[orx-math] Add RBF interpolation utilities with 2D interpolator, demos, and shader phrases

This commit is contained in:
Edwin Jakobs
2025-08-16 21:50:26 +02:00
parent fa35531c59
commit c63c0c5844
5 changed files with 412 additions and 0 deletions

View File

@@ -40,6 +40,7 @@ kotlin {
implementation(project(":orx-color")) implementation(project(":orx-color"))
implementation(project(":orx-jvm:orx-gui")) implementation(project(":orx-jvm:orx-gui"))
implementation(project(":orx-shade-styles")) implementation(project(":orx-shade-styles"))
implementation(project(":orx-shader-phrases"))
} }
} }
} }

View File

@@ -0,0 +1,138 @@
package org.openrndr.extra.math.rbf
import org.openrndr.extra.math.matrix.Matrix
import org.openrndr.extra.math.matrix.columnMean
import org.openrndr.extra.math.matrix.invertMatrixCholesky
import org.openrndr.extra.math.matrix.minus
import org.openrndr.math.Vector2
import kotlin.math.exp
import kotlin.math.sqrt
typealias Rbf = (Double) -> Double
/**
* Creates a Gaussian radial basis function (RBF) with the given scale parameter.
* The resulting RBF computes the exponential decay based on the squared distance scaled by the parameter.
*
* @param scale The scale parameter influencing the width of the Gaussian RBF. Smaller values result in a steeper decay.
* @return A function representing the Gaussian RBF, which takes a square of the distance as input and returns the RBF value.
*/
fun rbfGaussian(scale: Double): Rbf {
val scale2 = scale * scale
return { d ->
exp(-d * scale2)
}
}
/**
* Radial basis function (RBF) using the inverse quadratic formula.
*
* Creates an RBF that calculates the inverse quadratic function based on the given scale.
*
* @param scale A scaling factor that determines the influence range of the RBF.
* @return A lambda function representing the inverse quadratic RBF.
*/
fun rbfInverseQuadratic(scale: Double): Rbf {
val scale2 = scale * scale
return { d ->
1.0 / (1.0 + d * scale2)
}
}
/**
* Generates a radial basis function (RBF) using the inverse multiquadratic kernel.
*
* @param scale The scaling factor that influences the spread and shape of the RBF.
* @return A function representing the inverse multiquadratic RBF, which computes the value
* based on the given squared distance.
*/
fun rbfInverseMultiQuadratic(scale: Double): Rbf {
val scale2 = scale * scale
return { d ->
1.0 / sqrt(1.0 + d * scale2)
}
}
/**
* A two-dimensional Radial Basis Function (RBF) interpolator.
*
* This class provides functionality to interpolate values in a 2D space
* using Radial Basis Functions (RBFs). It computes interpolated values for
* input points based on given data points, their corresponding values, and
* an RBF kernel that defines the basis function.
*
* @constructor
* @param points A list of 2D points representing the locations of the input data.
* @param weights A 2D array of weights corresponding to each point for each output dimension.
* @param values A 2D array of known function values at the given points.
* @param rbf The radial basis function that defines how the influence of each point decreases with distance.
* It takes a squared distance as input and returns a scalar value.
* @param mean The mean values for each output dimension, used to offset the interpolated results.
*/
class Rbf2DInterpolator(
val points: List<Vector2>,
val weights: Array<DoubleArray>,
val values: Array<DoubleArray>,
val rbf: (Double) -> Double,
val mean: DoubleArray
) {
fun interpolate(x: Vector2): DoubleArray {
val c = DoubleArray(values[0].size)
for (j in points.indices) {
val r = rbf(points[j].squaredDistanceTo(x))
for (i in 0 until c.size) {
c[i] += weights[j][i] * r
}
}
for (i in 0 until c.size) {
c[i] += mean[i]
}
return c
}
}
/**
* Constructs a two-dimensional Radial Basis Function (RBF) interpolator using provided input points,
* their corresponding values, a smoothing factor, and a radial basis function (RBF) kernel.
*
* The interpolator computes a weight matrix derived from the RBF kernel and the supplied data.
* The resulting interpolator can be used to estimate the values at new locations in a 2D space.
*
* @param points A list of 2D points representing the input data locations.
* @param values A 2D array of known function values corresponding to the input points.
* Each row corresponds to a point, and each column corresponds to a value in a specific dimension.
* @param smoothing A non-negative smoothing factor to reduce interpolation sensitivity. Default is 0.0.
* Larger values result in smoother interpolations.
* @param rbf The radial basis function used for interpolation. This function takes a squared distance as input
* and returns a scalar value representing the influence of points at that distance.
* @return An instance of `Rbf2DInterpolator` configured with the computed weight matrix and input data.
*/
fun Rbf2DInterpolator(
points: List<Vector2>,
values: Array<DoubleArray>,
smoothing: Double = 0.0,
rbf: Rbf
): Rbf2DInterpolator {
val rmat = Matrix(points.size, points.size)
for (j in points.indices) {
for (i in points.indices) {
rmat[i, j] = rbf(points[i].squaredDistanceTo(points[j])) + if (j == i) smoothing else 0.0
}
}
val imat = invertMatrixCholesky(rmat)
val vmat = Matrix(points.size, values[0].size)
for (j in points.indices) {
for (i in values[0].indices) {
vmat[j, i] = values[j][i]
}
}
val mean = vmat.columnMean()
val vwmat = vmat - mean
val wmat = imat * vwmat
return Rbf2DInterpolator(points, wmat.data, values, rbf, mean.data[0])
}

View File

@@ -0,0 +1,109 @@
package rbf
import org.openrndr.application
import org.openrndr.color.ColorRGBa
import org.openrndr.draw.isolated
import org.openrndr.draw.shadeStyle
import org.openrndr.extra.color.spaces.OKHSV
import org.openrndr.extra.color.spaces.OKLab
import org.openrndr.extra.color.tools.shadeLuminosity
import org.openrndr.extra.color.tools.shiftHue
import org.openrndr.extra.math.rbf.Rbf2DInterpolator
import org.openrndr.extra.math.rbf.rbfGaussian
import org.openrndr.extra.noise.uniform
import org.openrndr.extra.shaderphrases.noise.fhash12Phrase
import org.openrndr.extra.shaderphrases.rbf.rbfGaussianPhrase
import org.openrndr.math.Vector3
import kotlin.collections.indices
import kotlin.collections.map
import kotlin.collections.toTypedArray
import kotlin.random.Random
import kotlin.ranges.until
import kotlin.text.trimIndent
import kotlin.text.trimMargin
fun main() {
application {
configure {
width = 720
height = 720
}
program {
val r = Random(0)
val points = drawer.bounds.offsetEdges(-100.0).uniform(14, r)
val colors = (0 until points.size).map {
ColorRGBa.PINK
.shiftHue<OKHSV>(Double.uniform(-180.0, 180.0, r))
.shadeLuminosity<OKLab>(Double.uniform(0.4, 1.0, r))
.toLinear()
}
// Here the `scale` and `smoothing` values are hand-tuned
val scale = 0.04 / 5.0
val interpolator = Rbf2DInterpolator(
points,
colors.map { doubleArrayOf(it.r, it.g, it.b) }.toTypedArray<DoubleArray>(),
smoothing = 0.09,
rbf = rbfGaussian(scale)
)
/**
* Shader style that implements RBF interpolation in the fragment shader.
* Uses Gaussian RBF function to interpolate colors between given points.
* Includes custom distance calculation and color interpolation functions.
*/
val ss = shadeStyle {
fragmentPreamble = """${fhash12Phrase}
|${rbfGaussianPhrase}
|float squaredDistance(vec2 p, vec2 q) {
| vec2 d = p - q;
| return dot(d, d);
|}
|vec3 rbfInterpolate(vec2 p) {
| vec3 c = p_mean;
| for (int i = 0; i < p_weights_SIZE; ++i) {
| float r = rbfGaussian(squaredDistance(p_points[i], p), $scale);
| c.r += p_weights[i].r * r;
| c.g += p_weights[i].g * r;
| c.b += p_weights[i].b * r;
| }
| return c;
|}
""".trimMargin()
fragmentTransform = """
x_fill.rgb = rbfInterpolate(c_boundsPosition.xy * vec2(720.0, 720.0));
""".trimIndent()
val weights = (0 until points.size).map {
Vector3(interpolator.weights[it][0], interpolator.weights[it][1], interpolator.weights[it][2])
}.toTypedArray()
parameter("weights", weights)
parameter("points", points.toTypedArray())
parameter("mean", Vector3(interpolator.mean[0], interpolator.mean[1], interpolator.mean[2]))
}
extend {
// draw the interpolated colors
drawer.isolated {
drawer.shadeStyle = ss
drawer.rectangle(drawer.bounds)
}
// draw the original points and colors for reference
drawer.circles {
for (i in points.indices) {
fill = colors[i]
circle(points[i], 10.0)
}
}
// compute color on CPU for comparison
drawer.fill = interpolator.interpolate(mouse.position).let {
ColorRGBa(it[0], it[1], it[2], 1.0)
}
drawer.circle(mouse.position, 30.0)
}
}
}
}

View File

@@ -0,0 +1,113 @@
package rbf
import org.openrndr.application
import org.openrndr.color.ColorRGBa
import org.openrndr.draw.isolated
import org.openrndr.draw.shadeStyle
import org.openrndr.extra.color.spaces.OKHSV
import org.openrndr.extra.color.spaces.OKLab
import org.openrndr.extra.color.tools.shadeLuminosity
import org.openrndr.extra.color.tools.shiftHue
import org.openrndr.extra.math.rbf.Rbf2DInterpolator
import org.openrndr.extra.math.rbf.rbfGaussian
import org.openrndr.extra.math.rbf.rbfInverseMultiQuadratic
import org.openrndr.extra.math.rbf.rbfInverseQuadratic
import org.openrndr.extra.noise.uniform
import org.openrndr.extra.shaderphrases.noise.fhash12Phrase
import org.openrndr.extra.shaderphrases.rbf.rbfGaussianPhrase
import org.openrndr.extra.shaderphrases.rbf.rbfInverseMultiQuadraticPhrase
import org.openrndr.extra.shaderphrases.rbf.rbfInverseQuadraticPhrase
import org.openrndr.math.Vector3
import kotlin.collections.indices
import kotlin.collections.map
import kotlin.collections.toTypedArray
import kotlin.random.Random
import kotlin.ranges.until
import kotlin.text.trimIndent
import kotlin.text.trimMargin
fun main() {
application {
configure {
width = 720
height = 720
}
program {
val r = Random(0)
val points = drawer.bounds.offsetEdges(-100.0).uniform(20, r)
val colors = (0 until points.size).map {
ColorRGBa.PINK
.shiftHue<OKHSV>(Double.uniform(-180.0, 180.0, r))
.shadeLuminosity<OKLab>(Double.uniform(0.4, 1.0, r))
.toLinear()
}
// Here the `scale` and `smoothing` values are hand-tuned
val scale = 0.04 / 5.0
val interpolator = Rbf2DInterpolator(
points,
colors.map { doubleArrayOf(it.r, it.g, it.b) }.toTypedArray<DoubleArray>(),
smoothing = 0.09,
rbf = rbfInverseMultiQuadratic(scale)
)
/**
* Shader style that implements RBF interpolation in the fragment shader.
* Uses Gaussian RBF function to interpolate colors between given points.
* Includes custom distance calculation and color interpolation functions.
*/
val ss = shadeStyle {
fragmentPreamble = """${fhash12Phrase}
|${rbfInverseMultiQuadraticPhrase}
|float squaredDistance(vec2 p, vec2 q) {
| vec2 d = p - q;
| return dot(d, d);
|}
|vec3 rbfInterpolate(vec2 p) {
| vec3 c = p_mean;
| for (int i = 0; i < p_weights_SIZE; ++i) {
| float r = rbfInverseMultiQuadratic(squaredDistance(p_points[i], p), $scale);
| c.r += p_weights[i].r * r;
| c.g += p_weights[i].g * r;
| c.b += p_weights[i].b * r;
| }
| return c;
|}
""".trimMargin()
fragmentTransform = """
x_fill.rgb = rbfInterpolate(c_boundsPosition.xy * vec2(720.0, 720.0));
""".trimIndent()
val weights = (0 until points.size).map {
Vector3(interpolator.weights[it][0], interpolator.weights[it][1], interpolator.weights[it][2])
}.toTypedArray()
parameter("weights", weights)
parameter("points", points.toTypedArray())
parameter("mean", Vector3(interpolator.mean[0], interpolator.mean[1], interpolator.mean[2]))
}
extend {
// draw the interpolated colors
drawer.isolated {
drawer.shadeStyle = ss
drawer.rectangle(drawer.bounds)
}
// draw the original points and colors for reference
drawer.circles {
for (i in points.indices) {
fill = colors[i]
circle(points[i], 10.0)
}
}
// compute color on CPU for comparison
drawer.fill = interpolator.interpolate(mouse.position).let {
ColorRGBa(it[0], it[1], it[2], 1.0)
}
drawer.circle(mouse.position, 30.0)
}
}
}
}

View File

@@ -0,0 +1,51 @@
package org.openrndr.extra.shaderphrases.rbf
/**
* A constant string defining a C-style preprocessor directive and implementation for the
* Radial Basis Function (RBF) Gaussian formula in a shader or computational context.
*
* The definition includes a function `rbfGaussian` that computes the Gaussian value
* based on the squared distance and scale factor. It utilizes the exponential function
* for the calculation.
*/
const val rbfGaussianPhrase = """#ifndef SP_RBF_GAUSSIAN
#define SP_RBF_GAUSSIAN
float rbfGaussian(float sqrDistance, float scale) {
return exp(-sqrDistance * scale * scale);
}
#endif
"""
/**
* A constant string representing a shader function definition for the
* Radial Basis Function (RBF) using the inverse quadratic formula.
*
* The function `rbfInverseQuadratic` calculates the RBF value based on
* squared distance and a scale factor.
*
* The formula for the RBF is:
* 1.0 / (1.0 + sqrDistance * scale^2)
*/
const val rbfInverseQuadraticPhrase = """#ifndef SP_RBF_INVERSE_QUADRATIC
#define SP_RBF_INVERSE_QUADRATIC
float rbfInverseQuadratic(float sqrDistance, float scale) {
return 1.0 / (1.0 + sqrDistance * scale * scale);
}
#endif
"""
/**
* Represents the implementation of the inverse multiquadratic radial basis function (RBF)
* in shader language. This constant holds the shader source code for calculating
* the inverse multiquadratic RBF given a squared distance and a scale factor.
*
* The function defined within this shader code computes the RBF as:
* 1.0 / sqrt(1.0 + sqrDistance * scale * scale)
*/
const val rbfInverseMultiQuadraticPhrase = """#ifndef SP_RBF_INVERSE_MULTIQUADRATIC
#define SP_RBF_INVERSE_MULTIQUADRATIC
float rbfInverseMultiQuadratic(float sqrDistance, float scale) {
return 1.0 / sqrt(1.0 + sqrDistance * scale * scale);
}
#endif
"""