
b[n-1] -= s
|
||||
val Td = thomas(a, b, c, d)
|
||||
val Tu = thomas(a, b, c, u)
|
||||
val factor = (t * Td[0] + s*Td[n-1]) / (1 + t * Tu[0] + s*Tu[n-1])
|
||||
return Array(n) {
|
||||
Td[it] - factor * Tu[it]
|
||||
}
|
||||
}
|
||||
|
||||
private fun rho(a: Double, b: Double): Double {
|
||||
val sa = sin(a)
|
||||
val sb = sin(b)
|
||||
val ca = cos(a)
|
||||
val cb = cos(b)
|
||||
val s5 = sqrt(5.0)
|
||||
val num = 4 + sqrt(8.0) * (sa - sb/16) * (sb - sa/16) * (ca - cb)
|
||||
val den = 2 + (s5 - 1) * ca + (3 - s5) * cb
|
||||
return num/den
|
||||
}
|
||||
|
||||
private fun rotate(v: Vector2, s: Double, c: Double) = Vector2(v.x * c - v.y * s, v.x * s + v.y * c)
|
||||
private fun rotateAngle(v: Vector2, alpha: Double) = rotate(v, sin(alpha), cos(alpha))
|
||||
15
orx-shapes/src/demo/kotlin/DemoHobbyCurve.kt
Normal file
15
orx-shapes/src/demo/kotlin/DemoHobbyCurve.kt
Normal file
@@ -0,0 +1,15 @@
|
||||
import org.openrndr.application
|
||||
import org.openrndr.color.ColorRGBa
|
||||
import org.openrndr.extra.shapes.hobbyCurve
|
||||
import org.openrndr.math.Vector2
|
||||
|
||||
fun main() = application {
|
||||
program {
|
||||
extend {
|
||||
val points = listOf(Vector2(150.0, 350.0), Vector2(325.0, 100.0), Vector2(500.0, 350.0), Vector2(325.0, 250.0))
|
||||
drawer.stroke = ColorRGBa.BLACK
|
||||
drawer.fill = ColorRGBa.PINK
|
||||
drawer.contour(hobbyCurve(points, closed=true))
|
||||
}
|
||||
}
|
||||
}
|
||||
Reference in New Issue
Block a user