[orx-shadestyles] Improve gradient and imageFill shadestyles

This commit is contained in:
Edwin Jakobs
2025-02-25 12:16:57 +01:00
parent 21a3d7f483
commit 9a93d95318
30 changed files with 1296 additions and 386 deletions

View File

@@ -3,14 +3,27 @@ package org.openrndr.extra.color.phrases
import org.openrndr.extra.shaderphrases.ShaderPhrase
import org.openrndr.extra.shaderphrases.ShaderPhraseBook
object ColorPhraseBook : ShaderPhraseBook("color") {
val phraseAtan2 = ShaderPhrase("""
|float atan2(in float y, in float x) {
| bool s = (abs(x) > abs(y));
| return mix(PI/2.0 - atan(x,y), atan(y,x), float(s));
|}""".trimMargin())
val oklabToLinearRgbPhrase = """#ifndef ORX_COLOR_OKLAB_TO_LINEAR_RGB_PHRASE
|#define ORX_COLOR_OKLAB_TO_LINEAR_RGB_PHRASE
|vec4 oklab_to_linear_rgb(vec4 lab) {
| const mat3 kLMStoCONE = mat3(
| 1.0, 1.0, 1.0,
| 0.3963377774, -0.1055613458, -0.0894841775,
| 0.2158037573, -0.0638541728, -1.2914855480);
| const mat3 kRot = mat3(
| 4.0767416621, -1.2684380046, -0.0041960863,
| -3.3077115913, 2.6097574011, -0.7034186147,
| 0.2309699292, -0.3413193965, 1.7076147010);
| vec3 lms = kLMStoCONE * lab.rgb;
| lms = lms * lms * lms;
| vec4 res = vec4(kRot * lms,lab.a);
| return res;
|}
|#endif""".trimMargin()
val phraseLinearRgbToOKLab = ShaderPhrase("""
val linearRgbToOklabPhrase = """
|#ifndef ORX_COLOR_LINEAR_RGB_TO_OKLAB_PHRASE
|#define ORX_COLOR_LINEAR_RGB_TO_OKLAB_PHRASE
|vec4 linear_rgb_to_oklab(vec4 c) {
| c.rgb = max(vec3(0.0), c.rgb);
| const mat3 kCONEtoLMS = mat3(
@@ -25,23 +38,19 @@ object ColorPhraseBook : ShaderPhraseBook("color") {
| vec3 lms = pow(kCONEtoLMS * c.rgb, vec3(1.0/3.0));
| vec4 res = vec4((kRot) * lms, c.a);
| return res;
|}
|#endif""".trimMargin()
object ColorPhraseBook : ShaderPhraseBook("color") {
val phraseAtan2 = ShaderPhrase("""
|float atan2(in float y, in float x) {
| bool s = (abs(x) > abs(y));
| return mix(PI/2.0 - atan(x,y), atan(y,x), float(s));
|}""".trimMargin())
val oklabToLinearRgb = ShaderPhrase("""
|vec4 oklab_to_linear_rgb(vec4 lab) {
| const mat3 kLMStoCONE = mat3(
| 1.0, 1.0, 1.0,
| 0.3963377774, -0.1055613458, -0.0894841775,
| 0.2158037573, -0.0638541728, -1.2914855480);
| const mat3 kRot = mat3(
| 4.0767416621, -1.2684380046, -0.0041960863,
| -3.3077115913, 2.6097574011, -0.7034186147,
| 0.2309699292, -0.3413193965, 1.7076147010);
| vec3 lms = kLMStoCONE * lab.rgb;
| lms = lms * lms * lms;
| vec4 res = vec4(kRot * lms,lab.a);
| return res;
|}""".trimMargin())
val phraseLinearRgbToOKLab = ShaderPhrase(linearRgbToOklabPhrase)
val oklabToLinearRgb = ShaderPhrase(oklabToLinearRgbPhrase)
val phraseLabToLch = ShaderPhrase( """
|vec4 lab_to_lch(vec4 lab) {

View File

@@ -9,6 +9,7 @@ import org.openrndr.extra.parameters.Description
import org.openrndr.extra.parameters.DoubleParameter
import org.openrndr.math.Vector2
@Deprecated("use gradient {} instead")
@Description("Angular gradient")
class AngularGradient(
color0: ColorRGBa,
@@ -62,6 +63,7 @@ class AngularGradient(
}
}
@Deprecated("use gradient {} instead")
fun angularGradient(
color0: ColorRGBa,
color1: ColorRGBa,

View File

@@ -7,7 +7,7 @@ import kotlin.reflect.KClass
internal fun generateColorTransform(kClass: KClass<*>): String {
return when (kClass) {
ColorRGBa::class -> """"""
ColorOKLABa::class -> """gradient = linear_rgb_to_srgb(oklab_to_linear_rgb(gradient));"""
ColorOKLABa::class -> """gradient = oklab_to_linear_rgb(gradient);"""
else -> error("color space not supported $kClass")
}
}

View File

@@ -9,6 +9,7 @@ import org.openrndr.extra.parameters.Description
import org.openrndr.extra.parameters.DoubleParameter
import org.openrndr.math.Vector2
@Deprecated("use gradient {} instead")
@Description("Half-angular gradient")
class HalfAngularGradient(
color0: ColorRGBa,

View File

@@ -1,61 +0,0 @@
package org.openrndr.extra.shadestyles
import org.openrndr.draw.ColorBuffer
import org.openrndr.draw.ShadeStyle
import org.openrndr.math.Vector2
class ImageFit : ShadeStyle() {
var image: ColorBuffer by Parameter()
var flipV: Boolean by Parameter()
var position: Vector2 by Parameter()
init {
position = Vector2.ZERO
fragmentTransform = """
| vec2 uv = c_boundsPosition.xy;
| vec2 ts = textureSize(p_image, 0);
| float boundsAR = c_boundsSize.x / c_boundsSize.y;
| vec2 shift = (p_position + vec2(1.0, 1.0)) / 2.0;
|
| if (c_boundsSize.x > c_boundsSize.y) {
| uv.y -= shift.y;
| uv.y /= boundsAR;
| uv.y += shift.y;
| } else {
| uv.x -= shift.x;
| uv.x *= boundsAR;
| uv.x += shift.x;
| }
| float textureAR = ts.x / ts.y;
| if (ts.x > ts.y) {
| uv.x -= 0.5;
| uv.x /= textureAR;
| uv.x += 0.5;
| } else {
| uv.y -= 0.5;
| uv.y *= textureAR;
| uv.y += 0.5;
| }
|
|
| if (p_flipV) {
| uv.y = 1.0 - uv.y;
| }
| #ifndef OR_GL_TEXTURE2D
| vec4 img = texture(p_image, uv);
| #else
| vec4 img = texture2D(p_image, uv);
| #endif
| x_fill = img;
| """.trimMargin()
}
}
fun imageFit(image: ColorBuffer, position: Vector2 = Vector2.ZERO) : ImageFit {
val im = ImageFit()
im.image = image
im.flipV = true
im.position = position
return im
}

View File

@@ -14,6 +14,7 @@ import org.openrndr.extra.shaderphrases.preprocess
import org.openrndr.math.CastableToVector4
import org.openrndr.math.Vector2
@Deprecated("use gradient {} instead")
@Description("Linear gradient")
open class LinearGradientBase<C>(
color0: C,
@@ -79,6 +80,7 @@ open class LinearGradientBase<C>(
}
}
@Deprecated("use gradient {} instead")
class LinearGradient(
color0: ColorRGBa = ColorRGBa.BLACK,
color1: ColorRGBa = ColorRGBa.WHITE,
@@ -87,6 +89,7 @@ class LinearGradient(
exponent: Double = 1.0
): LinearGradientBase<ColorRGBa>(color0, color1, offset, rotation, exponent)
@Deprecated("use gradient {} instead")
class LinearGradientOKLab(
color0: ColorOKLABa,
color1: ColorOKLABa,
@@ -96,6 +99,7 @@ class LinearGradientOKLab(
): LinearGradientBase<ColorOKLABa>(color0, color1, offset, rotation, exponent)
@Deprecated("use gradient {} instead")
fun linearGradient(
color0: ColorRGBa = ColorRGBa.BLACK,
color1: ColorRGBa = ColorRGBa.WHITE,
@@ -106,6 +110,7 @@ fun linearGradient(
return LinearGradient(color0, color1, offset, rotation, exponent)
}
@Deprecated("use gradient {} instead")
fun linearGradient(
color0: ColorOKLABa = ColorRGBa.BLACK.toOKLABa(),
color1: ColorOKLABa = ColorRGBa.WHITE.toOKLABa(),

View File

@@ -7,6 +7,7 @@ import org.openrndr.draw.ShadeStyle
import org.openrndr.extra.parameters.Description
import org.openrndr.math.Vector2
@Deprecated("use gradient {} instead")
@Description("N-Point gradient")
class NPointGradient(
colors: Array<ColorRGBa>,

View File

@@ -13,6 +13,7 @@ import org.openrndr.extra.color.spaces.ColorOKLABa
import org.openrndr.math.CastableToVector4
import org.openrndr.math.Vector2
@Deprecated("use gradient {} instead")
@Description("Multicolor linear gradient")
open class NPointLinearGradientBase<C>(
colors: Array<C>,

View File

@@ -7,6 +7,7 @@ import org.openrndr.draw.ShadeStyle
import org.openrndr.extra.parameters.Description
import org.openrndr.math.Vector2
@Deprecated("use gradient {} instead")
@Description("Multicolor radial gradient")
class NPointRadialGradient(
colors: Array<ColorRGBa>,

View File

@@ -15,6 +15,7 @@ import org.openrndr.extra.shaderphrases.preprocess
import org.openrndr.math.CastableToVector4
import org.openrndr.math.Vector2
@Deprecated("use gradient {} instead")
@Description("Radial gradient")
open class RadialGradientBase<C>(
color0: C,
@@ -69,6 +70,7 @@ where C : ConvertibleToColorRGBa, C : AlgebraicColor<C>, C: CastableToVector4 {
}
}
@Deprecated("use gradient {} instead")
class RadialGradient(
color0: ColorRGBa,
color1: ColorRGBa,
@@ -78,6 +80,7 @@ class RadialGradient(
exponent: Double = 1.0
): RadialGradientBase<ColorRGBa>(color0, color1, offset, rotation, length, exponent)
@Deprecated("use gradient {} instead")
class RadialGradientOKLab(
color0: ColorOKLABa,
color1: ColorOKLABa,
@@ -87,6 +90,7 @@ class RadialGradientOKLab(
exponent: Double = 1.0
): RadialGradientBase<ColorOKLABa>(color0, color1, offset, rotation, length, exponent)
@Deprecated("use gradient {} instead")
fun radialGradient(
color0: ColorRGBa,
color1: ColorRGBa,
@@ -98,6 +102,7 @@ fun radialGradient(
return RadialGradient(color0, color1, offset, rotation, length, exponent)
}
@Deprecated("use gradient {} instead")
fun radialGradient(
color0: ColorOKLABa,
color1: ColorOKLABa,

View File

@@ -0,0 +1,20 @@
package org.openrndr.extra.shadestyles.fills
enum class FillFit {
STRETCH,
COVER,
CONTAIN
}
enum class FillUnits {
BOUNDS,
WORLD,
VIEW,
SCREEN,
}
enum class SpreadMethod {
PAD,
REFLECT,
REPEAT
}

View File

@@ -0,0 +1,106 @@
package org.openrndr.extra.shadestyles.fills.gradients
import org.openrndr.color.AlgebraicColor
import org.openrndr.color.ConvertibleToColorRGBa
import org.openrndr.math.CastableToVector4
import org.openrndr.math.Vector2
import org.openrndr.math.Vector4
import kotlin.math.PI
import kotlin.reflect.KClass
open class ConicGradient<C>(
colorType: KClass<C>,
center: Vector2 = Vector2(0.5, 0.5),
rotation: Double = 0.0,
angle: Double = 0.0,
startAngle: Double = 0.0,
colors: Array<Vector4>,
points: Array<Double> = Array(colors.size) { it / (colors.size - 1.0) },
structure: GradientBaseStructure
) : GradientBase<C>(
colorType,
colors,
points,
structure
)
where C : ConvertibleToColorRGBa, C : AlgebraicColor<C>, C : CastableToVector4 {
var angle: Double by Parameter()
var startAngle: Double by Parameter()
var center: Vector2 by Parameter()
var rotation: Double by Parameter()
init {
this.center = center
this.startAngle = startAngle
this.angle = angle
this.rotation = rotation
}
companion object {
val gradientFunction = """
float gradientFunction(vec2 coord) {
vec2 d0 = coord - p_center;
float angle = atan(d0.y, d0.x);
angle += ${PI};
angle /= ${2.0 * PI};
angle += p_rotation / 360.0;
angle = mod(angle, 1.0);
angle *= p_angle / 360.0;
angle += $PI * p_startAngle / 180.0;
return angle;
}
""".trimIndent()
}
}
class ConicGradientBuilder<C>(private val gradientBuilder: GradientBuilder<C>) : GradientShadeStyleBuilder<C>
where C : ConvertibleToColorRGBa, C : AlgebraicColor<C>, C : CastableToVector4 {
/**
* Specifies the center point for the gradient.
* When using BOUNDS coordinates, the coordinates are normalized, where (0,0) represents the top-left corner and (1,1)
* represents the bottom-right corner. The default value is set to `Vector2(0.5, 0.5)`, which corresponds to the center
* of the gradient's bounding box.
*/
var center = Vector2(0.5, 0.5)
/**
* Defines the angular extent of the conic gradient in degrees.
* By default, it is set to 360.0 degrees, representing a full circular gradient.
* Adjusting this value can control the gradient's angular sweep, with values ranging between 0 and 360.
* Negative values or values exceeding 360 might have no effect or be clamped depending on implementation.
*/
var angle: Double = 360.0
/**
* Specifies the starting angle of the conic gradient in degrees.
* This value determines the initial orientation of the gradient's angular sweep.
* By default, it is set to `0.0` degrees, which aligns with a standard reference point.
* You can adjust this value to rotate the gradient's starting position around the center.
*/
var startAngle: Double = 0.0
/**
* Defines the rotation angle of the conic gradient in degrees.
* This value applies a global rotation to the gradient, rotating it around its center point.
* By default, it is set to `0.0` degrees, meaning no rotation is applied.
* Modifying this value allows for tilting the gradient's angular orientation to achieve
* specific visual effects or alignments.
*/
var rotation: Double = 0.0
override fun build(): GradientBase<C> {
val (stops, colors) = gradientBuilder.extractStepsUnzip()
return ConicGradient<C>(
gradientBuilder.colorType,
center,
rotation,
angle,
startAngle,
colors,
stops,
gradientBuilder.structure()
)
}
}

View File

@@ -0,0 +1,146 @@
package org.openrndr.extra.shadestyles.fills.gradients
import org.openrndr.color.AlgebraicColor
import org.openrndr.color.ColorRGBa
import org.openrndr.color.ConvertibleToColorRGBa
import org.openrndr.draw.ShadeStyle
import org.openrndr.extra.shadestyles.fills.FillFit
import org.openrndr.extra.shadestyles.fills.FillUnits
import org.openrndr.extra.shadestyles.fills.SpreadMethod
import org.openrndr.math.CastableToVector4
import org.openrndr.math.Vector4
import kotlin.reflect.KClass
class GradientBuilder<C>(val colorType: KClass<C>)
where C : ConvertibleToColorRGBa, C : AlgebraicColor<C>, C : CastableToVector4 {
var stops = mutableMapOf<Double, C>()
var fillUnits = FillUnits.BOUNDS
var fillFit = FillFit.STRETCH
var spreadMethod = SpreadMethod.PAD
var levelWarpFunction = """float levelWarp(vec2 coord, float level) { return level; }"""
var domainWarpFunction = """vec2 domainWarp(vec2 coord) { return coord; }"""
var gradientFunction = """float gradientFunction(vec2 coord) { return 0.0; }"""
var quantization = 0
private fun setBaseParameters(style: GradientBase<C>) {
style.quantization = quantization
style.spreadMethod = spreadMethod.ordinal
style.fillUnits = fillUnits.ordinal
style.fillFit = fillFit.ordinal
}
@PublishedApi
internal var shadeStyleBuilder: GradientShadeStyleBuilder<C> = LinearGradientBuilder(this)
/**
* Configures a linear gradient by applying the provided builder block.
*
* @param builder A lambda function used to define the properties of the linear gradient.
* The builder block allows customization of attributes such as
* start and end positions.
*/
fun linear(builder: LinearGradientBuilder<C>.() -> Unit) {
shadeStyleBuilder = LinearGradientBuilder(this).apply { builder() }
gradientFunction = LinearGradient.gradientFunction
}
/**
* Configures a radial gradient by applying the provided builder block.
*
* @param builder A lambda function used to define the properties of the radial gradient.
* The builder block allows customization of attributes such as the center,
* radius, focal center, and focal radius.
*/
fun radial(builder: RadialGradientBuilder<C>.() -> Unit) {
shadeStyleBuilder = RadialGradientBuilder(this).apply { builder() }
gradientFunction = RadialGradient.gradientFunction
}
/**
* Configures a conic gradient by applying the provided builder block.
*
* @param builder A lambda function used to define the properties of the conic gradient.
* The builder block allows customization of attributes such as the center,
* angle, start angle, and rotation.
*/
fun conic(builder: ConicGradientBuilder<C>.() -> Unit) {
shadeStyleBuilder = ConicGradientBuilder(this).apply { builder() }
gradientFunction = ConicGradient.gradientFunction
}
/**
* Configures a stellar gradient by applying the provided builder block.
*
* @param builder A lambda function used to define the properties of the stellar gradient.
* The builder block allows customization of attributes such as center, radius,
* sharpness, rotation, and the number of sides.
*/
fun stellar(builder: StellarGradientBuilder<C>.() -> Unit) {
shadeStyleBuilder = StellarGradientBuilder(this).apply { builder() }
gradientFunction = StellarGradient.gradientFunction
}
internal fun extractSteps(): List<Pair<Double, C>> {
return stops.entries.sortedBy { it.key }.map {
Pair(it.key, it.value)
}
}
internal fun extractStepsUnzip(): Pair<Array<Double>, Array<Vector4>> {
val steps = extractSteps()
val stopsArray = Array(steps.size) { steps[it].first }
val colorsArray = Array(steps.size) {
(steps[it].second.let { c ->
if (c is ColorRGBa) {
c.toLinear()
} else {
c
}
}).toVector4()
}
return Pair(stopsArray, colorsArray)
}
internal fun structure(): GradientBaseStructure =
GradientBaseStructure(gradientFunction, domainWarpFunction, levelWarpFunction)
@PublishedApi
internal fun build(): GradientBase<C> {
return this.shadeStyleBuilder.build().apply {
setBaseParameters(this)
}
}
}
sealed interface GradientShadeStyleBuilder<C>
where C : ConvertibleToColorRGBa, C : AlgebraicColor<C>, C : CastableToVector4 {
/**
* Constructs and returns a `GradientBase` object representing a gradient with the
* desired configuration defined in the implementing class.
*
* @return An instance of `GradientBase` configured with the specified gradient parameters.
*/
fun build(): GradientBase<C>
}
/**
* Creates a gradient shade style using the specified configuration.
*
* The method allows for building a gradient using a DSL-like approach,
* where different properties such as gradient stops, gradient type, and
* other configurations can be set.
*
* @param builder A lambda function used to configure the gradient properties
* through an instance of [GradientBuilder].
* @return A [ShadeStyle] instance representing the configured gradient.
*/
inline fun <reified C> gradient(builder: GradientBuilder<C>.() -> Unit): ShadeStyle
where C : ConvertibleToColorRGBa, C : AlgebraicColor<C>, C : CastableToVector4 {
val gb = GradientBuilder(C::class)
gb.builder()
return gb.build()
}

View File

@@ -0,0 +1,187 @@
package org.openrndr.extra.shadestyles.fills.gradients
import org.openrndr.color.AlgebraicColor
import org.openrndr.color.ConvertibleToColorRGBa
import org.openrndr.draw.ShadeStyle
import org.openrndr.extra.color.phrases.linearRgbToOklabPhrase
import org.openrndr.extra.color.phrases.oklabToLinearRgbPhrase
import org.openrndr.extra.shadestyles.fills.FillFit
import org.openrndr.extra.shadestyles.fills.FillUnits
import org.openrndr.extra.shadestyles.fills.SpreadMethod
import org.openrndr.extra.shadestyles.generateColorTransform
import org.openrndr.math.CastableToVector4
import org.openrndr.math.Vector2
import org.openrndr.math.Vector4
import kotlin.math.PI
import kotlin.reflect.KClass
class GradientBaseStructure(
val gradientFunction: String,
val domainWarpFunction: String,
val levelWarpFunction: String
)
open class GradientBase<C>(
colorType: KClass<C>,
colors: Array<Vector4>,
points: Array<Double> = Array(colors.size) { it / (colors.size - 1.0) },
structure: GradientBaseStructure
) : ShadeStyle()
where C : ConvertibleToColorRGBa, C : AlgebraicColor<C>, C : CastableToVector4 {
var quantization: Int by Parameter()
var colors: Array<Vector4> by Parameter()
var points: Array<Double> by Parameter()
var spreadMethod: Int by Parameter()
var fillUnits: Int by Parameter()
var fillFit: Int by Parameter()
init {
this.quantization = 0
this.colors = colors
this.points = points
this.fillUnits = FillUnits.BOUNDS.ordinal
this.spreadMethod = SpreadMethod.PAD.ordinal
this.fillFit = FillFit.STRETCH.ordinal
fragmentPreamble = """
|vec2 rotate2D(vec2 x, float angle){
| float rad = angle / 180.0 * $PI;
| mat2 m = mat2(cos(rad),-sin(rad), sin(rad),cos(rad));
| return m * x;
|}
|$oklabToLinearRgbPhrase
|$linearRgbToOklabPhrase
|${structure.gradientFunction}
|${structure.domainWarpFunction}
|${structure.levelWarpFunction}
|""".trimMargin()
fragmentTransform = """
vec2 coord = vec2(0.0);
if (p_fillUnits == 0) { // BOUNDS
coord = c_boundsPosition.xy;
if (p_fillFit == 1) { // COVER
float mx = max(c_boundsSize.x, c_boundsSize.y);
float ar = mx / min(c_boundsSize.x, c_boundsSize.y);
if (c_boundsSize.x == mx) {
coord.y = (coord.y - 0.5) * ar + 0.5;
} else {
coord.x = (coord.x - 0.5) * ar + 0.5;
}
} else if (p_fillFit == 2) { // CONTAIN
float mx = max(c_boundsSize.x, c_boundsSize.y);
float ar = min(c_boundsSize.x, c_boundsSize.y) / mx;
if (c_boundsSize.y == mx) {
coord.y = (coord.y - 0.5) * ar + 0.5;
} else {
coord.x = (coord.x - 0.5) * ar + 0.5;
}
}
} else if (p_fillUnits == 1) { // WORLD
coord = v_worldPosition.xy;
} else if (p_fillUnits == 2) { // VIEW
coord = v_viewPosition.xy;
} else if (p_fillUnits == 3) { // SCREEN
coord = c_screenPosition.xy;
coord.y = u_viewDimensions.y - coord.y;
}
coord = domainWarp(coord);
float f = gradientFunction(coord);
f = levelWarp(coord, f);
if (p_quantization != 0) {
f = floor(f * float(p_quantization)) / (float(p_quantization) - 1.0);
}
if (p_spreadMethod == 0) { // PAD
f = clamp(f, 0.0, 1.0);
} else if (p_spreadMethod == 1) { // REFLECT
f = 2.0 * abs(f / 2.0 - floor(f / 2.0 + 0.5));
} else if (p_spreadMethod == 2) { // REPEAT
f = mod(f, 1.0);
}
int i = 0;
while (i < p_points_SIZE - 1 && f >= p_points[i+1]) { i++; }
vec4 color0 = p_colors[i];
vec4 color1 = p_colors[i+1];
float g = (f - p_points[i]) / (p_points[i+1] - p_points[i]);
vec4 gradient = mix(color0, color1, clamp(g, 0.0, 1.0));
${generateColorTransform(colorType)}
x_fill *= gradient;
"""
}
}
open class LinearGradient<C>(
colorType: KClass<C>,
start: Vector2 = Vector2.ZERO,
end: Vector2 = Vector2.ONE,
colors: Array<Vector4>,
points: Array<Double> = Array(colors.size) { it / (colors.size - 1.0) },
structure: GradientBaseStructure,
) : GradientBase<C>(
colorType,
colors,
points,
structure
)
where C : ConvertibleToColorRGBa, C : AlgebraicColor<C>, C : CastableToVector4 {
var start: Vector2 by Parameter()
var end: Vector2 by Parameter()
init {
this.start = start
this.end = end
}
companion object {
val gradientFunction = """
float gradientFunction(vec2 coord) {
vec2 d0 = coord - p_start;
vec2 dl = p_end - p_start;
float d0l = length(d0);
float dll = length(dl);
float f = dot(d0, dl) / (dll * dll);
return f;
}
""".trimIndent()
}
}
class LinearGradientBuilder<C>(private val gradientBuilder: GradientBuilder<C>) : GradientShadeStyleBuilder<C>
where C : ConvertibleToColorRGBa, C : AlgebraicColor<C>, C : CastableToVector4 {
/**
* Specifies the start point of the linear gradient.
* The coordinate values are normalized when using BOUNDS coordinates,
* where (0,0) represents the top-left corner and (1,1) represents the bottom-right corner of the gradient's bounding box.
* The default value is set to `Vector2(0.0, 0.5)`, which places the start point at the left middle edge of the bounding box.
*/
var start = Vector2(0.0, 0.5)
/**
* Specifies the end point of the linear gradient.
* The coordinate values are normalized when using BOUNDS coordinates, where (0,0) represents
* the top-left corner and (1,1) represents the bottom-right corner of the gradient's bounding box.
* The default value is set to `Vector2(1.0, 0.5)`, which places the end point at the right middle edge
* of the bounding box.
*/
var end = Vector2(1.0, 0.5)
override fun build(): GradientBase<C> {
val (stops, colors) = gradientBuilder.extractStepsUnzip()
return LinearGradient<C>(gradientBuilder.colorType, start, end, colors, stops, gradientBuilder.structure())
}
}

View File

@@ -0,0 +1,105 @@
package org.openrndr.extra.shadestyles.fills.gradients
import org.openrndr.color.AlgebraicColor
import org.openrndr.color.ConvertibleToColorRGBa
import org.openrndr.math.CastableToVector4
import org.openrndr.math.Vector2
import org.openrndr.math.Vector4
import kotlin.reflect.KClass
open class RadialGradient<C>(
colorType: KClass<C>,
center: Vector2 = Vector2(0.5, 0.5),
focalCenter: Vector2 = center,
radius: Double = 1.0,
focalRadius: Double = radius,
colors: Array<Vector4>,
points: Array<Double> = Array(colors.size) { it / (colors.size - 1.0) },
structure: GradientBaseStructure
) : GradientBase<C>(
colorType,
colors,
points,
structure
)
where C : ConvertibleToColorRGBa, C : AlgebraicColor<C>, C : CastableToVector4 {
var radius: Double by Parameter()
var focalRadius: Double by Parameter()
var focalCenter: Vector2 by Parameter()
var center: Vector2 by Parameter()
init {
this.focalRadius = focalRadius
this.focalCenter = focalCenter
this.center = center
this.radius = radius
}
companion object {
val gradientFunction = """
float gradientFunction(vec2 coord) {
vec2 d0 = coord - p_center;
float d0l = length(d0);
float f = d0l / p_radius;
return f;
}
""".trimIndent()
}
}
class RadialGradientBuilder<C>(private val gradientBuilder: GradientBuilder<C>) : GradientShadeStyleBuilder<C>
where C : ConvertibleToColorRGBa, C : AlgebraicColor<C>, C : CastableToVector4 {
/**
* Specifies the center point for the radial gradient.
*
* The `center` represents the normalized coordinates within the bounds of the gradient's area.
* When using BOUNDS coordinates a value of `Vector2(0.5, 0.5)` corresponds to the geometric center of the gradient's
* bounds. The coordinates are normalized, where (0,0) is the top-left corner and (1,1) is the bottom-right corner.
* This value determines the starting position for the radial gradient effect.
*/
var center = Vector2(0.5, 0.5)
/**
* Specifies the radius of the radial gradient.
*
* The `radius` determines the extent of the gradient from the center point outward.
*
* When using BOUNDS coordinates it is expressed as a normalized value where `0.0` represents no radius
* (a single point at the center) and `1.0` corresponds to the full extent to the edge of the gradient's bounding area.
* Adjusting this value alters the size and spread of the gradient.
*/
var radius = 0.5
/**
* Specifies the focal center point for the radial gradient.
*
* The `focalCenter` defines an additional center point for the radial gradient,
* allowing for more complex and visually distinct gradient effects compared to the default center.
* If not explicitly set, it defaults to the same value as the `center`.
*
* This property can be used to create focused or offset gradient patterns by positioning
* the focal center differently relative to the main center point. The coordinates can
* be normalized within the bounds, where (0,0) represents the top-left corner and (1,1)
* represents the bottom-right corner.
*/
var focalCenter: Vector2? = null
var focalRadius: Double? = null
override fun build(): GradientBase<C> {
val (stops, colors) = gradientBuilder.extractStepsUnzip()
return RadialGradient(
gradientBuilder.colorType,
center,
focalCenter ?: center,
radius,
focalRadius ?: radius,
colors,
stops,
gradientBuilder.structure()
)
}
}

View File

@@ -0,0 +1,140 @@
package org.openrndr.extra.shadestyles.fills.gradients
import org.openrndr.color.AlgebraicColor
import org.openrndr.color.ConvertibleToColorRGBa
import org.openrndr.math.CastableToVector4
import org.openrndr.math.Vector2
import org.openrndr.math.Vector4
import kotlin.math.PI
import kotlin.reflect.KClass
open class StellarGradient<C>(
colorType: KClass<C>,
center: Vector2 = Vector2(0.5, 0.5),
radius: Double = 1.0,
sharpness: Double = 0.5,
rotation: Double = 0.0,
sides: Int = 3,
colors: Array<Vector4>,
points: Array<Double> = Array(colors.size) { it / (colors.size - 1.0) },
structure: GradientBaseStructure
) : GradientBase<C>(
colorType,
colors,
points,
structure
)
where C : ConvertibleToColorRGBa, C : AlgebraicColor<C>, C : CastableToVector4 {
var sides: Int by Parameter()
var radius: Double by Parameter()
var center: Vector2 by Parameter()
var sharpness: Double by Parameter()
var rotation: Double by Parameter()
init {
this.sides = sides
this.center = center
this.radius = radius
this.sharpness = sharpness
this.rotation = rotation
}
companion object {
val gradientFunction = """
const float pi = $PI;
const vec3 c = vec3(1,0,-1);
/*
taken from https://www.shadertoy.com/view/csXcD8# by ShaderToy user 'nr4'
*/
float dstar(in vec2 x, in float r1, in float r2, in float N) {
N *= 2.;
float p = atan(x.y,x.x),
k = pi/N,
dp = mod(p, 2.*k),
parity = mod(round((p-dp)*.5/k), 2.),
dkp = mix(k,-k,parity),
kp = k+dkp,
km = k-dkp;
vec2 p1 = r1*vec2(cos(km),sin(km)),
p2 = r2*vec2(cos(kp),sin(kp)),
dpp = p2-p1,
n = normalize(dpp).yx*c.xz,
xp = length(x)*vec2(cos(dp), sin(dp)),
xp1 = xp-p1;
float t = dot(xp1,dpp)/dot(dpp,dpp)-.5,
r = (1.-2.*parity)*dot(xp1,n);
return t < -.5
? sign(r)*length(xp1)
: t < .5
? r
: sign(r)*length(xp-p2);
}
float gradientFunction(vec2 coord) {
vec2 d0 = coord - p_center;
d0 = rotate2D(d0, p_rotation);
float innerRadius = 1.0 - p_sharpness;
float f = dstar(d0 / p_radius, innerRadius, 1.0, float(p_sides));
// dstar is broken at vec2(0.0, 0.0), let's nudge it a bit
float f0 = dstar(vec2(1E-6, 1E-6), innerRadius, 1.0, float(p_sides));
f -= f0;
f /= 0.5 * 1.0 * (1.0 + cos(pi / float(p_sides)));
return f;
}
""".trimIndent()
}
}
class StellarGradientBuilder<C>(private val gradientBuilder: GradientBuilder<C>) : GradientShadeStyleBuilder<C>
where C : ConvertibleToColorRGBa, C : AlgebraicColor<C>, C : CastableToVector4 {
/**
* Specifies the center point of the gradient.
* The center is defined in normalized coordinates where (0, 0) represents the top-left corner
* and (1, 1) represents the bottom-right corner of the gradient's bounding box.
* The default value is `Vector2(0.5, 0.5)`, which corresponds to the center of the gradient.
*/
var center = Vector2(0.5, 0.5)
var radius = 0.5
/**
* Specifies the number of sides for the star pattern used in the gradient.
* This property controls the symmetry and appearance of the resulting gradient.
* Higher values produce shapes with more sides, contributing to more intricate patterns,
* while lower values result in simpler, less detailed designs.
* The default value is set to `6`.
*/
var sides = 6
/**
* Determines the sharpness of the star shape. Maximum value is `1.0` which will produce pointy stars.
* Values closer to `0.0` result in smoother, star shapes. A value of `0.0` will result in a regular polygon shape.
* The default value is `0.5`.
*/
var sharpness = 0.5
/**
* Specifies the rotation angle of the gradient in degrees.
* This property adjusts the overall rotation of the gradient around its center point.
* By default, the value is set to `0.0` degrees, indicating no rotation.
* Modifying this value allows the gradient's orientation to be tilted, enabling various aesthetic effects.
*/
var rotation = 0.0
override fun build(): GradientBase<C> {
val (stops, colors) = gradientBuilder.extractStepsUnzip()
return StellarGradient(
gradientBuilder.colorType,
center,
radius,
sharpness,
rotation,
sides,
colors,
stops,
gradientBuilder.structure()
)
}
}

View File

@@ -0,0 +1,274 @@
package org.openrndr.extra.shadestyles.fills.image
import org.openrndr.draw.ColorBuffer
import org.openrndr.draw.ShadeStyle
import org.openrndr.extra.shadestyles.fills.FillFit
import org.openrndr.extra.shadestyles.fills.FillUnits
import org.openrndr.extra.shadestyles.fills.SpreadMethod
import org.openrndr.math.Matrix44
import org.openrndr.math.Vector2
import org.openrndr.math.Vector3
import org.openrndr.math.Vector4
class ImageFillBuilder {
/**
* Specifies the units in which the image fill is defined.
*
* The `fillUnits` property determines how the dimensions of the fill area
* are interpreted when applying an image to a shape or area. It supports
* several predefined units of measure, as defined in the `FillUnits` enumeration:
* - `BOUNDS`: Interprets the fill area in the context of the bounding box of the shape.
* - `WORLD`: Uses world coordinates to define the fill area.
* - `VIEW`: Aligns the fill area to the view space.
* - `SCREEN`: Defines the fill area based on screen coordinates.
*
* The default value is `FillUnits.BOUNDS`.
*/
var fillUnits = FillUnits.BOUNDS
/**
* Specifies how the image should fit within the bounds of the target shape or area.
*
* This property determines the scaling and alignment behavior when applying an image as
* a fill. The options available are defined in the `FillFit` enum:
*
* - `STRETCH`: Stretches the image to completely fill the bounds, potentially distorting
* its aspect ratio.
* - `COVER`: Scales the image to cover the entire bounds while maintaining its
* aspect ratio. Portions of the image that exceed the bounds are cropped.
* - `CONTAIN`: Scales the image to fit entirely within the bounds while maintaining
* its aspect ratio, leaving empty space if the aspect ratio differs.
*
* The default value for this property is `FillFit.COVER`.
*/
var fillFit = FillFit.COVER
/**
* Specifies the method used to determine how the edges of the image fill are handled along the x-axis.
* The value is of type [SpreadMethod], and it defines how pixel values are repeated or reflected
* when they exceed the bounds of the original image.
* By default, it is set to [SpreadMethod.PAD], which extends the edge pixels of the image.
*/
var spreadMethodX = SpreadMethod.PAD
/**
* Specifies the method used to determine how the edges of the image fill are handled along the y-axis.
* The value is of type [SpreadMethod], allowing for pixel values to be extended, reflected, or repeated
* when exceeding the bounds of the image. By default, it is set to [SpreadMethod.PAD], which extends the
* edge pixels of the image.
*/
var spreadMethodY = SpreadMethod.PAD
/**
* Represents an optional `ColorBuffer` used as an input image for image-based fill operations.
* This property is used in conjunction with various fill attributes (e.g., `fillUnits`, `fillFit`,
* `spreadMethodX`, `spreadMethodY`, `fillTransform`) to define how the image is applied to a shape.
*
* If this property is not set, an error will be thrown during the build process of the `ImageFill`.
*
* The image may be modified via parameters like flipping vertically (`flipV`), scaling,
* or transforming. It plays a central role in defining visual aspects of a gradient or
* custom fill style.
*/
var image: ColorBuffer? = null
/**
* A transformation matrix applied to the image fill. This property allows modifying the spatial
* characteristics of the image used in the fill, such as translation, rotation, or scaling.
* Using this matrix, the image can be adjusted to achieve specific visual effects or alignment
* within the fill bounds. By default, it is set to the identity matrix, which means no transformation
* is applied.
*/
var fillTransform: Matrix44 = Matrix44.IDENTITY
/**
* Customizable GLSL function used to perform domain warping on a given vector.
* This property allows defining a function written in GLSL that alters the texture coordinate `p`
* for advanced procedural texturing techniques or creative transformations.
*
* The default value is a no-op function that directly returns the input vector:
* `vec2 if_domainWarp(vec2 p) { return p; }`.
*
* This property can be dynamically updated to specify a custom domain warp, such as displacements
* based on time, noise, or other parameters.
*
* To apply domain warping, update this property with a valid GLSL function that operates on `vec2` input
* and returns a transformed `vec2` coordinate.
*/
var domainWarpFunction: String = """vec2 if_domainWarp(vec2 p) { return p; }"""
/**
* A mutable map that stores custom parameter key-value pairs to configure the behavior of the image fill.
*
* Keys should be strings representing parameter names, while values can be objects of supported types including:
* - `Double`
* - `Int`
* - `Vector2`
* - `Vector3`
* - `Vector4`
* - `Matrix44`
*
* This map is primarily used to pass additional configuration data to the domain warp function or other
* dynamic aspects of the image fill. Unsupported value types will result in an error.
*/
var parameters = mutableMapOf<String, Any>()
var scale = 1.0
fun build(): ImageFill {
val imageFill = ImageFill(domainWarpFunction)
imageFill.if_image = image ?: error("image not set")
imageFill.if_fillUnits = fillUnits.ordinal
imageFill.if_fillFit = fillFit.ordinal
imageFill.if_spreadMethodX = spreadMethodX.ordinal
imageFill.if_spreadMethodY = spreadMethodY.ordinal
imageFill.if_flipV = image?.flipV ?: false
imageFill.if_scale = scale
imageFill.if_fillTransform = fillTransform
for ((key, value) in parameters) {
when (value) {
is Double -> imageFill.parameter(key, value)
is Int -> imageFill.parameter(key, value)
is Vector2 -> imageFill.parameter(key, value)
is Vector3 -> imageFill.parameter(key, value)
is Vector4 -> imageFill.parameter(key, value)
is Matrix44 -> imageFill.parameter(key, value)
else -> error("unsupported type $key $value")
}
}
return imageFill
}
}
/**
* Provides shaded rendering using an image as the fill for a shape or geometry.
*
* The `ImageFill` class enables customization of how an image is applied as a fill,
* providing properties to control image source, scaling, positioning, and orientation.
* This is achieved through shader-based rendering, with configurable parameters for
* precise control over the resulting visual representation.
*
* Image behavior is determined by the following properties:
* - `image`: The image to be used as the fill, represented as a `ColorBuffer`.
* - `flipV`: A flag to vertically flip the image. This is useful when the vertical
* orientation of the original image needs correction.
* - `position`: A `Vector2` specifying the offset positioning for the image within
* the bounds of the shape.
* - `useScreenBounds`: When enabled, adjusts the image mapping to use the screen
* space bounds rather than the shape's bounds.
*
* The rendering logic dynamically adjusts the image's aspect ratio and alignment,
* maintaining proportional scaling between the image and target bounds. This ensures
* correct rendering for shapes of varying sizes or orientations.
*/
class ImageFill(domainWarpFunction: String = """vec2 if_domainWarp(vec2 p) { return p; }""") : ShadeStyle() {
var if_image: ColorBuffer by Parameter()
var if_flipV: Boolean by Parameter()
var if_position: Vector2 by Parameter()
var if_fillFit: Int by Parameter()
var if_fillUnits: Int by Parameter()
var if_spreadMethodX: Int by Parameter()
var if_spreadMethodY: Int by Parameter()
var if_scale: Double by Parameter()
var if_fillTransform: Matrix44 by Parameter()
init {
if_fillTransform = Matrix44.IDENTITY
if_fillFit = FillFit.COVER.ordinal
if_fillUnits = FillUnits.BOUNDS.ordinal
if_spreadMethodX = SpreadMethod.PAD.ordinal
if_spreadMethodY = SpreadMethod.PAD.ordinal
if_position = Vector2.ZERO
if_scale = 1.0
fragmentPreamble = """$domainWarpFunction"""
fragmentTransform = """
| vec2 ts = vec2(textureSize(p_if_image, 0));
| vec2 uv; // = c_boundsPosition.xy;
| vec2 boundsSize; // = c_boundsSize.xy;
|
| if (p_if_fillUnits == 0) { // BOUNDS
| uv = c_boundsPosition.xy;
| boundsSize = c_boundsSize.xy;
| } else if (p_if_fillUnits == 1) { // WORLD
| boundsSize = vec2(textureSize(p_if_image, 0));
| uv = v_worldPosition.xy / boundsSize;
| }
|
| float boundsAR = boundsSize.x / boundsSize.y;
| vec2 shift = (p_if_position + vec2(1.0, 1.0)) / 2.0;
|
| if (boundsSize.x >boundsSize.y) {
| uv.y -= shift.y;
| uv.y /= boundsAR;
| uv.y += shift.y;
| } else {
| uv.x -= shift.x;
| uv.x *= boundsAR;
| uv.x += shift.x;
| }
| uv = if_domainWarp(uv);
| uv = (p_if_fillTransform * vec4(uv, 0.0, 1.0)).xy;
| uv -= vec2(0.5);
| uv /= p_if_scale;
| uv += vec2(0.5);
| float textureAR = ts.x / ts.y;
| if (ts.x > ts.y) {
| uv.x -= 0.5;
| uv.x /= textureAR;
| uv.x += 0.5;
| } else {
| uv.y -= 0.5;
| uv.y *= textureAR;
| uv.y += 0.5;
| }
| float alphaMask = 1.0;
| if (p_if_spreadMethodX == 0) { // PAD
| alphaMask *= uv.x >= 0.0 && uv.x < 1.0 ? 1.0 : 0.0;
| uv.x = clamp(uv.x, 0.0, 1.0);
| } else if (p_if_spreadMethodX == 1) { // REFLECT
| uv.x = 2.0 * abs(uv.x / 2.0 - floor(uv.x / 2.0 + 0.5));
| } else if (p_if_spreadMethodX == 2) { // REPEAT
| uv.x = mod(uv.x, 1.0);
| }
| if (p_if_spreadMethodY == 0) { // PAD
| alphaMask *= uv.y >= 0.0 && uv.y < 1.0 ? 1.0 : 0.0;
| uv.y = clamp(uv.y, 0.0, 1.0);
| } else if (p_if_spreadMethodY == 1) { // REFLECT
| uv.y = 2.0 * abs(uv.y / 2.0 - floor(uv.y / 2.0 + 0.5));
| } else if (p_if_spreadMethodY == 2) { // REPEAT
| uv.y = mod(uv.y, 1.0);
| }
|
| if (!p_if_flipV) {
| uv.y = 1.0 - uv.y;
| }
|
| vec4 img = texture(p_if_image, uv);
| img.a *= alphaMask;
| x_fill *= img;
| """.trimMargin()
}
}
/**
* Creates an ImageFill instance using the provided configuration.
*
* The method allows for the configuration of image fill options such as scaling,
* transformations, spread methods, and more by applying the specified configuration
* to an internal ImageFillBuilder.
*
* @param builder A lambda that configures the properties of the ImageFillBuilder
* instance used to construct the ImageFill object.
* @return An ImageFill object configured based on the input builder settings.
*/
fun imageFill(builder: ImageFillBuilder.() -> Unit): ImageFill {
val im = ImageFillBuilder().apply(builder).build()
return im
}

View File

@@ -1,89 +0,0 @@
import org.openrndr.application
import org.openrndr.color.ColorRGBa
import org.openrndr.draw.isolated
import org.openrndr.extra.shadestyles.*
import org.openrndr.math.Polar
import org.openrndr.shape.Rectangle
/**
* Example of 5 gradient styles.
* NPointLinear and NPoingGradient have separate demos.
*/
fun main() = application {
configure {
width = 1000
height = 500
}
program {
// Create gradients with initial colors
val gradients = listOf(
RadialGradient(ColorRGBa.PINK, ColorRGBa.WHITE),
AngularGradient(ColorRGBa.PINK, ColorRGBa.WHITE),
NPointGradient(Array(4) {
ColorRGBa.PINK.shade(it / 3.0)
}),
LinearGradient(ColorRGBa.PINK, ColorRGBa.WHITE),
HalfAngularGradient(ColorRGBa.PINK, ColorRGBa.WHITE)
)
extend {
gradients.forEachIndexed { gradientId, gradient ->
for (column in 0 until 10) {
val color1 = ColorRGBa.PINK.toHSVa().shiftHue(column * 12.0)
.shade(0.5).toRGBa()
val w = width.toDouble() / 10.0
val h = height.toDouble() / gradients.size
val rect = Rectangle(column * w, gradientId * h, w, h)
val offset = Polar((seconds + column) * 15.0, 0.3).cartesian
drawer.isolated {
when (gradient) {
is RadialGradient -> {
gradient.color1 = color1
gradient.exponent = column / 3.0 + 0.3
gradient.length = 0.6
gradient.offset = offset
}
is AngularGradient -> {
gradient.color1 = color1
gradient.exponent = column / 3.0 + 0.3
gradient.rotation = (seconds - column) * 10.0
gradient.offset = offset
}
is LinearGradient -> {
gradient.color1 = color1
gradient.exponent = column / 3.0 + 0.3
gradient.rotation = seconds * 10.0
}
is HalfAngularGradient -> {
gradient.color1 = color1
gradient.exponent = column / 3.0 + 0.3
gradient.rotation = (column - seconds) * 10.0
gradient.offset = offset
}
is NPointGradient -> {
// Animate points.
// We could also animate colors.
gradient.points = Array(gradient.colors.size) {
rect.center + Polar(
it * 90.0 +
column * 36 - seconds * 10,
40.0
).cartesian
}
}
}
shadeStyle = gradient
rectangle(rect)
}
}
}
}
}
}

View File

@@ -1,23 +0,0 @@
import org.openrndr.application
import org.openrndr.color.ColorRGBa
import org.openrndr.draw.loadImage
import org.openrndr.extra.shadestyles.imageFit
import org.openrndr.extra.shadestyles.linearGradient
import org.openrndr.math.Vector2
import org.openrndr.shape.Circle
import kotlin.math.cos
import kotlin.math.sin
fun main() = application {
program {
val image = loadImage("demo-data/images/image-001.png")
extend {
drawer.shadeStyle = imageFit(image, Vector2(cos(seconds), sin(seconds))) + linearGradient(ColorRGBa.RED, ColorRGBa.BLUE)
drawer.circle(drawer.bounds.center, 200.0)
drawer.rectangle(10.0, 10.0, 400.0, 50.0)
drawer.rectangle(10.0, 10.0, 50.0, 400.0)
drawer.contour(Circle(width/2.0, height/2.0, 50.0).contour)
}
}
}

View File

@@ -1,23 +0,0 @@
import org.openrndr.application
import org.openrndr.color.ColorRGBa
import org.openrndr.extra.color.spaces.toOKLABa
import org.openrndr.extra.shadestyles.linearGradient
fun main() = application {
program {
extend {
drawer.shadeStyle = linearGradient(
ColorRGBa.RED.toOKLABa(),
ColorRGBa.BLUE.toOKLABa(),
)
drawer.rectangle(120.0, 40.0, 200.0, 400.0)
drawer.shadeStyle = linearGradient(
ColorRGBa.RED,
ColorRGBa.BLUE
)
drawer.rectangle(120.0 + 200.0, 40.0, 200.0, 400.0)
}
}
}

View File

@@ -1,44 +0,0 @@
import org.openrndr.application
import org.openrndr.color.ColorRGBa
import org.openrndr.color.ColorXSVa
import org.openrndr.extra.shadestyles.NPointGradient
import org.openrndr.math.Polar
import org.openrndr.shape.ShapeContour
import kotlin.math.PI
import kotlin.math.cos
/**
* Demonstrate using an n-point gradient.
* The gradient has 8 points in screen coordinates and 8 colors.
* The colors are fixed, the points of the gradient move.
* A contour is drawn using the same points from the gradient,
* but note that this is not necessary: you can animate the gradient
* on a static shape (a circle for example) or you can animate a shape
* with a static gradient.
*/
fun main() = application {
program {
val numPoints = 8
val gradient = NPointGradient(Array(numPoints) {
ColorXSVa(it * 360.0 / numPoints, 1.0, 1.0).toRGBa()
})
extend {
drawer.run {
clear(ColorRGBa.WHITE.shade(0.9))
val t = PI * 2 * (frameCount % 300) / 300.0
val points = Array(numPoints) {
val lfo = cos(it * PI / 2 - t)
val theta = it * 360.0 / numPoints - 22.5 * lfo
val radius = 200 + 170 * lfo
bounds.center + Polar(theta, radius).cartesian
}
gradient.points = points
shadeStyle = gradient
stroke = ColorRGBa.WHITE
strokeWeight = 4.0
contour(ShapeContour.fromPoints(points.asList(), true))
}
}
}
}

View File

@@ -1,64 +0,0 @@
import org.openrndr.application
import org.openrndr.color.ColorXSVa
import org.openrndr.color.rgb
import org.openrndr.extra.color.spaces.toOKLABa
import org.openrndr.extra.shadestyles.NPointLinearGradient
import org.openrndr.extra.shadestyles.NPointLinearGradientOKLab
import org.openrndr.shape.Rectangle
import kotlin.math.pow
import kotlin.math.sin
/**
* Demonstrate using a multicolor linear gradient.
* The gradient has 8 static saturated colors.
* The positions of the colors are first distributed
* uniformly between 0.0 and 1.0 and then animated towards one of
* the ends over time using pow() and sin(seconds).
*/
fun main() = application {
program {
val numPoints = 8
// Create gradients using two different color spaces
val gradients = listOf(
NPointLinearGradient(Array(numPoints) {
ColorXSVa(it * 360.0 / numPoints, 1.0, 1.0).toRGBa()
}),
// OKLab is better at maintaining luminosity across the gradient
NPointLinearGradientOKLab(Array(numPoints) {
ColorXSVa(it * 360.0 / numPoints, 1.0, 1.0).toRGBa()
.toOKLABa()
})
)
extend {
// The points should be sorted values between 0.0 and 1.0
val distribution = Array(numPoints) {
// uniform distribution
// (it / (numPoints - 1.0))
// skewed and animated distribution
(it / (numPoints - 1.0)).pow(1.0 + 0.5 * sin(seconds))
}
drawer.run {
clear(rgb(0.2))
stroke = rgb(0.35)
strokeWeight = 8.0
gradients.forEachIndexed { i, gradient ->
shadeStyle = gradient
gradient.points = distribution
gradient.rotation = seconds * 10
circle(bounds.position(0.34, 0.29 + 0.44 * i), 110.0)
gradient.rotation += 90
rectangle(
Rectangle.fromCenter(
bounds.position(0.655, 0.29 + 0.44 * i), 200.0
)
)
}
}
}
}
}

View File

@@ -1,42 +0,0 @@
import org.openrndr.application
import org.openrndr.color.ColorRGBa
import org.openrndr.color.rgb
import org.openrndr.extra.shadestyles.NPointRadialGradient
import org.openrndr.shape.Circle
import kotlin.random.Random
/**
* Demonstrate using a multicolor radial gradient.
* The gradient has 5 colors (first and last ones are transparent).
* Any of the properties can be animated, including colors and points.
* See DemoNPointLinearGradient01.kt for an example of animated properties.
*/
fun main() = application {
program {
val gradient = NPointRadialGradient(
arrayOf(
ColorRGBa.PINK.opacify(0.0),
ColorRGBa.PINK, ColorRGBa.WHITE, ColorRGBa.PINK,
ColorRGBa.PINK.opacify(0.0)
), arrayOf(0.0, 0.4, 0.5, 0.6, 1.0)
)
val circles = List(25) {
Circle(
Random.nextDouble() * drawer.width,
Random.nextDouble() * drawer.height,
Random.nextDouble() * 150.0
)
}
extend {
drawer.run {
clear(rgb(0.2))
shadeStyle = gradient
fill = ColorRGBa.WHITE
stroke = null
circles(circles)
}
}
}
}

View File

@@ -1,17 +0,0 @@
import org.openrndr.application
import org.openrndr.color.ColorRGBa
import org.openrndr.extra.shadestyles.radialGradient
import kotlin.math.cos
fun main() = application {
program {
extend {
drawer.shadeStyle = radialGradient(
ColorRGBa.PINK,
ColorRGBa.PINK.toHSVa().shiftHue(180.0).shade(0.5).toRGBa(),
exponent = cos(seconds) * 0.5 + 0.5
)
drawer.rectangle(120.0, 40.0, 400.0, 400.0)
}
}
}

View File

@@ -0,0 +1,80 @@
package gradients
import org.openrndr.application
import org.openrndr.color.ColorRGBa
import org.openrndr.extra.shadestyles.fills.SpreadMethod
import org.openrndr.extra.shadestyles.fills.gradients.gradient
import org.openrndr.math.Vector2
import kotlin.math.cos
fun main() {
application {
configure {
width = 720
height = 720
}
program {
extend {
drawer.shadeStyle = gradient<ColorRGBa> {
stops[0.0] = ColorRGBa.RED
stops[0.1] = ColorRGBa.GREEN
stops[0.2] = ColorRGBa.PINK
stops[0.9] = ColorRGBa.WHITE
stops[1.0] = ColorRGBa.BLACK
linear {
start = Vector2(0.1, 0.1).rotate(seconds * 36.0, Vector2(0.5, 0.5))
end = Vector2(0.9, 0.9).rotate(seconds * 36.0, Vector2(0.5, 0.5))
}
}
drawer.rectangle(0.0, 0.0, 360.0, 360.0)
drawer.shadeStyle = gradient<ColorRGBa> {
stops[0.0] = ColorRGBa.RED
stops[0.1] = ColorRGBa.GREEN
stops[0.2] = ColorRGBa.PINK
stops[0.9] = ColorRGBa.WHITE
stops[1.0] = ColorRGBa.BLACK
spreadMethod = SpreadMethod.REFLECT
stellar {
radius = (cos(seconds) * 0.25 + 0.5) * 0.5
sharpness = 0.5
sides = 6
rotation = seconds * 36.0
}
}
drawer.rectangle(360.0, 0.0, 360.0, 360.0)
drawer.shadeStyle = gradient<ColorRGBa> {
stops[0.0] = ColorRGBa.RED
stops[0.1] = ColorRGBa.GREEN
stops[0.2] = ColorRGBa.PINK
stops[0.9] = ColorRGBa.WHITE
stops[1.0] = ColorRGBa.BLACK
spreadMethod = SpreadMethod.REFLECT
radial {
radius = (cos(seconds) * 0.25 + 0.5) * 0.5
}
}
drawer.rectangle(360.0, 360.0, 360.0, 360.0)
drawer.shadeStyle = gradient<ColorRGBa> {
stops[0.0] = ColorRGBa.RED
stops[0.1] = ColorRGBa.GREEN
stops[0.2] = ColorRGBa.PINK
stops[0.9] = ColorRGBa.WHITE
stops[1.0] = ColorRGBa.BLACK
spreadMethod = SpreadMethod.REPEAT
linear {
start = Vector2(0.45, 0.45).rotate(seconds * 36.0)
end = Vector2(0.55, 0.55).rotate(seconds * 36.0)
}
}
drawer.rectangle(0.0, 360.0, 360.0, 360.0)
}
}
}
}

View File

@@ -0,0 +1,64 @@
package gradients
import org.openrndr.application
import org.openrndr.color.ColorRGBa
import org.openrndr.draw.loadFont
import org.openrndr.extra.color.presets.BLUE_STEEL
import org.openrndr.extra.shadestyles.fills.FillUnits
import org.openrndr.extra.shadestyles.fills.SpreadMethod
import org.openrndr.extra.shadestyles.fills.gradients.gradient
fun main() {
application {
configure {
width = 720
height = 720
}
program {
extend {
drawer.shadeStyle = gradient<ColorRGBa> {
stops[0.0] = ColorRGBa.BLUE_STEEL
stops[0.75] = ColorRGBa.WHITE
stops[0.8] = ColorRGBa.BLACK
quantization = 10
fillUnits = FillUnits.WORLD
spreadMethod = SpreadMethod.REFLECT
levelWarpFunction = """float levelWarp(vec2 p, float level) { return level + cos(p.x*0.01 + level)*0.1; } """
stellar {
radius = drawer.bounds.width/4.0
center = drawer.bounds.position(0.5, 0.0)
sides = 6
sharpness = 0.5
rotation = seconds * 36.0
}
}
drawer.rectangle(drawer.bounds)
drawer.shadeStyle = gradient<ColorRGBa> {
stops[0.0] = ColorRGBa.BLUE_STEEL
stops[0.75] = ColorRGBa.WHITE
stops[0.8] = ColorRGBa.BLACK
quantization = 10
fillUnits = FillUnits.WORLD
spreadMethod = SpreadMethod.REFLECT
levelWarpFunction = """float levelWarp(vec2 p, float level) { return level + 0.1 + cos(p.x*0.01 + level)*0.1; } """
stellar {
radius = drawer.bounds.width/4.0
center = drawer.bounds.position(0.5, 0.0)
sides = 6
sharpness = 0.5
rotation = seconds * 36.0
}
}
drawer.fontMap = loadFont("demo-data/fonts/IBMPlexMono-Regular.ttf", 196.0)
for (i in 0 until 5) {
drawer.text("Gradient", 0.0, 128.0 + i * drawer.height / 5.0)
}
}
}
}
}

View File

@@ -0,0 +1,36 @@
package gradients
import org.openrndr.application
import org.openrndr.color.ColorRGBa
import org.openrndr.extra.color.presets.BLUE_STEEL
import org.openrndr.extra.color.spaces.OKHSV
import org.openrndr.extra.color.tools.shiftHue
import org.openrndr.extra.shadestyles.fills.SpreadMethod
import org.openrndr.extra.shadestyles.fills.gradients.gradient
import org.openrndr.math.Vector2
fun main() {
application {
configure {
width = 720
height = 720
}
program {
extend {
drawer.shadeStyle = gradient<ColorRGBa> {
for (i in 0 .. 10) {
stops[i/10.0] = ColorRGBa.RED.shiftHue<OKHSV>(i * 36.0)
}
spreadMethod = SpreadMethod.REFLECT
conic {
center = Vector2(0.5, 0.5)
angle = 360.0
rotation = seconds * 10.0
}
}
drawer.rectangle(drawer.bounds)
}
}
}
}

View File

@@ -0,0 +1,25 @@
package image
import org.openrndr.application
import org.openrndr.draw.loadImage
import org.openrndr.extra.shadestyles.fills.FillUnits
import org.openrndr.extra.shadestyles.fills.SpreadMethod
import org.openrndr.extra.shadestyles.fills.image.imageFill
import org.openrndr.math.transforms.transform
fun main() = application {
configure {
width = 720
height = 720
}
program {
var img = loadImage("demo-data/images/image-001.png")
extend {
drawer.shadeStyle = imageFill {
image = img
}
drawer.circle(drawer.bounds.center, 200.0)
}
}
}

View File

@@ -0,0 +1,35 @@
package image
import org.openrndr.application
import org.openrndr.draw.loadImage
import org.openrndr.extra.shadestyles.fills.FillUnits
import org.openrndr.extra.shadestyles.fills.SpreadMethod
import org.openrndr.extra.shadestyles.fills.image.imageFill
import org.openrndr.math.transforms.transform
import kotlin.math.cos
fun main() = application {
configure {
width = 720
height = 720
}
program {
var img = loadImage("demo-data/images/image-001.png")
extend {
for (i in 0 until 10) {
drawer.shadeStyle = imageFill {
image = img
fillTransform = transform {
translate(0.5, 0.5)
rotate( cos(i * 0.5 + seconds*10.0) *10.0 )
scale(1.0 - i * 0.05)
translate(-0.5, -0.5)
}
}
//drawer.stroke = null
drawer.circle(drawer.bounds.center, 360.0 - i * 18.0)
}
}
}
}

View File

@@ -0,0 +1,30 @@
package image
import org.openrndr.application
import org.openrndr.draw.loadImage
import org.openrndr.extra.shadestyles.fills.FillUnits
import org.openrndr.extra.shadestyles.fills.SpreadMethod
import org.openrndr.extra.shadestyles.fills.image.imageFill
import org.openrndr.math.transforms.transform
import kotlin.math.cos
fun main() = application {
configure {
width = 720
height = 720
}
program {
var img = loadImage("demo-data/images/image-001.png")
extend {
drawer.shadeStyle = imageFill {
image = img
parameters["time"] = seconds
domainWarpFunction = """vec2 if_domainWarp(vec2 p) { return p + vec2(cos(p.y * 20.0 + p_time), sin(p.x * 20.0 + p_time)) * 0.1; }"""
spreadMethodX = SpreadMethod.REFLECT
spreadMethodY = SpreadMethod.REFLECT
}
drawer.circle(drawer.bounds.center, 360.0)
}
}
}