[orx-kdtree] Refactor KDTree interface to improve ease of use
This commit is contained in:
@@ -2,13 +2,13 @@ import org.openrndr.application
|
|||||||
import org.openrndr.color.ColorRGBa
|
import org.openrndr.color.ColorRGBa
|
||||||
import org.openrndr.extra.kdtree.buildKDTree
|
import org.openrndr.extra.kdtree.buildKDTree
|
||||||
import org.openrndr.extra.kdtree.findKNearest
|
import org.openrndr.extra.kdtree.findKNearest
|
||||||
|
import org.openrndr.extra.kdtree.kdTree
|
||||||
import org.openrndr.extra.kdtree.vector2Mapper
|
import org.openrndr.extra.kdtree.vector2Mapper
|
||||||
import org.openrndr.math.Vector2
|
import org.openrndr.math.Vector2
|
||||||
import org.openrndr.shape.LineSegment
|
import org.openrndr.shape.LineSegment
|
||||||
|
|
||||||
fun main() {
|
fun main() {
|
||||||
application {
|
application {
|
||||||
|
|
||||||
configure {
|
configure {
|
||||||
width = 1080
|
width = 1080
|
||||||
height = 720
|
height = 720
|
||||||
@@ -18,12 +18,12 @@ fun main() {
|
|||||||
val points = MutableList(1000) {
|
val points = MutableList(1000) {
|
||||||
Vector2(Math.random() * width, Math.random() * height)
|
Vector2(Math.random() * width, Math.random() * height)
|
||||||
}
|
}
|
||||||
val tree = buildKDTree(points, 2, ::vector2Mapper)
|
val tree = points.kdTree()
|
||||||
|
|
||||||
extend {
|
extend {
|
||||||
drawer.circles(points, 5.0)
|
drawer.circles(points, 5.0)
|
||||||
|
|
||||||
val kNearest = findKNearest(tree, mouse.position, k=7, dimensions = 2, ::vector2Mapper)
|
val kNearest = tree.findKNearest(mouse.position, k = 7)
|
||||||
drawer.fill = ColorRGBa.RED
|
drawer.fill = ColorRGBa.RED
|
||||||
drawer.stroke = ColorRGBa.RED
|
drawer.stroke = ColorRGBa.RED
|
||||||
drawer.strokeWeight = 2.0
|
drawer.strokeWeight = 2.0
|
||||||
|
|||||||
@@ -1,8 +1,5 @@
|
|||||||
import org.openrndr.application
|
import org.openrndr.application
|
||||||
import org.openrndr.extensions.SingleScreenshot
|
import org.openrndr.extra.kdtree.kdTree
|
||||||
import org.openrndr.extra.kdtree.buildKDTree
|
|
||||||
import org.openrndr.extra.kdtree.findNearest
|
|
||||||
import org.openrndr.extra.kdtree.vector2Mapper
|
|
||||||
import org.openrndr.math.Vector2
|
import org.openrndr.math.Vector2
|
||||||
|
|
||||||
fun main() {
|
fun main() {
|
||||||
@@ -15,10 +12,10 @@ fun main() {
|
|||||||
val points = MutableList(1000) {
|
val points = MutableList(1000) {
|
||||||
Vector2(Math.random() * width, Math.random() * height)
|
Vector2(Math.random() * width, Math.random() * height)
|
||||||
}
|
}
|
||||||
val tree = buildKDTree(points, 2, ::vector2Mapper)
|
val tree = points.kdTree()
|
||||||
extend {
|
extend {
|
||||||
drawer.circles(points, 5.0)
|
drawer.circles(points, 5.0)
|
||||||
val nearest = findNearest(tree, mouse.position, 2, ::vector2Mapper)
|
val nearest = tree.findNearest(mouse.position)
|
||||||
nearest?.let {
|
nearest?.let {
|
||||||
drawer.circle(it.x, it.y, 20.0)
|
drawer.circle(it.x, it.y, 20.0)
|
||||||
}
|
}
|
||||||
|
|||||||
@@ -1,8 +1,6 @@
|
|||||||
import org.openrndr.application
|
import org.openrndr.application
|
||||||
import org.openrndr.color.ColorRGBa
|
import org.openrndr.color.ColorRGBa
|
||||||
import org.openrndr.extra.kdtree.buildKDTree
|
import org.openrndr.extra.kdtree.kdTree
|
||||||
import org.openrndr.extra.kdtree.findAllInRange
|
|
||||||
import org.openrndr.extra.kdtree.vector2Mapper
|
|
||||||
import org.openrndr.math.Vector2
|
import org.openrndr.math.Vector2
|
||||||
|
|
||||||
|
|
||||||
@@ -18,13 +16,13 @@ fun main() {
|
|||||||
val points = MutableList(1000) {
|
val points = MutableList(1000) {
|
||||||
Vector2(Math.random() * width, Math.random() * height)
|
Vector2(Math.random() * width, Math.random() * height)
|
||||||
}
|
}
|
||||||
val tree = buildKDTree(points, 2, ::vector2Mapper)
|
val tree = points.kdTree()
|
||||||
val radius = 50.0
|
val radius = 50.0
|
||||||
|
|
||||||
extend {
|
extend {
|
||||||
drawer.circles(points, 5.0)
|
drawer.circles(points, 5.0)
|
||||||
|
|
||||||
val allInRange = findAllInRange(tree, mouse.position, maxDistance = radius, dimensions = 2, ::vector2Mapper)
|
val allInRange = tree.findAllInRadius(mouse.position, radius = radius)
|
||||||
drawer.fill = ColorRGBa.PINK
|
drawer.fill = ColorRGBa.PINK
|
||||||
drawer.stroke = ColorRGBa.PINK
|
drawer.stroke = ColorRGBa.PINK
|
||||||
drawer.strokeWeight = 2.0
|
drawer.strokeWeight = 2.0
|
||||||
|
|||||||
@@ -4,10 +4,7 @@ import kotlinx.coroutines.CoroutineScope
|
|||||||
import kotlinx.coroutines.GlobalScope
|
import kotlinx.coroutines.GlobalScope
|
||||||
import kotlinx.coroutines.launch
|
import kotlinx.coroutines.launch
|
||||||
import kotlinx.coroutines.runBlocking
|
import kotlinx.coroutines.runBlocking
|
||||||
import org.openrndr.math.IntVector2
|
import org.openrndr.math.*
|
||||||
import org.openrndr.math.Vector2
|
|
||||||
import org.openrndr.math.Vector3
|
|
||||||
import org.openrndr.math.Vector4
|
|
||||||
import java.util.*
|
import java.util.*
|
||||||
import kotlin.IllegalStateException
|
import kotlin.IllegalStateException
|
||||||
import kotlin.math.abs
|
import kotlin.math.abs
|
||||||
@@ -47,7 +44,7 @@ fun vector4Mapper(v: Vector4, dimension: Int): Double {
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
class KDTreeNode<T> {
|
class KDTreeNode<T>(val dimensions: Int, val mapper: (T, Int) -> Double) {
|
||||||
var parent: KDTreeNode<T>? = null
|
var parent: KDTreeNode<T>? = null
|
||||||
var median: Double = 0.0
|
var median: Double = 0.0
|
||||||
var dimension: Int = 0
|
var dimension: Int = 0
|
||||||
@@ -57,6 +54,26 @@ class KDTreeNode<T> {
|
|||||||
internal val isLeaf: Boolean
|
internal val isLeaf: Boolean
|
||||||
get() = children[0] == null && children[1] == null
|
get() = children[0] == null && children[1] == null
|
||||||
|
|
||||||
|
|
||||||
|
fun insert(item: T): KDTreeNode<T> {
|
||||||
|
return insert(this, item, dimensions, mapper)
|
||||||
|
}
|
||||||
|
|
||||||
|
fun remove(node: KDTreeNode<T>): KDTreeNode<T>? {
|
||||||
|
return org.openrndr.extra.kdtree.remove(node, mapper)
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
fun findNearest(query: T, includeQuery: Boolean = false): T? = findNearest(this, query, includeQuery)
|
||||||
|
|
||||||
|
fun findKNearest(query: T, k: Int, includeQuery: Boolean = false): List<T> {
|
||||||
|
return findKNearest(this, query, k, includeQuery)
|
||||||
|
}
|
||||||
|
|
||||||
|
fun findAllInRadius(query: T, radius: Double, includeQuery: Boolean = false): List<T> {
|
||||||
|
return findAllInRadius(this, query, radius, includeQuery)
|
||||||
|
}
|
||||||
|
|
||||||
override fun toString(): String {
|
override fun toString(): String {
|
||||||
return "KDTreeNode{" +
|
return "KDTreeNode{" +
|
||||||
"median=" + median +
|
"median=" + median +
|
||||||
@@ -68,24 +85,32 @@ class KDTreeNode<T> {
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
fun <T> insertItem(root: KDTreeNode<T>, item: T, mapper: (T, Int) -> Double): KDTreeNode<T> {
|
private fun <T> insertItem(root: KDTreeNode<T>, item: T): KDTreeNode<T> {
|
||||||
return if (root.isLeaf) {
|
return if (root.isLeaf) {
|
||||||
root.item = item
|
root.item = item
|
||||||
root
|
root
|
||||||
} else {
|
} else {
|
||||||
if (mapper(item, root.dimension) < root.median) {
|
if (root.mapper(item, root.dimension) < root.median) {
|
||||||
insertItem(root.children[0] ?: throw IllegalStateException("left is null"), item, mapper)
|
insertItem(root.children[0] ?: throw IllegalStateException("left is null"), item)
|
||||||
} else {
|
} else {
|
||||||
insertItem(root.children[1] ?: throw IllegalStateException("right is null"), item, mapper)
|
insertItem(root.children[1] ?: throw IllegalStateException("right is null"), item)
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
fun <T> buildKDTree(items: MutableList<T>, dimensions: Int, mapper: (T, Int) -> Double): KDTreeNode<T> {
|
fun <T> buildKDTree(items: MutableList<T>, dimensions: Int, mapper: (T, Int) -> Double): KDTreeNode<T> {
|
||||||
val root = KDTreeNode<T>()
|
val root = KDTreeNode<T>(dimensions, mapper)
|
||||||
|
|
||||||
val start = System.currentTimeMillis()
|
val start = System.currentTimeMillis()
|
||||||
fun <T> buildTreeTask(scope: CoroutineScope, node: KDTreeNode<T>, items: MutableList<T>, dimensions: Int, levels: Int, mapper: (T, Int) -> Double): KDTreeNode<T> {
|
fun <T> buildTreeTask(
|
||||||
|
scope: CoroutineScope,
|
||||||
|
node: KDTreeNode<T>,
|
||||||
|
items: MutableList<T>,
|
||||||
|
dimensions: Int,
|
||||||
|
levels: Int,
|
||||||
|
mapper: (T, Int) -> Double
|
||||||
|
): KDTreeNode<T> {
|
||||||
|
|
||||||
if (items.size > 0) {
|
if (items.size > 0) {
|
||||||
val dimension = levels % dimensions
|
val dimension = levels % dimensions
|
||||||
@@ -119,7 +144,7 @@ fun <T> buildKDTree(items: MutableList<T>, dimensions: Int, mapper: (T, Int) ->
|
|||||||
}
|
}
|
||||||
|
|
||||||
if (leftItems.size > 0) {
|
if (leftItems.size > 0) {
|
||||||
node.children[0] = KDTreeNode()
|
node.children[0] = KDTreeNode(dimensions, mapper)
|
||||||
node.children[0]?.let {
|
node.children[0]?.let {
|
||||||
it.parent = node
|
it.parent = node
|
||||||
|
|
||||||
@@ -129,7 +154,7 @@ fun <T> buildKDTree(items: MutableList<T>, dimensions: Int, mapper: (T, Int) ->
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
if (rightItems.size > 0) {
|
if (rightItems.size > 0) {
|
||||||
node.children[1] = KDTreeNode()
|
node.children[1] = KDTreeNode(dimensions, mapper)
|
||||||
node.children[1]?.let {
|
node.children[1]?.let {
|
||||||
it.parent = node
|
it.parent = node
|
||||||
scope.launch {
|
scope.launch {
|
||||||
@@ -147,7 +172,7 @@ fun <T> buildKDTree(items: MutableList<T>, dimensions: Int, mapper: (T, Int) ->
|
|||||||
runBlocking {
|
runBlocking {
|
||||||
job.join()
|
job.join()
|
||||||
}
|
}
|
||||||
println("building took ${System.currentTimeMillis()-start}ms")
|
println("building took ${System.currentTimeMillis() - start}ms")
|
||||||
return root
|
return root
|
||||||
}
|
}
|
||||||
|
|
||||||
@@ -185,45 +210,45 @@ fun <T> findAllNodes(root: KDTreeNode<T>): List<KDTreeNode<T>> {
|
|||||||
|
|
||||||
fun <T> findKNearest(
|
fun <T> findKNearest(
|
||||||
root: KDTreeNode<T>,
|
root: KDTreeNode<T>,
|
||||||
item: T,
|
query: T,
|
||||||
k: Int,
|
k: Int,
|
||||||
dimensions: Int,
|
includeQuery: Boolean = false
|
||||||
mapper: (T, Int) -> Double
|
|
||||||
): List<T> {
|
): List<T> {
|
||||||
// max-heap with size k
|
// max-heap with size k
|
||||||
val queue = PriorityQueue<Pair<KDTreeNode<T>, Double>>(k + 1) {
|
val queue = PriorityQueue<Pair<KDTreeNode<T>, Double>>(k + 1) { nodeA, nodeB ->
|
||||||
nodeA, nodeB -> compareValues(nodeB.second, nodeA.second)
|
compareValues(nodeB.second, nodeA.second)
|
||||||
}
|
}
|
||||||
|
|
||||||
fun nearest(node: KDTreeNode<T>?, item: T) {
|
fun nearest(node: KDTreeNode<T>?) {
|
||||||
if (node != null) {
|
if (node != null) {
|
||||||
val dimensionValue = mapper(item, node.dimension)
|
val dimensionValue = node.mapper(query, node.dimension)
|
||||||
val route: Int = if (dimensionValue < node.median) {
|
val route: Int = if (dimensionValue < node.median) {
|
||||||
nearest(node.children[0], item)
|
nearest(node.children[0])
|
||||||
0
|
0
|
||||||
} else {
|
} else {
|
||||||
nearest(node.children[1], item)
|
nearest(node.children[1])
|
||||||
1
|
1
|
||||||
}
|
}
|
||||||
|
|
||||||
val distance = sqrDistance(item, node.item
|
val distance = sqrDistance(query, node.item ?: error("item is null"), node.dimensions, node.mapper)
|
||||||
?: throw IllegalStateException("item is null"), dimensions, mapper)
|
|
||||||
|
|
||||||
if (queue.size < k || distance < queue.peek().second) {
|
if (includeQuery || node.item !== query) {
|
||||||
queue.add(Pair(node, distance))
|
if (queue.size < k || distance < queue.peek().second) {
|
||||||
if (queue.size > k) {
|
queue.add(Pair(node, distance))
|
||||||
queue.poll()
|
if (queue.size > k) {
|
||||||
|
queue.poll()
|
||||||
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
val d = abs(node.median - dimensionValue)
|
val d = abs(node.median - dimensionValue)
|
||||||
if (d * d < queue.peek().second || queue.size < k) {
|
if (d * d < queue.peek().second || queue.size < k) {
|
||||||
nearest(node.children[1 - route], item)
|
nearest(node.children[1 - route])
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
nearest(root, item)
|
nearest(root)
|
||||||
|
|
||||||
return generateSequence { queue.poll() }
|
return generateSequence { queue.poll() }
|
||||||
.map { it.first.item }
|
.map { it.first.item }
|
||||||
@@ -231,77 +256,79 @@ fun <T> findKNearest(
|
|||||||
.toList().reversed()
|
.toList().reversed()
|
||||||
}
|
}
|
||||||
|
|
||||||
fun <T> findNearest(root: KDTreeNode<T>, item: T, dimensions: Int, mapper: (T, Int) -> Double): T? {
|
private fun <T> findNearest(root: KDTreeNode<T>, query: T, includeQuery: Boolean = false): T? {
|
||||||
var nearest = java.lang.Double.POSITIVE_INFINITY
|
var nearest = java.lang.Double.POSITIVE_INFINITY
|
||||||
var nearestArg: KDTreeNode<T>? = null
|
var nearestArg: KDTreeNode<T>? = null
|
||||||
|
|
||||||
fun nearest(node: KDTreeNode<T>?, item: T) {
|
fun nearest(node: KDTreeNode<T>?) {
|
||||||
if (node != null) {
|
if (node != null) {
|
||||||
|
val route: Int = if (root.mapper(query, node.dimension) < node.median) {
|
||||||
if (node.item == null) {
|
nearest(node.children[0])
|
||||||
println(node)
|
|
||||||
}
|
|
||||||
|
|
||||||
val route: Int = if (mapper(item, node.dimension) < node.median) {
|
|
||||||
nearest(node.children[0], item)
|
|
||||||
0
|
0
|
||||||
} else {
|
} else {
|
||||||
nearest(node.children[1], item)
|
nearest(node.children[1])
|
||||||
1
|
1
|
||||||
}
|
}
|
||||||
|
|
||||||
val distance = sqrDistance(item, node.item
|
val distance = sqrDistance(
|
||||||
?: throw IllegalStateException("item is null"), dimensions, mapper)
|
query, node.item
|
||||||
if (distance < nearest) {
|
?: error("item is null"), root.dimensions, root.mapper
|
||||||
|
)
|
||||||
|
if (distance < nearest && (includeQuery || node.item !== query)) {
|
||||||
nearest = distance
|
nearest = distance
|
||||||
nearestArg = node
|
nearestArg = node
|
||||||
}
|
}
|
||||||
|
|
||||||
|
val d = abs(node.median - root.mapper(query, node.dimension))
|
||||||
val d = abs(node.median - mapper(item, node.dimension))
|
|
||||||
if (d * d < nearest) {
|
if (d * d < nearest) {
|
||||||
nearest(node.children[1 - route], item)
|
nearest(node.children[1 - route])
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
nearest(root, item)
|
nearest(root)
|
||||||
return nearestArg?.item
|
return nearestArg?.item
|
||||||
}
|
}
|
||||||
|
|
||||||
fun <T> findAllInRange(
|
private fun <T> findAllInRadius(
|
||||||
root: KDTreeNode<T>,
|
root: KDTreeNode<T>,
|
||||||
item: T,
|
query: T,
|
||||||
maxDistance: Double,
|
radius: Double,
|
||||||
dimensions: Int,
|
includeQuery: Boolean = false
|
||||||
mapper: (T, Int) -> Double
|
): List<T> {
|
||||||
) : List<T> {
|
|
||||||
|
|
||||||
val sqrMaxDist = maxDistance * maxDistance
|
val sqrMaxDist = radius * radius
|
||||||
val queue = kotlin.collections.ArrayDeque<KDTreeNode<T>?>()
|
val queue = ArrayDeque<KDTreeNode<T>>()
|
||||||
queue.add(root)
|
queue.add(root)
|
||||||
val results = mutableListOf<T?>()
|
val results = mutableListOf<T?>()
|
||||||
|
|
||||||
while (queue.isNotEmpty()) {
|
while (queue.isNotEmpty()) {
|
||||||
val node = queue.removeFirst()
|
val node = queue.removeFirst()
|
||||||
if (node != null) {
|
val dimensionValue = node.mapper(query, node.dimension)
|
||||||
val dimensionValue = mapper(item, node.dimension)
|
val distance = sqrDistance(
|
||||||
val distance = sqrDistance(item, node.item
|
query, node.item
|
||||||
?: throw IllegalStateException("item is null"), dimensions, mapper)
|
?: error("item is null"), node.dimensions, node.mapper
|
||||||
if (distance <= sqrMaxDist) {
|
)
|
||||||
results.add(node.item)
|
if (distance <= sqrMaxDist && (includeQuery || node.item != query)) {
|
||||||
}
|
results.add(node.item)
|
||||||
|
}
|
||||||
|
|
||||||
val route: Int = if (dimensionValue < node.median) {
|
val route: Int = if (dimensionValue < node.median && node.children[0] != null) {
|
||||||
queue.add(node.children[0])
|
queue.add(node.children[0])
|
||||||
0
|
0
|
||||||
} else {
|
} else if (node.children[1] != null) {
|
||||||
queue.add(node.children[1])
|
queue.add(node.children[1])
|
||||||
1
|
1
|
||||||
}
|
} else {
|
||||||
|
-1
|
||||||
|
}
|
||||||
|
|
||||||
|
if (route != -1) {
|
||||||
val d = abs(node.median - dimensionValue)
|
val d = abs(node.median - dimensionValue)
|
||||||
if (d * d <= sqrMaxDist) {
|
if (d * d <= sqrMaxDist) {
|
||||||
queue.add(node.children[1 - route])
|
val c = node.children[1 - route]
|
||||||
|
if (c != null) {
|
||||||
|
queue.add(c)
|
||||||
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
@@ -309,7 +336,7 @@ fun <T> findAllInRange(
|
|||||||
return results.filterNotNull()
|
return results.filterNotNull()
|
||||||
}
|
}
|
||||||
|
|
||||||
fun <T> insert(root: KDTreeNode<T>, item: T, dimensions: Int, mapper: (T, Int) -> Double): KDTreeNode<T> {
|
private fun <T> insert(root: KDTreeNode<T>, item: T, dimensions: Int, mapper: (T, Int) -> Double): KDTreeNode<T> {
|
||||||
val stack = Stack<KDTreeNode<T>>()
|
val stack = Stack<KDTreeNode<T>>()
|
||||||
stack.push(root)
|
stack.push(root)
|
||||||
|
|
||||||
@@ -324,7 +351,7 @@ fun <T> insert(root: KDTreeNode<T>, item: T, dimensions: Int, mapper: (T, Int) -
|
|||||||
stack.push(node.children[0])
|
stack.push(node.children[0])
|
||||||
} else {
|
} else {
|
||||||
// sit here
|
// sit here
|
||||||
node.children[0] = KDTreeNode()
|
node.children[0] = KDTreeNode(dimensions, mapper)
|
||||||
node.children[0]?.item = item
|
node.children[0]?.item = item
|
||||||
node.children[0]?.dimension = (node.dimension + 1) % dimensions
|
node.children[0]?.dimension = (node.dimension + 1) % dimensions
|
||||||
node.children[0]?.median = mapper(item, (node.dimension + 1) % dimensions)
|
node.children[0]?.median = mapper(item, (node.dimension + 1) % dimensions)
|
||||||
@@ -336,7 +363,7 @@ fun <T> insert(root: KDTreeNode<T>, item: T, dimensions: Int, mapper: (T, Int) -
|
|||||||
stack.push(node.children[1])
|
stack.push(node.children[1])
|
||||||
} else {
|
} else {
|
||||||
// sit here
|
// sit here
|
||||||
node.children[1] = KDTreeNode()
|
node.children[1] = KDTreeNode(dimensions, mapper)
|
||||||
node.children[1]?.item = item
|
node.children[1]?.item = item
|
||||||
node.children[1]?.dimension = (node.dimension + 1) % dimensions
|
node.children[1]?.dimension = (node.dimension + 1) % dimensions
|
||||||
node.children[1]?.median = mapper(item, (node.dimension + 1) % dimensions)
|
node.children[1]?.median = mapper(item, (node.dimension + 1) % dimensions)
|
||||||
@@ -348,7 +375,7 @@ fun <T> insert(root: KDTreeNode<T>, item: T, dimensions: Int, mapper: (T, Int) -
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
fun <T> remove(toRemove: KDTreeNode<T>, mapper: (T, Int) -> Double): KDTreeNode<T>? {
|
private fun <T> remove(toRemove: KDTreeNode<T>, mapper: (T, Int) -> Double): KDTreeNode<T>? {
|
||||||
// trivial case
|
// trivial case
|
||||||
if (toRemove.isLeaf) {
|
if (toRemove.isLeaf) {
|
||||||
val p = toRemove.parent
|
val p = toRemove.parent
|
||||||
@@ -439,3 +466,21 @@ fun <T> remove(toRemove: KDTreeNode<T>, mapper: (T, Int) -> Double): KDTreeNode<
|
|||||||
}
|
}
|
||||||
return null
|
return null
|
||||||
}
|
}
|
||||||
|
|
||||||
|
@JvmName("kdTreeVector2")
|
||||||
|
fun Iterable<Vector2>.kdTree(): KDTreeNode<Vector2> {
|
||||||
|
val items = this.toMutableList()
|
||||||
|
return buildKDTree(items, 2, ::vector2Mapper)
|
||||||
|
}
|
||||||
|
|
||||||
|
@JvmName("kdTreeVector3")
|
||||||
|
fun Iterable<Vector3>.kdTree(): KDTreeNode<Vector3> {
|
||||||
|
val items = this.toMutableList()
|
||||||
|
return buildKDTree(items, 3, ::vector3Mapper)
|
||||||
|
}
|
||||||
|
|
||||||
|
@JvmName("kdTreeVector4")
|
||||||
|
fun Iterable<Vector4>.kdTree(): KDTreeNode<Vector4> {
|
||||||
|
val items = this.toMutableList()
|
||||||
|
return buildKDTree(items, 4, ::vector4Mapper)
|
||||||
|
}
|
||||||
Reference in New Issue
Block a user