[orx-shapes] Add circle inversion primitives and demo examples
This commit is contained in:
144
orx-shapes/src/commonMain/kotlin/primitives/CircleInversion.kt
Normal file
144
orx-shapes/src/commonMain/kotlin/primitives/CircleInversion.kt
Normal file
@@ -0,0 +1,144 @@
|
||||
package org.openrndr.extra.shapes.primitives
|
||||
|
||||
import org.openrndr.math.Vector2
|
||||
import org.openrndr.shape.Circle
|
||||
import kotlin.math.abs
|
||||
import kotlin.math.sqrt
|
||||
|
||||
|
||||
/**
|
||||
* Performs circle inversion of a point.
|
||||
*
|
||||
* Circle inversion is a geometric transformation where a point is mapped to another point along the same ray from the center,
|
||||
* but at a distance that is inversely proportional to the original distance.
|
||||
*
|
||||
* The formula used is: P' = C + r²/|P-C|² * (P-C)
|
||||
* Where:
|
||||
* - P is the point to invert
|
||||
* - C is the center of the circle
|
||||
* - r is the radius of the circle
|
||||
* - P' is the inverted point
|
||||
*
|
||||
* @param point The point to invert
|
||||
* @return The inverted point
|
||||
*/
|
||||
fun Circle.invert(point: Vector2): Vector2 {
|
||||
// Vector from center to point
|
||||
val v = point - center
|
||||
|
||||
// Distance from center to point
|
||||
val distanceSquared = v.squaredLength
|
||||
|
||||
// If the point is at the center, we can't invert it
|
||||
if (distanceSquared < 1e-10) {
|
||||
throw IllegalArgumentException("Cannot invert a point at the center of the circle")
|
||||
}
|
||||
|
||||
// Calculate the inverted point
|
||||
val factor = (radius * radius) / distanceSquared
|
||||
return center + v * factor
|
||||
}
|
||||
|
||||
/**
|
||||
* Performs circle inversion of another circle.
|
||||
*
|
||||
* Circle inversion maps a circle to another circle (or a line, which can be considered a circle with infinite radius).
|
||||
*
|
||||
* There are several cases:
|
||||
* 1. If the circle to be inverted passes through the center of the inverting circle, the result is a line
|
||||
* 2. If the circle to be inverted doesn't contain the center of the inverting circle, the result is another circle
|
||||
* 3. If the circle to be inverted contains the center of the inverting circle, the result is also a circle
|
||||
*
|
||||
* @param circle The circle to invert
|
||||
* @return The inverted circle
|
||||
* @throws IllegalArgumentException if the circle to be inverted is centered at the center of the inverting circle
|
||||
*/
|
||||
fun Circle.invert(circle: Circle): Circle {
|
||||
// Vector from this circle's center to the other circle's center
|
||||
val v = circle.center - this.center
|
||||
|
||||
// Distance between centers
|
||||
val distanceSquared = v.squaredLength
|
||||
|
||||
// If the circle to be inverted is centered at the center of the inverting circle, we can't invert it
|
||||
if (distanceSquared < 1e-10) {
|
||||
throw IllegalArgumentException("Cannot invert a circle centered at the center of the inverting circle")
|
||||
}
|
||||
|
||||
// Distance between centers
|
||||
val distance = sqrt(distanceSquared)
|
||||
|
||||
// Check if the circle to be inverted passes through the center of the inverting circle
|
||||
if (abs(circle.radius - distance) < 1e-10) {
|
||||
// Special case: the result would be a line, which we can't represent as a Circle
|
||||
// We'll approximate it as a very large circle
|
||||
val direction = v.normalized
|
||||
val farPoint = this.center + direction * 1e6
|
||||
return Circle(farPoint, 1e6)
|
||||
}
|
||||
|
||||
// Calculate power of the point (center of the inverting circle) with respect to the circle being inverted
|
||||
// power = d² - r²
|
||||
val power = distanceSquared - circle.radius * circle.radius
|
||||
|
||||
// Calculate the new center
|
||||
val newCenterFactor = (this.radius * this.radius) / power
|
||||
val newCenter = this.center + v * newCenterFactor
|
||||
|
||||
// Calculate the new radius
|
||||
val newRadius = abs(this.radius * circle.radius / power) * distance
|
||||
|
||||
return Circle(newCenter, newRadius)
|
||||
}
|
||||
|
||||
/**
|
||||
* Performs conformal inversion of another circle.
|
||||
*
|
||||
* Conformal inversion is a special type of circle inversion that preserves tangency between circles.
|
||||
* If two circles are tangent, their images under conformal inversion will also be tangent.
|
||||
*
|
||||
* @param circle The circle to invert
|
||||
* @return The conformally inverted circle
|
||||
* @throws IllegalArgumentException if the circle to be inverted is centered at the center of the inverting circle
|
||||
*/
|
||||
fun Circle.invertConformal(circle: Circle): Circle {
|
||||
// Vector from this circle's center to the other circle's center
|
||||
val v = circle.center - this.center
|
||||
|
||||
// Distance between centers
|
||||
val distanceSquared = v.squaredLength
|
||||
|
||||
// If the circle to be inverted is centered at the center of the inverting circle, we can't invert it
|
||||
if (distanceSquared < 1e-10) {
|
||||
throw IllegalArgumentException("Cannot invert a circle centered at the center of the inverting circle")
|
||||
}
|
||||
|
||||
// Distance between centers
|
||||
val distance = sqrt(distanceSquared)
|
||||
|
||||
// Check if the circle to be inverted passes through the center of the inverting circle
|
||||
if (abs(circle.radius - distance) < 1e-10) {
|
||||
// Special case: the result would be a line, which we can't represent as a Circle
|
||||
// We'll approximate it as a very large circle
|
||||
val direction = v.normalized
|
||||
val farPoint = this.center + direction * 1e6
|
||||
return Circle(farPoint, 1e6)
|
||||
}
|
||||
|
||||
// For conformal inversion that preserves tangency, we use the standard circle inversion formula
|
||||
// but with a specific calculation for the radius
|
||||
|
||||
// Calculate power of the point (center of the inverting circle) with respect to the circle being inverted
|
||||
// power = d² - r²
|
||||
val power = distanceSquared - circle.radius * circle.radius
|
||||
|
||||
// Calculate the new center
|
||||
val newCenterFactor = (this.radius * this.radius) / power
|
||||
val newCenter = this.center + v * newCenterFactor
|
||||
|
||||
// Calculate the new radius for conformal inversion
|
||||
// This is the key difference from regular inversion - the formula preserves tangency
|
||||
val newRadius = abs(this.radius * this.radius * circle.radius / power)
|
||||
|
||||
return Circle(newCenter, newRadius)
|
||||
}
|
||||
Reference in New Issue
Block a user