[orx-noise] Switch poissonDiskSampling to use HashGrid, add multiScatter

This commit is contained in:
Edwin Jakobs
2022-01-06 23:23:46 +01:00
parent 5332d8bcf4
commit a760df8849
4 changed files with 96 additions and 119 deletions

View File

@@ -1,5 +1,6 @@
package org.openrndr.extra.noise
import org.openrndr.extra.hashgrid.HashGrid
import org.openrndr.math.Vector2
import org.openrndr.shape.*
import kotlin.random.Random
@@ -19,58 +20,98 @@ fun ShapeProvider.uniform(distanceToEdge: Double = 0.0, random: Random = Random.
}
}
fun ShapeProvider.scatter(
pointDistance: Double,
fun ShapeProvider.multiScatter(
radii: List<Pair<Double, Double>>,
distanceToEdge: Double = 0.0,
tries: Int = 30,
random: Random = Random.Default
) : List<Pair<Double, List<Vector2>>> {
val obstacles = mutableListOf<Pair<Double, List<Vector2>>>()
val result = mutableListOf<Pair<Double, List<Vector2>>>()
for ((placementRadius, objectRadius) in radii) {
val points = scatter(placementRadius, objectRadius, distanceToEdge, tries, obstacles, random)
obstacles.add(Pair(objectRadius, points))
result.add(Pair(objectRadius, points))
}
return result
}
fun ShapeProvider.scatter(
placementRadius: Double,
objectRadius: Double = placementRadius,
distanceToEdge: Double = 0.0,
tries: Int = 30,
obstacles: List<Pair<Double, List<Vector2>>> = emptyList(),
random: Random = Random.Default
): List<Vector2> {
val shape = shape
if (shape.empty) {
return emptyList()
}
val bounds = shape.bounds
val poissonBounds = Rectangle(0.0, 0.0, bounds.width, bounds.height)
val initialPoints = shape.splitCompounds().flatMap { compound ->
compound.outline.segments.map {
val obstacleHashGrids = obstacles.map { (obstacleRadius, points) ->
val hg = HashGrid(obstacleRadius + objectRadius)
for (point in points) {
hg.insert(point)
}
hg
}
fun Segment.randomPoints(count: Int) = sequence {
for (i in 0 until count) {
val t = random.nextDouble()
(it.position(t) - it.normal(t).normalized * distanceToEdge)
}.filter { compound.contains(it) && compound.outline.nearest(it).position.distanceTo(it) >= distanceToEdge-1E-1 }.map {
it.map(bounds, poissonBounds)
yield(position(t) - normal(t).normalized * distanceToEdge)
}
}
val initialPointHashGrid = HashGrid(placementRadius)
val initialPoints = shape.splitCompounds().flatMap { compound ->
compound.outline.segments.mapNotNull {
val point = it.randomPoints(20).firstOrNull { v ->
obstacleHashGrids.all { ohg -> ohg.isFree(v) } &&
initialPointHashGrid.isFree(v) &&
compound.contains(v) &&
compound.outline.nearest(v).position.distanceTo(v) >= distanceToEdge - 1E-1
}
if (point != null) {
initialPointHashGrid.insert(point)
}
point
}
}
require(initialPoints.isNotEmpty() || obstacles.isNotEmpty())
val candidatePoints = mutableListOf<Vector2>()
for (point in initialPoints) {
if ((candidatePoints.map { it.distanceTo(point) }.minOrNull() ?: Double.POSITIVE_INFINITY) >= pointDistance) {
if ((candidatePoints.map { it.distanceTo(point) }.minOrNull() ?: Double.POSITIVE_INFINITY) >= placementRadius * 2.0) {
candidatePoints.add(point)
}
}
if (candidatePoints.isEmpty()) {
return emptyList()
}
return poissonDiskSampling(
bounds.width,
bounds.height,
pointDistance,
bounds,
placementRadius * 2.0,
tries,
false,
true,
random,
candidatePoints,
) { _, _, point ->
val contourPoint = point.map(poissonBounds, bounds)
obstacleHashGrids = obstacleHashGrids,
) { point ->
if (distanceToEdge == 0.0) {
shape.contains(contourPoint)
shape.contains(point)
} else {
shape.contains(contourPoint) && shape.contours.minOf { c ->
c.nearest(contourPoint).position.distanceTo(contourPoint)
shape.contains(point) && shape.contours.minOf { c ->
c.nearest(point).position.distanceTo(point)
} > distanceToEdge
}
}.map {
it.map(poissonBounds, bounds)
}
}