[orx-shapes] Add alpha shapes with holes using opernndr's Shape (#206)

This commit is contained in:
Steven van den Broek
2021-11-08 17:24:57 +01:00
committed by GitHub
parent 6705ef9737
commit e0fae088c3
3 changed files with 114 additions and 26 deletions

View File

@@ -6,14 +6,14 @@ import kotlin.random.Random
fun main() = application {
program {
val points = List(20) {
val points = List(40) {
Vector2(
Random.nextDouble(width*0.25, width*0.75),
Random.nextDouble(height*0.25, height*0.75)
)
}
val alphaShape = AlphaShape(points)
val c = alphaShape.create()
val c = alphaShape.createContour()
extend {
drawer.fill = ColorRGBa.PINK
drawer.contour(c)

View File

@@ -7,14 +7,14 @@ import kotlin.random.Random
fun main() = application {
program {
val points = List(20) {
val points = List(40) {
Vector2(
Random.nextDouble(width*0.25, width*0.75),
Random.nextDouble(height*0.25, height*0.75)
)
}
val alphaShape = AlphaShape(points)
val c = alphaShape.create()
val c = alphaShape.createContour()
val hobby = hobbyCurve(c.segments.map { it.start }, closed=true)
extend {
drawer.fill = ColorRGBa.PINK

View File

@@ -2,9 +2,7 @@ package org.openrndr.extra.shapes
import org.openrndr.extra.triangulation.Delaunay
import org.openrndr.math.Vector2
import org.openrndr.shape.Segment
import org.openrndr.shape.ShapeContour
import org.openrndr.shape.contains
import org.openrndr.shape.*
import kotlin.math.max
import kotlin.math.min
import kotlin.math.pow
@@ -20,7 +18,7 @@ private fun circumradius(p1: Vector2, p2: Vector2, p3: Vector2): Double {
/**
* Class for creating alpha shapes.
* Use the [create] method to create an alpha shape.
* See the [createContour] and [createShape] methods to create an alpha shape.
* @param points The points for which an alpha shape is calculated.
*/
class AlphaShape(val points: List<Vector2>) {
@@ -28,15 +26,8 @@ class AlphaShape(val points: List<Vector2>) {
private fun <A, B> Pair<A, B>.flip() = Pair(second, first)
/**
* Creates an alpha shape.
* @param alpha The alpha parameter from the mathematical definition of an alpha shape.
* If alpha is 0.0 the alpha shape consists only of the set of input points, yielding [ShapeContour.EMPTY].
* As alpha goes to infinity, the alpha shape becomes equal to the convex hull of the input points.
* @return A closed [ShapeContour] representing the outer boundary of the alpha shape.
*/
fun create(alpha: Double): ShapeContour {
if (delaunay.points.size < 9) return ShapeContour.EMPTY
private fun createBase(alpha: Double): List<Pair<Int, Int>> {
if (delaunay.points.size < 9) return emptyList()
val triangles = delaunay.triangles
var allEdges = mutableSetOf<Pair<Int, Int>>()
@@ -63,13 +54,50 @@ class AlphaShape(val points: List<Vector2>) {
}
}
}
return edgesToShapeContour(perimeterEdges.toList())
return perimeterEdges.toList()
}
/**
* Returns the alpha shape with the smallest alpha such that all input points are contained in the alpha shape.
* Creates an alpha shape without holes
* @param alpha The alpha parameter from the mathematical definition of an alpha shape.
* If alpha is 0.0 the alpha shape consists only of the set of input points, yielding [ShapeContour.EMPTY].
* As alpha goes to infinity, the alpha shape becomes equal to the convex hull of the input points.
* @return A closed [ShapeContour] representing the alpha shape, or [ShapeContour.EMPTY] if the alpha shape
* cannot be represented by a closed [ShapeContour] (e.g. because it consists of multiple disconnected components).
*/
fun create(): ShapeContour = create(determineAlpha())
fun createContour(alpha: Double): ShapeContour = edgesToShapeContour(createBase(alpha))
/**
* Returns a closed [ShapeContour] representing an alpha shape without holes; the smallest alpha is chosen such that
* the corresponding alpha shape contains all input points and can be represented by a closed [ShapeContour].
*/
fun createContour(): ShapeContour = createContour(determineContourAlpha())
/**
* Creates an alpha shape, possibly with holes
* @param alpha The alpha parameter from the mathematical definition of an alpha shape.
* If alpha is 0.0 the alpha shape consists only of the set of input points, yielding [Shape.EMPTY].
* As alpha goes to infinity, the alpha shape becomes equal to the convex hull of the input points.
* @return A [Shape] representing the alpha shape, or [Shape.EMPTY] if the alpha shape
* cannot be represented by a [Shape] (e.g. because it consists of multiple disconnected components).
*/
fun createShape(alpha: Double): Shape = edgesToShape(createBase(alpha))
/**
* Returns a [Shape] representing an alpha shape; the smallest alpha is chosen such that the corresponding alpha
* shape contains all input points and can be represented by a [Shape] (in particular, it consists of one component).
*/
fun createShape(): Shape = edgesToShape(createBase(determineShapeAlpha()))
/**
* Creates an alpha shape
* @param alpha The alpha parameter from the mathematical definition of an alpha shape.
* If alpha is 0.0 the alpha shape consists only of the set of input points, yielding [ShapeContour.EMPTY].
* As alpha goes to infinity, the alpha shape becomes equal to the convex hull of the input points.
* @return A list of [LineSegment]s representing the perimeter of the alpha shape.
*/
fun createSegments(alpha: Double): List<LineSegment>
= createBase(alpha).map { LineSegment(getVec(it.first), getVec(it.second)) }
private fun getVec(i: Int) = Vector2(delaunay.points[i], delaunay.points[i + 1])
@@ -79,22 +107,80 @@ class AlphaShape(val points: List<Vector2>) {
val segments = mutableListOf<Segment>()
val start = edges.first().first
var current = start
repeat(edges.size) {
val left = edges.map { it.first }.toMutableSet()
for (i in edges.indices) {
val next = mapping[current]!!
segments.add(Segment(getVec(current), getVec(next)))
left.remove(current)
current = next
if (current == start) break
}
return if (current == start) {
ShapeContour(segments, closed = true)
return if (current == start && left.isEmpty()) {
ShapeContour(segments, closed = true).clockwise
} else {
ShapeContour.EMPTY
}
}
private fun edgesToShape(edges: List<Pair<Int, Int>>): Shape {
if (edges.isEmpty()) return Shape.EMPTY
val mapping = edges.toMap()
val contours = mutableListOf<ShapeContour>()
val contoursPoints = mutableListOf<List<Vector2>>()
val left = edges.map { it.first }.toMutableSet()
// Find closed loops and save them as contours
while (left.isNotEmpty()) {
val start = left.first()
var current = start
val segments = mutableListOf<Segment>()
val contourPoints = mutableListOf<Vector2>()
for (i in edges.indices) {
val next = mapping[current]!!
segments.add(Segment(getVec(current), getVec(next)))
contourPoints.add(getVec(current))
left.remove(current)
current = next
if (current == start) break
}
contourPoints.add(getVec(current))
contoursPoints.add(contourPoints)
if (current == start) contours.add(ShapeContour(segments, closed = true))
}
// Find contour that encloses all other contours, if it exists
var enclosingContour = -1
for (i in contours.indices){
var encloses = true
for (j in contours.indices){
if (i == j) continue
if (contoursPoints[j].any { it !in contours[i] }){
encloses = false
}
}
if (encloses){
enclosingContour = i
break
}
}
// If an enclosing contour exists, make a shape with it being clockwise and the other contours counterclockwise
return if (enclosingContour < 0) {
Shape.EMPTY
} else {
val orientedContours = mutableListOf<ShapeContour>()
orientedContours.add(contours[enclosingContour].clockwise)
for (i in contours.indices) {
if (i != enclosingContour) orientedContours.add(contours[i].counterClockwise)
}
Shape(orientedContours)
}
}
/**
* Performs binary search to find the smallest alpha such that all points are inside the alpha shape.
*/
fun determineAlpha(): Double {
private fun determineAlphaBase(decision: (Double) -> Boolean): Double {
// Compute bounding box to find an upper bound for the binary search
var minX = Double.POSITIVE_INFINITY
var minY = Double.POSITIVE_INFINITY
@@ -116,10 +202,12 @@ class AlphaShape(val points: List<Vector2>) {
while(lower < upper - precision){
val mid = (lower + upper)/2
val polygon = create(mid)
if (points.all { it in polygon }) upper = mid else lower = mid
if (decision(mid)) upper = mid else lower = mid
}
return upper
}
fun determineContourAlpha(): Double = determineAlphaBase { mid -> points.all { it in createContour(mid) } }
fun determineShapeAlpha(): Double = determineAlphaBase { mid -> points.all { it in createShape(mid) } }
}