add android and desktop modules

This commit is contained in:
2025-11-24 00:30:31 +08:00
parent 72368deb85
commit f81eee8716
133 changed files with 9436 additions and 10 deletions

1
math/.gitignore vendored Normal file
View File

@@ -0,0 +1 @@
/build

13
math/build.gradle.kts Normal file
View File

@@ -0,0 +1,13 @@
import org.jetbrains.kotlin.gradle.dsl.JvmTarget
plugins {
alias(libs.plugins.kotlin.jvm)
}
java {
sourceCompatibility = JavaVersion.VERSION_17
targetCompatibility = JavaVersion.VERSION_17
}
kotlin {
compilerOptions.jvmTarget = JvmTarget.JVM_17
}

View File

@@ -0,0 +1,75 @@
@file:Suppress("NOTHING_TO_INLINE")
package com.icegps.io.util
import kotlin.math.*
//private fun Double.normalizeZero(): Double = if (this.isAlmostZero()) 0.0 else this
private val MINUS_ZERO_D = -0.0
private fun Double.normalizeZero(): Double = if (this == MINUS_ZERO_D) 0.0 else this
fun Double.toStringDecimal(decimalPlaces: Int, skipTrailingZeros: Boolean = false): String {
if (this.isNanOrInfinite()) return this.toString()
//val bits = this.toRawBits()
//val sign = (bits ushr 63) != 0L
//val exponent = (bits ushr 52) and 0b11111111111
//val fraction = bits and ((1L shl 52) - 1L)
val res = this.roundDecimalPlaces(decimalPlaces).normalizeZero().toString()
val eup = res.indexOf('E')
val elo = res.indexOf('e')
val eIndex = if (eup >= 0) eup else elo
val rez = if (eIndex >= 0) {
val base = res.substring(0, eIndex)
val exp = res.substring(eIndex + 1).toInt()
val rbase = if (base.contains(".")) base else "$base.0"
val zeros = "0".repeat(exp.absoluteValue + 2)
val part = if (exp > 0) "$rbase$zeros" else "$zeros$rbase"
val pointIndex2 = part.indexOf(".")
val pointIndex = if (pointIndex2 < 0) part.length else pointIndex2
val outIndex = pointIndex + exp
val part2 = part.replace(".", "")
buildString {
if ((0 until outIndex).all { part2[it] == '0' }) {
append('0')
} else {
append(part2, 0, outIndex)
}
append('.')
append(part2, outIndex, part2.length)
}
} else {
res
}
val pointIndex = rez.indexOf('.')
val integral = if (pointIndex >= 0) rez.substring(0, pointIndex) else rez
if (decimalPlaces == 0) return integral
val decimal = if (pointIndex >= 0) rez.substring(pointIndex + 1).trimEnd('0') else ""
return buildString(2 + integral.length + decimalPlaces) {
append(integral)
if (decimal.isNotEmpty() || !skipTrailingZeros) {
val decimalCount = min(decimal.length, decimalPlaces)
val allZeros = (0 until decimalCount).all { decimal[it] == '0' }
if (!skipTrailingZeros || !allZeros) {
append('.')
append(decimal, 0, decimalCount)
if (!skipTrailingZeros) repeat(decimalPlaces - decimalCount) { append('0') }
}
}
}
}
fun Float.toStringDecimal(decimalPlaces: Int, skipTrailingZeros: Boolean = false): String = this.toDouble().toStringDecimal(decimalPlaces, skipTrailingZeros)
private fun Double.roundDecimalPlaces(places: Int): Double {
if (places < 0) return this
val placesFactor: Double = 10.0.pow(places.toDouble())
return round(this * placesFactor) / placesFactor
}
private fun Double.isNanOrInfinite() = this.isNaN() || this.isInfinite()
private fun Float.isNanOrInfinite() = this.isNaN() || this.isInfinite()

View File

@@ -0,0 +1,78 @@
package com.icegps.io.util
import kotlin.math.*
object NumberParser {
const val END = '\u0000'
fun parseInt(str: String, start: Int = 0, end: Int = str.length, radix: Int = 10): Int {
var n = start
return parseInt(radix) { if (n >= end) END else str[n++] }
}
fun parseDouble(str: String, start: Int = 0, end: Int = str.length): Double {
var n = start
return parseDouble { if (n >= end) END else str[n++] }
}
inline fun parseInt(radix: Int = 10, gen: (Int) -> Char): Int {
var positive = true
var out = 0
var n = 0
while (true) {
val c = gen(n++)
if (c == END) break
if (c == '-' || c == '+') {
positive = (c == '+')
} else {
val value = c.ctypeAsInt()
if (value < 0) break
out *= radix
out += value
}
}
return if (positive) out else -out
}
inline fun parseDouble(gen: (Int) -> Char): Double {
var out = 0.0
var frac = 1.0
var pointSeen = false
var eSeen = false
var negate = false
var negateExponent = false
var exponent = 0
var n = 0
while (true) {
val c = gen(n++)
if (c == END) break
when (c) {
'e', 'E' -> eSeen = true
'-' -> {
if (eSeen) negateExponent = true else negate = true
}
'.' -> pointSeen = true
else -> {
if (eSeen) {
exponent *= 10
exponent += c.ctypeAsInt()
} else {
if (pointSeen) frac /= 10
out *= 10
out += c.ctypeAsInt()
}
}
}
}
val res = (out * frac) * 10.0.pow(if (negateExponent) -exponent else exponent)
return if (negate) -res else res
}
}
@Suppress("ConvertTwoComparisonsToRangeCheck") // @TODO: Kotlin-Native doesn't optimize ranges
@PublishedApi internal fun Char.ctypeAsInt(): Int = when {
this >= '0' && this <= '9' -> this - '0'
this >= 'a' && this <= 'z' -> this - 'a' + 10
this >= 'A' && this <= 'Z' -> this - 'A' + 10
else -> -1
}

View File

@@ -0,0 +1,47 @@
package com.icegps.math
import kotlin.math.absoluteValue
////////////////////
////////////////////
/** Returns the next value of [this] that is multiple of [align]. If [this] is already multiple, returns itself. */
public fun Int.nextAlignedTo(align: Int): Int = if (this.isAlignedTo(align)) this else (((this / align) + 1) * align)
/** Returns the next value of [this] that is multiple of [align]. If [this] is already multiple, returns itself. */
public fun Long.nextAlignedTo(align: Long): Long = if (this.isAlignedTo(align)) this else (((this / align) + 1) * align)
/** Returns the next value of [this] that is multiple of [align]. If [this] is already multiple, returns itself. */
public fun Float.nextAlignedTo(align: Float): Float = if (this.isAlignedTo(align)) this else (((this / align).toInt() + 1) * align)
/** Returns the next value of [this] that is multiple of [align]. If [this] is already multiple, returns itself. */
public fun Double.nextAlignedTo(align: Double): Double = if (this.isAlignedTo(align)) this else (((this / align).toInt() + 1) * align)
/** Returns the previous value of [this] that is multiple of [align]. If [this] is already multiple, returns itself. */
public fun Int.prevAlignedTo(align: Int): Int = if (this.isAlignedTo(align)) this else nextAlignedTo(align) - align
/** Returns the previous value of [this] that is multiple of [align]. If [this] is already multiple, returns itself. */
public fun Long.prevAlignedTo(align: Long): Long = if (this.isAlignedTo(align)) this else nextAlignedTo(align) - align
/** Returns the previous value of [this] that is multiple of [align]. If [this] is already multiple, returns itself. */
public fun Float.prevAlignedTo(align: Float): Float = if (this.isAlignedTo(align)) this else nextAlignedTo(align) - align
/** Returns the previous value of [this] that is multiple of [align]. If [this] is already multiple, returns itself. */
public fun Double.prevAlignedTo(align: Double): Double = if (this.isAlignedTo(align)) this else nextAlignedTo(align) - align
/** Returns whether [this] is multiple of [alignment] */
public fun Int.isAlignedTo(alignment: Int): Boolean = alignment == 0 || (this % alignment) == 0
/** Returns whether [this] is multiple of [alignment] */
public fun Long.isAlignedTo(alignment: Long): Boolean = alignment == 0L || (this % alignment) == 0L
/** Returns whether [this] is multiple of [alignment] */
public fun Float.isAlignedTo(alignment: Float): Boolean = alignment == 0f || (this % alignment) == 0f
/** Returns whether [this] is multiple of [alignment] */
public fun Double.isAlignedTo(alignment: Double): Boolean = alignment == 0.0 || (this % alignment) == 0.0
/** Returns the previous or next value of [this] that is multiple of [align]. If [this] is already multiple, returns itself. */
public fun Float.nearestAlignedTo(align: Float): Float {
val prev = this.prevAlignedTo(align)
val next = this.nextAlignedTo(align)
return if ((this - prev).absoluteValue < (this - next).absoluteValue) prev else next
}
/** Returns the previous or next value of [this] that is multiple of [align]. If [this] is already multiple, returns itself. */
public fun Double.nearestAlignedTo(align: Double): Double {
val prev = this.prevAlignedTo(align)
val next = this.nextAlignedTo(align)
return if ((this - prev).absoluteValue < (this - next).absoluteValue) prev else next
}

View File

@@ -0,0 +1,9 @@
package com.icegps.math
////////////////////
////////////////////
/** Converts this [Boolean] into integer: 1 for true, 0 for false */
inline fun Boolean.toInt(): Int = if (this) 1 else 0
inline fun Boolean.toByte(): Byte = if (this) 1 else 0
inline fun Byte.toBoolean(): Boolean = this.toInt() != 0

View File

@@ -0,0 +1,38 @@
package com.icegps.math
/** Clamps [this] value into the range [min] and [max] */
fun Int.clamp(min: Int, max: Int): Int = if (this < min) min else if (this > max) max else this
/** Clamps [this] value into the range [min] and [max] */
fun Long.clamp(min: Long, max: Long): Long = if (this < min) min else if (this > max) max else this
/** Clamps [this] value into the range [min] and [max] */
fun Double.clamp(min: Double, max: Double): Double = if (this < min) min else if (this > max) max else this
/** Clamps [this] value into the range [min] and [max] */
fun Float.clamp(min: Float, max: Float): Float = if ((this < min)) min else if ((this > max)) max else this
/** Clamps [this] value into the range 0 and 1 */
fun Double.clamp01(): Double = clamp(0.0, 1.0)
/** Clamps [this] value into the range 0 and 1 */
fun Float.clamp01(): Float = clamp(0f, 1f)
/** Clamps [this] [Long] value into the range [min] and [max] converting it into [Int]. The default parameters will cover the whole range of values. */
fun Long.toIntClamp(min: Int = Int.MIN_VALUE, max: Int = Int.MAX_VALUE): Int {
if (this < min) return min
if (this > max) return max
return this.toInt()
}
/** Clamps [this] [Long] value into the range [min] and [max] converting it into [Int] (where [min] must be zero or positive). The default parameters will cover the whole range of positive and zero values. */
fun Long.toUintClamp(min: Int = 0, max: Int = Int.MAX_VALUE): Int = this.toIntClamp(min, max)
/** Clamps the integer value in the 0..255 range */
fun Int.clampUByte(): Int {
val n = this and -(if (this >= 0) 1 else 0)
return (n or (0xFF - n shr 31)) and 0xFF
}
fun Int.clampUShort(): Int {
val n = this and -(if (this >= 0) 1 else 0)
return (n or (0xFFFF - n shr 31)) and 0xFFFF
}
fun Int.toShortClamped(): Short = this.clamp(Short.MIN_VALUE.toInt(), Short.MAX_VALUE.toInt()).toShort()
fun Int.toByteClamped(): Byte = this.clamp(Byte.MIN_VALUE.toInt(), Byte.MAX_VALUE.toInt()).toByte()

View File

@@ -0,0 +1,24 @@
package com.icegps.math
////////////////////
////////////////////
/** Converts this value considering it was in the range [srcMin]..[srcMax] into [dstMin]..[dstMax], if the value is not inside the range the output value will be outside the destination range */
fun Float.convertRange(srcMin: Float, srcMax: Float, dstMin: Float, dstMax: Float): Float = (dstMin + (dstMax - dstMin) * ((this - srcMin) / (srcMax - srcMin)))
/** Converts this value considering it was in the range [srcMin]..[srcMax] into [dstMin]..[dstMax], if the value is not inside the range the output value will be outside the destination range */
fun Double.convertRange(srcMin: Double, srcMax: Double, dstMin: Double, dstMax: Double): Double = (dstMin + (dstMax - dstMin) * ((this - srcMin) / (srcMax - srcMin)))
//fun Double.convertRange(minSrc: Double, maxSrc: Double, minDst: Double, maxDst: Double): Double = (((this - minSrc) / (maxSrc - minSrc)) * (maxDst - minDst)) + minDst
/** Converts this value considering it was in the range [srcMin]..[srcMax] into [dstMin]..[dstMax], if the value is not inside the range the output value will be outside the destination range */
fun Int.convertRange(srcMin: Int, srcMax: Int, dstMin: Int, dstMax: Int): Int = (dstMin + (dstMax - dstMin) * ((this - srcMin).toDouble() / (srcMax - srcMin).toDouble())).toInt()
/** Converts this value considering it was in the range [srcMin]..[srcMax] into [dstMin]..[dstMax], if the value is not inside the range the output value will be outside the destination range */
fun Long.convertRange(srcMin: Long, srcMax: Long, dstMin: Long, dstMax: Long): Long = (dstMin + (dstMax - dstMin) * ((this - srcMin).toDouble() / (srcMax - srcMin).toDouble())).toLong()
/** Converts this value considering it was in the range [srcMin]..[srcMax] into [dstMin]..[dstMax], if the value is not inside the range the output value will be clamped to the nearest bound */
fun Float.convertRangeClamped(srcMin: Float, srcMax: Float, dstMin: Float, dstMax: Float): Float = convertRange(srcMin, srcMax, dstMin, dstMax).clamp(dstMin, dstMax)
/** Converts this value considering it was in the range [srcMin]..[srcMax] into [dstMin]..[dstMax], if the value is not inside the range the output value will be clamped to the nearest bound */
fun Double.convertRangeClamped(srcMin: Double, srcMax: Double, dstMin: Double, dstMax: Double): Double = convertRange(srcMin, srcMax, dstMin, dstMax).clamp(dstMin, dstMax)
/** Converts this value considering it was in the range [srcMin]..[srcMax] into [dstMin]..[dstMax], if the value is not inside the range the output value will be clamped to the nearest bound */
fun Int.convertRangeClamped(srcMin: Int, srcMax: Int, dstMin: Int, dstMax: Int): Int = convertRange(srcMin, srcMax, dstMin, dstMax).clamp(dstMin, dstMax)
/** Converts this value considering it was in the range [srcMin]..[srcMax] into [dstMin]..[dstMax], if the value is not inside the range the output value will be clamped to the nearest bound */
fun Long.convertRangeClamped(srcMin: Long, srcMax: Long, dstMin: Long, dstMax: Long): Long = convertRange(srcMin, srcMax, dstMin, dstMax).clamp(dstMin, dstMax)

View File

@@ -0,0 +1,19 @@
package com.icegps.math
import kotlin.math.roundToInt
////////////////////
////////////////////
/** Divides [this] into [that] rounding to the floor */
public infix fun Int.divFloor(that: Int): Int = this / that
/** Divides [this] into [that] rounding to the ceil */
public infix fun Int.divCeil(that: Int): Int = if (this % that != 0) (this / that) + 1 else (this / that)
/** Divides [this] into [that] rounding to the round */
public infix fun Int.divRound(that: Int): Int = (this.toDouble() / that.toDouble()).roundToInt()
public infix fun Long.divCeil(other: Long): Long {
val res = this / other
if (this % other != 0L) return res + 1
return res
}

View File

@@ -0,0 +1,4 @@
package com.icegps.math
public inline fun fract(value: Float): Float = value - value.toIntFloor()
public inline fun fract(value: Double): Double = value - value.toIntFloor()

View File

@@ -0,0 +1,9 @@
package com.icegps.math
////////////////////
////////////////////
/** Performs a fast integral logarithmic of base two */
fun ilog2(v: Int): Int = if (v == 0) (-1) else (31 - v.countLeadingZeroBits())
// fun ilog2(v: Int): Int = kotlin.math.log2(v.toDouble()).toInt()
fun ilog2Ceil(v: Int): Int = kotlin.math.ceil(kotlin.math.log2(v.toDouble())).toInt()

View File

@@ -0,0 +1,14 @@
package com.icegps.math
import kotlin.math.*
interface IsAlmostEquals<T> {
fun isAlmostEquals(other: T, epsilon: Double = 0.000001): Boolean
}
interface IsAlmostEqualsF<T> {
fun isAlmostEquals(other: T, epsilon: Float = 0.0001f): Boolean
}
fun Float.isAlmostEquals(other: Float, epsilon: Float = 0.000001f): Boolean = (this - other).absoluteValue < epsilon
fun Double.isAlmostEquals(other: Double, epsilon: Double = 0.000001): Boolean = (this - other).absoluteValue < epsilon

View File

@@ -0,0 +1,4 @@
package com.icegps.math
fun Double.isAlmostZero(): Boolean = kotlin.math.abs(this) <= 1e-19
fun Float.isAlmostZero(): Boolean = kotlin.math.abs(this) <= 1e-6

View File

@@ -0,0 +1,9 @@
package com.icegps.math
////////////////////
////////////////////
/** Checks if [this] is odd (not multiple of two) */
val Int.isOdd: Boolean get() = (this % 2) == 1
/** Checks if [this] is even (multiple of two) */
val Int.isEven: Boolean get() = (this % 2) == 0

View File

@@ -0,0 +1,11 @@
package com.icegps.math
///** Check if [this] floating point value is not a number or infinite */
//public fun Float.isNanOrInfinite(): Boolean = this.isNaN() || this.isInfinite()
///** Check if [this] floating point value is not a number or infinite */
//public fun Double.isNanOrInfinite(): Boolean = this.isNaN() || this.isInfinite()
fun Double.isNanOrInfinite() = this.isNaN() || this.isInfinite()
fun Float.isNanOrInfinite() = this.isNaN() || this.isInfinite()

View File

@@ -0,0 +1,133 @@
package com.icegps.math
import kotlin.math.*
const val PIF = PI.toFloat()
const val PI2F = (PI * 2).toFloat()
fun Double.betweenInclusive(min: Double, max: Double): Boolean = (this >= min) && (this <= max)
fun almostEquals(a: Float, b: Float) = almostZero(a - b)
fun almostZero(a: Float) = abs(a) <= 0.0000001
fun almostEquals(a: Double, b: Double) = almostZero(a - b)
fun almostZero(a: Double) = abs(a) <= 0.0000001
fun isEquivalent(a: Double, b: Double, epsilon: Double = 0.0001): Boolean = (a - epsilon < b) && (a + epsilon > b)
fun Double.smoothstep(edge0: Double, edge1: Double): Double {
if (this < edge0) return 0.0
if (this >= edge1) return 1.0
val v = ((this - edge0) / (edge1 - edge0))//.clamp(0.0, 1.0)
return v * v * (3 - 2 * v)
}
fun log(v: Int, base: Int): Int = log(v.toDouble(), base.toDouble()).toInt()
fun ln(v: Int): Int = ln(v.toDouble()).toInt()
fun log2(v: Int): Int = log(v.toDouble(), 2.0).toInt()
fun log10(v: Int): Int = log(v.toDouble(), 10.0).toInt()
@Deprecated("", ReplaceWith("v.squared()"))
fun sq(v: Int): Int = v.squared()
@Deprecated("", ReplaceWith("v.squared()"))
fun sq(v: Float): Float = v.squared()
@Deprecated("", ReplaceWith("v.squared()"))
fun sq(v: Double): Double = v.squared()
/** Signs of the value. Zero will be converted into -1 */
val Int.signM1: Int get() = signNonZeroM1(this)
/** Signs of the value. Zero will be converted into -1 */
val Float.signM1: Float get() = signNonZeroM1(this).toFloat()
/** Signs of the value. Zero will be converted into -1 */
val Double.signM1: Double get() = signNonZeroM1(this).toDouble()
/** Signs of the value. Zero will be converted into +1 */
val Int.signP1: Int get() = signNonZeroP1(this)
/** Signs of the value. Zero will be converted into +1 */
val Float.signP1: Float get() = signNonZeroP1(this).toFloat()
/** Signs of the value. Zero will be converted into +1 */
val Double.signP1: Double get() = signNonZeroP1(this).toDouble()
/** Signs of the value. Zero will be converted into -1 */
fun signNonZeroM1(x: Int): Int = if (x <= 0) -1 else +1
/** Signs of the value. Zero will be converted into -1 */
fun signNonZeroM1(x: Float): Int = if (x <= 0) -1 else +1
/** Signs of the value. Zero will be converted into -1 */
fun signNonZeroM1(x: Double): Int = if (x <= 0) -1 else +1
/** Signs of the value. Zero will be converted into +1 */
fun signNonZeroP1(x: Int): Int = if (x >= 0) +1 else -1
/** Signs of the value. Zero will be converted into +1 */
fun signNonZeroP1(x: Float): Int = if (x >= 0) +1 else -1
/** Signs of the value. Zero will be converted into +1 */
fun signNonZeroP1(x: Double): Int = if (x >= 0) +1 else -1
fun Float.normalizeAlmostZero() = if (this.isAlmostZero()) 0f else this
fun Double.closestMultipleOf(multiple: Double): Double {
val prev = prevMultipleOf(multiple)
val next = nextMultipleOf(multiple)
return if ((this - prev).absoluteValue < (this - next).absoluteValue) prev else next
}
fun Int.closestMultipleOf(multiple: Int): Int {
val prev = prevMultipleOf(multiple)
val next = nextMultipleOf(multiple)
return if ((this - prev).absoluteValue < (this - next).absoluteValue) prev else next
}
fun Long.closestMultipleOf(multiple: Long): Long {
val prev = prevMultipleOf(multiple)
val next = nextMultipleOf(multiple)
return if ((this - prev).absoluteValue < (this - next).absoluteValue) prev else next
}
fun Double.nextMultipleOf(multiple: Double) = if (this.isMultipleOf(multiple)) this else (((this / multiple) + 1) * multiple)
fun Int.nextMultipleOf(multiple: Int) = if (this.isMultipleOf(multiple)) this else (((this / multiple) + 1) * multiple)
fun Long.nextMultipleOf(multiple: Long) = if (this.isMultipleOf(multiple)) this else (((this / multiple) + 1) * multiple)
fun Double.prevMultipleOf(multiple: Double) = if (this.isMultipleOf(multiple)) this else nextMultipleOf(multiple) - multiple
fun Int.prevMultipleOf(multiple: Int) = if (this.isMultipleOf(multiple)) this else nextMultipleOf(multiple) - multiple
fun Long.prevMultipleOf(multiple: Long) = if (this.isMultipleOf(multiple)) this else nextMultipleOf(multiple) - multiple
fun Double.isMultipleOf(multiple: Double) = multiple.isAlmostZero() || (this % multiple).isAlmostZero()
fun Int.isMultipleOf(multiple: Int) = multiple == 0 || (this % multiple) == 0
fun Long.isMultipleOf(multiple: Long) = multiple == 0L || (this % multiple) == 0L
fun Double.squared(): Double = this * this
fun Float.squared(): Float = this * this
fun Int.squared(): Int = this * this
fun min(a: Int, b: Int, c: Int) = min(min(a, b), c)
fun min(a: Float, b: Float, c: Float) = min(min(a, b), c)
fun min(a: Double, b: Double, c: Double) = min(min(a, b), c)
fun min(a: Int, b: Int, c: Int, d: Int) = min(min(min(a, b), c), d)
fun min(a: Float, b: Float, c: Float, d: Float) = min(min(min(a, b), c), d)
fun min(a: Double, b: Double, c: Double, d: Double) = min(min(min(a, b), c), d)
fun min(a: Int, b: Int, c: Int, d: Int, e: Int) = min(min(min(min(a, b), c), d), e)
fun min(a: Float, b: Float, c: Float, d: Float, e: Float) = min(min(min(min(a, b), c), d), e)
fun min(a: Double, b: Double, c: Double, d: Double, e: Double) = min(min(min(min(a, b), c), d), e)
fun max(a: Int, b: Int, c: Int) = max(max(a, b), c)
fun max(a: Float, b: Float, c: Float) = max(max(a, b), c)
fun max(a: Double, b: Double, c: Double) = max(max(a, b), c)
fun max(a: Int, b: Int, c: Int, d: Int) = max(max(max(a, b), c), d)
fun max(a: Float, b: Float, c: Float, d: Float) = max(max(max(a, b), c), d)
fun max(a: Double, b: Double, c: Double, d: Double) = max(max(max(a, b), c), d)
fun max(a: Int, b: Int, c: Int, d: Int, e: Int) = max(max(max(max(a, b), c), d), e)
fun max(a: Float, b: Float, c: Float, d: Float, e: Float) = max(max(max(max(a, b), c), d), e)
fun max(a: Double, b: Double, c: Double, d: Double, e: Double) = max(max(max(max(a, b), c), d), e)
////////////////////
////////////////////
// @TODO: Optimize this
fun Int.numberOfDigits(radix: Int = 10): Int = radix.toString(radix).length
fun Long.numberOfDigits(radix: Int = 10): Int = radix.toString(radix).length
fun Int.cycle(min: Int, max: Int): Int = ((this - min) umod (max - min + 1)) + min
fun Int.cycleSteps(min: Int, max: Int): Int = (this - min) / (max - min + 1)

View File

@@ -0,0 +1,7 @@
package com.icegps.math
//fun Double.normalizeZero(): Double = if (this.isAlmostZero()) 0.0 else this
private val MINUS_ZERO_D = -0.0
private val MINUS_ZERO_F = -0.0f
fun Double.normalizeZero(): Double = if (this == MINUS_ZERO_D) 0.0 else this
fun Float.normalizeZero(): Float = if (this == MINUS_ZERO_F) 0f else this

View File

@@ -0,0 +1,22 @@
package com.icegps.math
/** Returns the next power of two of [this] */
val Int.nextPowerOfTwo: Int get() {
var v = this
v--
v = v or (v shr 1)
v = v or (v shr 2)
v = v or (v shr 4)
v = v or (v shr 8)
v = v or (v shr 16)
v++
return v
}
/** Checks if [this] value is power of two */
val Int.isPowerOfTwo: Boolean get() = this.nextPowerOfTwo == this
/** Returns the previous power of two of [this] */
val Int.prevPowerOfTwo: Int get() = if (isPowerOfTwo) this else (nextPowerOfTwo ushr 1)

View File

@@ -0,0 +1,16 @@
package com.icegps.math
import kotlin.math.*
fun Float.roundDecimalPlaces(places: Int): Float {
if (places < 0) return this
val placesFactor: Float = 10f.pow(places.toFloat())
return round(this * placesFactor) / placesFactor
}
fun Double.roundDecimalPlaces(places: Int): Double {
if (places < 0) return this
val placesFactor: Double = 10.0.pow(places.toDouble())
return round(this * placesFactor) / placesFactor
}

View File

@@ -0,0 +1,29 @@
package com.icegps.math
import kotlin.math.*
////////////////////
////////////////////
/** Converts [this] into [Int] rounding to the ceiling */
fun Float.toIntCeil(): Int = ceil(this).toInt()
/** Converts [this] into [Int] rounding to the ceiling */
fun Double.toIntCeil(): Int = ceil(this).toInt()
/** Converts [this] into [Int] rounding to the nearest */
fun Float.toIntRound(): Int = round(this).toInt()
/** Converts [this] into [Int] rounding to the nearest */
fun Double.toIntRound(): Int = round(this).toInt()
/** Converts [this] into [Int] rounding to the nearest */
fun Float.toLongRound(): Long = round(this).toLong()
/** Converts [this] into [Int] rounding to the nearest */
fun Double.toLongRound(): Long = round(this).toLong()
/** Convert this [Long] into an [Int] but throws an [IllegalArgumentException] in the case that operation would produce an overflow */
fun Long.toIntSafe(): Int = if (this in Int.MIN_VALUE.toLong()..Int.MAX_VALUE.toLong()) this.toInt() else throw IllegalArgumentException("Long doesn't fit Integer")
/** Converts [this] into [Int] rounding to the floor */
fun Float.toIntFloor(): Int = floor(this).toInt()
/** Converts [this] into [Int] rounding to the floor */
fun Double.toIntFloor(): Int = floor(this).toInt()

View File

@@ -0,0 +1,35 @@
package com.icegps.math
private val MINUS_ZERO_F = -0.0f
////////////////////
////////////////////
/** Performs the unsigned modulo between [this] and [other] (negative values would wrap) */
public infix fun Int.umod(other: Int): Int {
val rm = this % other
val remainder = if (rm == -0) 0 else rm
return when {
remainder < 0 -> remainder + other
else -> remainder
}
}
/** Performs the unsigned modulo between [this] and [other] (negative values would wrap) */
public infix fun Double.umod(other: Double): Double {
val rm = this % other
val remainder = if (rm == -0.0) 0.0 else rm
return when {
remainder < 0.0 -> remainder + other
else -> remainder
}
}
public infix fun Float.umod(other: Float): Float {
val rm = this % other
val remainder = if (rm == MINUS_ZERO_F) 0f else rm
return when {
remainder < 0f -> remainder + other
else -> remainder
}
}

View File

@@ -0,0 +1,13 @@
package com.icegps.math
////////////////////
////////////////////
/** Returns an [Int] representing this [Byte] as if it was unsigned 0x00..0xFF */
inline val Byte.unsigned: Int get() = this.toInt() and 0xFF
/** Returns an [Int] representing this [Short] as if it was unsigned 0x0000..0xFFFF */
inline val Short.unsigned: Int get() = this.toInt() and 0xFFFF
/** Returns a [Long] representing this [Int] as if it was unsigned 0x00000000L..0xFFFFFFFFL */
inline val Int.unsigned: Long get() = this.toLong() and 0xFFFFFFFFL

View File

@@ -0,0 +1,41 @@
@file:Suppress("PackageDirectoryMismatch")
package com.icegps.math.annotations
@DslMarker
@Target(AnnotationTarget.TYPE, AnnotationTarget.CLASS)
annotation class KorDslMarker
@Target(AnnotationTarget.TYPE, AnnotationTarget.CLASS)
@DslMarker
annotation class ViewDslMarker
@Target(AnnotationTarget.TYPE, AnnotationTarget.CLASS)
@DslMarker
annotation class RootViewDslMarker
@Target(AnnotationTarget.TYPE, AnnotationTarget.CLASS)
@DslMarker
annotation class VectorDslMarker
@RequiresOptIn(level = RequiresOptIn.Level.WARNING)
annotation class KormaExperimental(val reason: String = "")
//@RequiresOptIn(level = RequiresOptIn.Level.WARNING)
/**
* Mutable APIs follow the following convention:
*
* ```kotlin
* interface IType { val ... }
* class MType : IType(override var ...) : IType
* ```
*
* Then in usage places:
*
* ```kotlin
* fun doSomethingWith(a: IType, out: MType = MType()): MType
* ```
*
* This convention supports allocation-free APIs by being able to preallocate instances and passing them as the output.
*/
annotation class KormaMutableApi

View File

@@ -0,0 +1,55 @@
package com.icegps.math.geometry
import com.icegps.math.geometry.shape.*
import kotlin.math.*
data class AABB3D(val min: Vector3F = Vector3F(), val max: Vector3F = Vector3F()) : SimpleShape3D {
val minX: Float get() = min.x
val minY: Float get() = min.y
val minZ: Float get() = min.z
val maxX: Float get() = max.x
val maxY: Float get() = max.y
val maxZ: Float get() = max.z
val sizeX: Float get() = maxX - minX
val sizeY: Float get() = maxY - minY
val sizeZ: Float get() = maxZ - minZ
companion object {
operator fun invoke(min: Float = Float.POSITIVE_INFINITY, max: Float = Float.NEGATIVE_INFINITY): AABB3D =
AABB3D(Vector3F(min, min, min), Vector3F(max, max, max))
fun fromSphere(pos: Vector3F, radius: Float): AABB3D = AABB3D(
Vector3F(pos.x - radius, pos.y - radius, pos.z - radius),
Vector3F(pos.x + radius, pos.y + radius, pos.z + radius)
)
}
fun expandedToFit(that: AABB3D): AABB3D {
val a = this
val b = that
return AABB3D(
min = Vector3F(min(a.minX, b.minX), min(a.minY, b.minY), min(a.minZ, b.minZ)),
max = Vector3F(max(a.maxX, b.maxX), max(a.maxY, b.maxY), max(a.maxZ, b.maxZ)),
)
}
fun intersectsSphere(sphere: Sphere3D): Boolean = intersectsSphere(sphere.center, sphere.radius)
fun intersectsSphere(origin: Vector3F, radius: Float): Boolean = !(origin.x + radius < minX ||
origin.y + radius < minY ||
origin.z + radius < minZ ||
origin.x - radius > maxX ||
origin.y - radius > maxY ||
origin.z - radius > maxZ)
fun intersectsAABB(box: AABB3D): Boolean = max.x > box.min.x && min.x < box.max.x &&
max.y > box.min.y && min.y < box.max.y &&
max.z > box.min.z && min.z < box.max.z
override val center: Vector3F get() = (min + max) * 0.5f
override val volume: Float get() {
val v = (max - min)
return v.x * v.y * v.z
}
}

View File

@@ -0,0 +1,103 @@
package com.icegps.math.geometry
import com.icegps.math.interpolation.*
typealias Anchor = Anchor2D
typealias Anchor3 = Anchor3F
data class Anchor2D(val sx: Double, val sy: Double) : Interpolable<Anchor> {
fun toVector(): Vector2D = Vector2D(sx, sy)
val ratioX: Ratio get() = sx.toRatio()
val ratioY: Ratio get() = sy.toRatio()
constructor(sx: Float, sy: Float) : this(sx.toDouble(), sy.toDouble())
constructor(sx: Int, sy: Int) : this(sx.toDouble(), sy.toDouble())
inline fun withX(sx: Number): Anchor = Anchor(sx.toDouble(), sy)
inline fun withY(sy: Number): Anchor = Anchor(sx, sy.toDouble())
inline fun withX(ratioX: Ratio): Anchor = Anchor(ratioX.toDouble(), sy)
inline fun withY(ratioY: Ratio): Anchor = Anchor(sx, ratioY.toDouble())
companion object {
inline operator fun invoke(sx: Ratio, sy: Ratio): Anchor2D = Anchor2D(sx.toDouble(), sy.toDouble())
inline operator fun invoke(sx: Number, sy: Number): Anchor2D = Anchor2D(sx.toDouble(), sy.toDouble())
val TOP_LEFT: Anchor = Anchor(0f, 0f)
val TOP_CENTER: Anchor = Anchor(.5f, 0f)
val TOP_RIGHT: Anchor = Anchor(1f, 0f)
val MIDDLE_LEFT: Anchor = Anchor(0f, .5f)
val MIDDLE_CENTER: Anchor = Anchor(.5f, .5f)
val MIDDLE_RIGHT: Anchor = Anchor(1f, .5f)
val BOTTOM_LEFT: Anchor = Anchor(0f, 1f)
val BOTTOM_CENTER: Anchor = Anchor(.5f, 1f)
val BOTTOM_RIGHT: Anchor = Anchor(1f, 1f)
val TOP: Anchor get() = TOP_CENTER
val LEFT: Anchor get() = MIDDLE_LEFT
val RIGHT: Anchor get() = MIDDLE_RIGHT
val BOTTOM: Anchor get() = BOTTOM_CENTER
val CENTER: Anchor get() = MIDDLE_CENTER
}
override fun interpolateWith(ratio: Ratio, other: Anchor): Anchor = Anchor(
ratio.interpolate(this.sx, other.sx),
ratio.interpolate(this.sy, other.sy)
)
fun toNamedString(): String = when (this) {
TOP_LEFT -> "Anchor.TOP_LEFT"
TOP -> "Anchor.TOP"
TOP_RIGHT -> "Anchor.TOP_RIGHT"
LEFT -> "Anchor.LEFT"
CENTER -> "Anchor.MIDDLE_CENTER"
RIGHT -> "Anchor.RIGHT"
BOTTOM_LEFT -> "Anchor.BOTTOM_LEFT"
BOTTOM_CENTER -> "Anchor.BOTTOM_CENTER"
BOTTOM_RIGHT -> "Anchor.BOTTOM_RIGHT"
else -> toString()
}
}
operator fun Size.times(anchor: Anchor): Point = this.toVector() * anchor.toVector()
//operator fun SizeInt.times(anchor: Anchor): PointInt = (this.toVector().toFloat() * anchor.toVector()).toInt()
data class Anchor3F(val sx: Float, val sy: Float, val sz: Float) : Interpolable<Anchor3F> {
fun toVector(): Vector3F = Vector3F(sx, sy, sz)
val floatX: Float get() = sx
val floatY: Float get() = sy
val floatZ: Float get() = sz
val doubleX: Double get() = sx.toDouble()
val doubleY: Double get() = sy.toDouble()
val doubleZ: Double get() = sz.toDouble()
val ratioX: Ratio get() = sx.toRatio()
val ratioY: Ratio get() = sy.toRatio()
val ratioZ: Ratio get() = sz.toRatio()
constructor(sx: Double, sy: Double, sz: Double) : this(sx.toFloat(), sy.toFloat(), sz.toFloat())
constructor(sx: Int, sy: Int, sz: Int) : this(sx.toFloat(), sy.toFloat(), sz.toFloat())
fun withX(sx: Float): Anchor3F = Anchor3F(sx, sy, sz)
fun withX(sx: Int): Anchor3F = Anchor3F(sx.toFloat(), sy, sz)
fun withX(sx: Double): Anchor3F = Anchor3F(sx.toFloat(), sy, sz)
fun withY(sy: Float): Anchor3F = Anchor3F(sx, sy, sz)
fun withY(sy: Int): Anchor3F = Anchor3F(sx, sy.toFloat(), sz)
fun withY(sy: Double): Anchor3F = Anchor3F(sx, sy.toFloat(), sz)
fun withZ(sz: Float): Anchor3F = Anchor3F(sx, sy, sz)
fun withZ(sz: Int): Anchor3F = Anchor3F(sx, sy, sz.toFloat())
fun withZ(sz: Double): Anchor3F = Anchor3F(sx, sy, sz.toFloat())
override fun interpolateWith(ratio: Ratio, other: Anchor3F): Anchor3F = Anchor3F(
ratio.interpolate(this.sx, other.sx),
ratio.interpolate(this.sy, other.sy),
ratio.interpolate(this.sz, other.sz),
)
}

View File

@@ -0,0 +1,250 @@
package com.icegps.math.geometry
import com.icegps.math.*
import com.icegps.math.interpolation.*
import com.icegps.math.range.*
import com.icegps.number.*
import kotlin.math.*
@PublishedApi internal const val PI2 = PI * 2.0
@PublishedApi internal const val DEG2RAD = PI / 180.0
@PublishedApi internal const val RAD2DEG = 180.0 / PI
@PublishedApi internal fun Angle_shortDistanceTo(from: Angle, to: Angle): Angle {
val r0 = from.ratio.toDouble() umod 1.0
val r1 = to.ratio.toDouble() umod 1.0
val diff = (r1 - r0 + 0.5) % 1.0 - 0.5
return if (diff < -0.5) Angle.fromRatio(diff + 1.0) else Angle.fromRatio(diff)
}
@PublishedApi internal fun Angle_longDistanceTo(from: Angle, to: Angle): Angle {
val short = Angle_shortDistanceTo(from, to)
return when {
short == Angle.ZERO -> Angle.ZERO
short < Angle.ZERO -> Angle.FULL + short
else -> -Angle.FULL + short
}
}
@PublishedApi internal fun Angle_between(x0: Double, y0: Double, x1: Double, y1: Double, up: Vector2D = Vector2D.UP): Angle {
val angle = Angle.atan2(y1 - y0, x1 - x0)
return (if (angle < Angle.ZERO) angle + Angle.FULL else angle).adjustFromUp(up)
}
@PublishedApi internal fun Angle.adjustFromUp(up: Vector2D): Angle {
Orientation.checkValidUpVector(up)
return if (up.y > 0) this else -this
}
/**
* Represents an [Angle], [ratio] is in [0, 1] range, [radians] is in [0, 2PI] range, and [degrees] in [0, 360] range
* The internal representation is in [0, 1] range to reduce rounding errors, since floating points can represent
* a lot of values in that range.
*
* The equivalent old [Angle] constructor is now [Angle.fromRadians]
*
* Angles advance counter-clock-wise, starting with 0.degrees representing the right vector:
*
* Depending on what the up vector means, then numeric values of sin might be negated.
*
* 0.degrees represent right: up=Vector2.UP: cos =+1, sin= 0 || up=Vector2.UP_SCREEN: cos =+1, sin= 0
* 90.degrees represents up: up=Vector2.UP: cos = 0, sin=+1 || up=Vector2.UP_SCREEN: cos = 0, sin=-1
* 180.degrees represents left: up=Vector2.UP: cos =-1, sin= 0 || up=Vector2.UP_SCREEN: cos =-1, sin= 0
* 270.degrees represents down: up=Vector2.UP: cos = 0, sin=-1 || up=Vector2.UP_SCREEN: cos = 0, sin=+1
*/
//@KormaValueApi
inline class Angle @PublishedApi internal constructor(
/** [0..1] ratio -> [0..360] degrees */
val radians: Double
) : Comparable<Angle>, IsAlmostEquals<Angle> {
@PublishedApi inline internal val internal: Double get() = radians
/** [0..PI * 2] radians -> [0..360] degrees */
val ratio: Ratio get() = radiansToRatio(radians)
/** [0..360] degrees -> [0..PI * 2] radians -> [0..1] ratio */
val degrees: Double get() = radiansToDegrees(radians)
val cosine: Double get() = kotlin.math.cos(radians)
val sine: Double get() = kotlin.math.sin(radians)
val tangent: Double get() = kotlin.math.tan(radians)
fun cosine(up: Vector2D = Vector2D.UP): Double = adjustFromUp(up).cosine
fun sine(up: Vector2D = Vector2D.UP): Double = adjustFromUp(up).sine
fun tangent(up: Vector2D = Vector2D.UP): Double = adjustFromUp(up).tangent
val absoluteValue: Angle get() = Angle(internal.absoluteValue)
fun shortDistanceTo(other: Angle): Angle = Angle.shortDistanceTo(this, other)
fun longDistanceTo(other: Angle): Angle = Angle.longDistanceTo(this, other)
operator fun times(scale: Double): Angle = Angle(this.internal * scale)
operator fun div(scale: Double): Angle = Angle(this.internal / scale)
operator fun times(scale: Float): Angle = Angle(this.internal * scale)
operator fun div(scale: Float): Angle = Angle(this.internal / scale)
operator fun times(scale: Int): Angle = Angle(this.internal * scale)
operator fun div(scale: Int): Angle = Angle(this.internal / scale)
operator fun rem(angle: Angle): Angle = Angle(this.internal % angle.internal)
infix fun umod(angle: Angle): Angle = Angle(this.internal umod angle.internal)
operator fun div(other: Angle): Double = this.internal / other.internal // Ratio
operator fun plus(other: Angle): Angle = Angle(this.internal + other.internal)
operator fun minus(other: Angle): Angle = Angle(this.internal - other.internal)
operator fun unaryMinus(): Angle = Angle(-internal)
operator fun unaryPlus(): Angle = Angle(+internal)
fun inBetweenInclusive(min: Angle, max: Angle): Boolean = inBetween(min, max, inclusive = true)
fun inBetweenExclusive(min: Angle, max: Angle): Boolean = inBetween(min, max, inclusive = false)
infix fun inBetween(range: ClosedRange<Angle>): Boolean = inBetween(range.start, range.endInclusive, inclusive = true)
infix fun inBetween(range: OpenRange<Angle>): Boolean = inBetween(range.start, range.endExclusive, inclusive = false)
fun inBetween(min: Angle, max: Angle, inclusive: Boolean): Boolean {
val nthis = this.normalized
val nmin = min.normalized
val nmax = max.normalized
@Suppress("ConvertTwoComparisonsToRangeCheck")
return when {
nmin > nmax -> nthis >= nmin || (if (inclusive) nthis <= nmax else nthis < nmax)
else -> nthis >= nmin && (if (inclusive) nthis <= nmax else nthis < nmax)
}
}
override fun isAlmostEquals(other: Angle, epsilon: Double): Boolean = this.radians.isAlmostEquals(other.radians, epsilon)
fun isAlmostZero(epsilon: Double = 0.001): Boolean = isAlmostEquals(ZERO, epsilon)
/** Normalize between 0..1 ... 0..(PI*2).radians ... 0..360.degrees */
val normalized: Angle get() = fromRatio(ratio.toDouble() umod 1.0)
/** Normalize between -.5..+.5 ... -PI..+PI.radians ... -180..+180.degrees */
val normalizedHalf: Angle get() {
val res = normalized
return if (res > Angle.HALF) -Angle.FULL + res else res
}
override operator fun compareTo(other: Angle): Int = this.ratio.compareTo(other.ratio)
//override fun compareTo(other: Angle): Int {
// //return this.radians.compareTo(other.radians) // @TODO: Double.compareTo calls EnterFrame/LeaveFrame! because it uses a Double companion object
// val left = this.ratio
// val right = other.ratio
// // @TODO: Handle infinite/NaN? Though usually this won't happen
// if (left < right) return -1
// if (left > right) return +1
// return 0
//}
override fun toString(): String = "${degrees.roundDecimalPlaces(2).niceStr}.degrees"
@Suppress("MemberVisibilityCanBePrivate")
companion object {
val EPSILON = Angle.fromRatio(0.00001)
val ZERO = Angle.fromRatio(0.0)
val QUARTER = Angle.fromRatio(0.25)
val HALF = Angle.fromRatio(0.5)
val THREE_QUARTERS = Angle.fromRatio(0.75)
val FULL = Angle.fromRatio(1.0)
inline fun fromRatio(ratio: Float): Angle = Angle(ratioToRadians(ratio.toRatio()))
inline fun fromRatio(ratio: Double): Angle = Angle(ratioToRadians(ratio.toRatio()))
inline fun fromRatio(ratio: Ratio): Angle = Angle(ratioToRadians(ratio))
inline fun fromRadians(radians: Double): Angle = Angle(radians)
inline fun fromRadians(radians: Float) = Angle(radians.toDouble())
inline fun fromRadians(radians: Int) = Angle(radians.toDouble())
inline fun fromDegrees(degrees: Double): Angle = Angle(degreesToRadians(degrees))
inline fun fromDegrees(degrees: Float) = Angle(degreesToRadians(degrees.toDouble()))
inline fun fromDegrees(degrees: Int) = Angle(degreesToRadians(degrees.toDouble()))
@Deprecated("", ReplaceWith("Angle.fromRatio(ratio).cosineD"))
inline fun cos01(ratio: Double): Double = Angle.fromRatio(ratio).cosine
@Deprecated("", ReplaceWith("Angle.fromRatio(ratio).sineD"))
inline fun sin01(ratio: Double): Double = Angle.fromRatio(ratio).sine
@Deprecated("", ReplaceWith("Angle.fromRatio(ratio).tangentD"))
inline fun tan01(ratio: Double): Double = Angle.fromRatio(ratio).tangent
inline fun atan2(x: Float, y: Float, up: Vector2D = Vector2D.UP): Angle = fromRadians(kotlin.math.atan2(x, y)).adjustFromUp(up)
inline fun atan2(x: Double, y: Double, up: Vector2D = Vector2D.UP): Angle = fromRadians(kotlin.math.atan2(x, y)).adjustFromUp(up)
inline fun atan2(p: Point, up: Vector2D = Vector2D.UP): Angle = atan2(p.x, p.y, up)
inline fun asin(v: Double): Angle = kotlin.math.asin(v).radians
inline fun asin(v: Float): Angle = kotlin.math.asin(v).radians
inline fun acos(v: Double): Angle = kotlin.math.acos(v).radians
inline fun acos(v: Float): Angle = kotlin.math.acos(v).radians
fun arcCosine(v: Double): Angle = kotlin.math.acos(v).radians
fun arcCosine(v: Float): Angle = kotlin.math.acos(v).radians
fun arcSine(v: Double): Angle = kotlin.math.asin(v).radians
fun arcSine(v: Float): Angle = kotlin.math.asin(v).radians
fun arcTangent(x: Double, y: Double): Angle = kotlin.math.atan2(x, y).radians
fun arcTangent(x: Float, y: Float): Angle = kotlin.math.atan2(x, y).radians
fun arcTangent(v: Vector2F): Angle = kotlin.math.atan2(v.x, v.y).radians
inline fun ratioToDegrees(ratio: Ratio): Double = ratio * 360.0
inline fun ratioToRadians(ratio: Ratio): Double = ratio * PI2
inline fun degreesToRatio(degrees: Double): Ratio = Ratio(degrees / 360.0)
inline fun degreesToRadians(degrees: Double): Double = degrees * DEG2RAD
inline fun radiansToRatio(radians: Double): Ratio = Ratio(radians / PI2)
inline fun radiansToDegrees(radians: Double): Double = radians * RAD2DEG
inline fun shortDistanceTo(from: Angle, to: Angle): Angle = Angle_shortDistanceTo(from, to)
inline fun longDistanceTo(from: Angle, to: Angle): Angle = Angle_longDistanceTo(from, to)
inline fun between(x0: Double, y0: Double, x1: Double, y1: Double, up: Vector2D = Vector2D.UP): Angle = Angle_between(x0, y0, x1, y1, up)
inline fun between(x0: Int, y0: Int, x1: Int, y1: Int, up: Vector2D = Vector2D.UP): Angle = between(x0.toDouble(), y0.toDouble(), x1.toDouble(), y1.toDouble(), up)
inline fun between(x0: Float, y0: Float, x1: Float, y1: Float, up: Vector2D = Vector2D.UP): Angle = between(x0.toDouble(), y0.toDouble(), x1.toDouble(), y1.toDouble(), up)
inline fun between(p0: Point, p1: Point, up: Vector2D = Vector2D.UP): Angle = between(p0.x, p0.y, p1.x, p1.y, up)
inline fun between(p0: Vector2F, p1: Vector2F, up: Vector2D = Vector2D.UP): Angle = between(p0.x, p0.y, p1.x, p1.y, up)
inline fun between(ox: Double, oy: Double, x1: Double, y1: Double, x2: Double, y2: Double, up: Vector2D = Vector2D.UP): Angle = between(x1 - ox, y1 - oy, x2 - ox, y2 - oy, up)
inline fun between(ox: Float, oy: Float, x1: Float, y1: Float, x2: Float, y2: Float, up: Vector2D = Vector2D.UP): Angle = between(x1 - ox, y1 - oy, x2 - ox, y2 - oy, up)
inline fun between(o: Point, v1: Point, v2: Point, up: Vector2D = Vector2D.UP): Angle = between(o.x, o.y, v1.x, v1.y, v2.x, v2.y, up)
inline fun between(o: Vector2F, v1: Vector2F, v2: Vector2F, up: Vector2D = Vector2D.UP): Angle = between(o.x, o.y, v1.x, v1.y, v2.x, v2.y, up)
}
}
inline fun cos(angle: Angle, up: Vector2D = Vector2D.UP): Double = angle.cosine(up)
inline fun sin(angle: Angle, up: Vector2D = Vector2D.UP): Double = angle.sine(up)
inline fun tan(angle: Angle, up: Vector2D = Vector2D.UP): Double = angle.tangent(up)
inline fun cosf(angle: Angle, up: Vector2D = Vector2D.UP): Float = angle.cosine(up).toFloat()
inline fun sinf(angle: Angle, up: Vector2D = Vector2D.UP): Float = angle.sine(up).toFloat()
inline fun tanf(angle: Angle, up: Vector2D = Vector2D.UP): Float = angle.tangent(up).toFloat()
inline fun abs(angle: Angle): Angle = angle.absoluteValue
inline fun min(a: Angle, b: Angle): Angle = Angle(min(a.internal, b.internal))
inline fun max(a: Angle, b: Angle): Angle = Angle(max(a.internal, b.internal))
fun Angle.clamp(min: Angle, max: Angle): Angle = min(max(this, min), max)
operator fun ClosedRange<Angle>.contains(angle: Angle): Boolean = angle.inBetween(this.start, this.endInclusive, inclusive = true)
operator fun OpenRange<Angle>.contains(angle: Angle): Boolean = angle.inBetween(this.start, this.endExclusive, inclusive = false)
infix fun Angle.until(other: Angle): OpenRange<Angle> = OpenRange(this, other)
val Double.degrees: Angle get() = Angle.fromDegrees(this)
val Double.radians: Angle get() = Angle.fromRadians(this)
val Int.degrees: Angle get() = Angle.fromDegrees(this)
val Int.radians: Angle get() = Angle.fromRadians(this)
val Float.degrees: Angle get() = Angle.fromDegrees(this)
val Float.radians: Angle get() = Angle.fromRadians(this)
fun Ratio.interpolateAngle(l: Angle, r: Angle, minimizeAngle: Boolean): Angle = _interpolateAngleAny(this, l, r, minimizeAngle)
fun Ratio.interpolateAngle(l: Angle, r: Angle): Angle = interpolateAngle(l, r, minimizeAngle = true)
fun Ratio.interpolateAngleNormalized(l: Angle, r: Angle): Angle = interpolateAngle(l, r, minimizeAngle = true)
fun Ratio.interpolateAngleDenormalized(l: Angle, r: Angle): Angle = interpolateAngle(l, r, minimizeAngle = false)
private fun _interpolateAngleAny(ratio: Ratio, l: Angle, r: Angle, minimizeAngle: Boolean = true): Angle {
if (!minimizeAngle) return Angle.fromRatio(ratio.interpolate(l.ratio, r.ratio))
val ln = l.normalized
val rn = r.normalized
return when {
(rn - ln).absoluteValue <= Angle.HALF -> Angle.fromRadians(ratio.interpolate(ln.radians, rn.radians))
ln < rn -> Angle.fromRadians(ratio.interpolate((ln + Angle.FULL).radians, rn.radians)).normalized
else -> Angle.fromRadians(ratio.interpolate(ln.radians, (rn + Angle.FULL).radians)).normalized
}
}

View File

@@ -0,0 +1,60 @@
package com.icegps.math.geometry
inline class BoundsBuilder(val bounds: Rectangle) {
val isEmpty: Boolean get() = bounds.isNIL
val isNotEmpty: Boolean get() = bounds.isNotNIL
val xmin: Double get() = kotlin.math.min(bounds.left, bounds.right)
val xmax: Double get() = kotlin.math.max(bounds.left, bounds.right)
val ymin: Double get() = kotlin.math.min(bounds.top, bounds.bottom)
val ymax: Double get() = kotlin.math.max(bounds.top, bounds.bottom)
/** Minimum value found for X. [default] if ![hasPoints] */
fun xminOr(default: Double = 0.0): Double = if (hasPoints) xmin else default
/** Maximum value found for X. [default] if ![hasPoints] */
fun xmaxOr(default: Double = 0.0): Double = if (hasPoints) xmax else default
/** Minimum value found for Y. [default] if ![hasPoints] */
fun yminOr(default: Double = 0.0): Double = if (hasPoints) ymin else default
/** Maximum value found for Y. [default] if ![hasPoints] */
fun ymaxOr(default: Double = 0.0): Double = if (hasPoints) ymax else default
val hasPoints: Boolean get() = isNotEmpty
companion object {
val EMPTY = BoundsBuilder(Rectangle.NIL)
operator fun invoke(): BoundsBuilder = EMPTY
operator fun invoke(p1: Point): BoundsBuilder = BoundsBuilder(Rectangle(p1, Size(0, 0)))
operator fun invoke(p1: Point, p2: Point): BoundsBuilder = BoundsBuilder(Rectangle.fromBounds(Point.minComponents(p1, p2), Point.maxComponents(p1, p2)))
operator fun invoke(p1: Point, p2: Point, p3: Point): BoundsBuilder = BoundsBuilder(Rectangle.fromBounds(Point.minComponents(p1, p2, p3), Point.maxComponents(p1, p2, p3)))
operator fun invoke(p1: Point, p2: Point, p3: Point, p4: Point): BoundsBuilder = BoundsBuilder(Rectangle.fromBounds(Point.minComponents(p1, p2, p3, p4), Point.maxComponents(p1, p2, p3, p4)))
operator fun invoke(size: Int, func: BoundsBuilder.(Int) -> BoundsBuilder): BoundsBuilder {
var bb = BoundsBuilder()
for (n in 0 until size) bb = func(bb, n)
return bb
}
}
fun plus(x: Double, y: Double): BoundsBuilder = this.plus(Point(x, y))
operator fun plus(p: Point): BoundsBuilder {
if (bounds.isNIL) return BoundsBuilder(Rectangle(p, Size(0, 0)))
return BoundsBuilder(Rectangle.fromBounds(Point.minComponents(bounds.topLeft, p), Point.maxComponents(bounds.bottomRight, p)))
}
operator fun plus(bb: BoundsBuilder): BoundsBuilder = this + bb.bounds
operator fun plus(rect: Rectangle?): BoundsBuilder {
if (rect == null) return this
if (rect.isNIL) return this
return this + rect.topLeft + rect.bottomRight
}
operator fun plus(p: IPointList): BoundsBuilder {
var bb = this
for (n in 0 until p.size) bb = bb.plus(p[n])
return bb
}
//operator fun plus(rect: Rectangle): BoundsBuilder = TODO()
operator fun plus(rects: List<Rectangle>): BoundsBuilder {
var bb = this
for (it in rects) bb += it
return bb
}
fun boundsOrNull(): Rectangle? = if (isEmpty) null else bounds
}

View File

@@ -0,0 +1,29 @@
package com.icegps.math.geometry
import com.icegps.math.geometry.shape.*
import kotlin.math.*
data class Circle(override val center: Point, val radius: Double) : SimpleShape2D {
companion object {
inline operator fun invoke(center: Point, radius: Number) = Circle(center, radius.toDouble())
inline operator fun invoke(x: Number, y: Number, radius: Number) = Circle(Point(x.toDouble(), y.toDouble()), radius.toDouble())
}
override val closed: Boolean get() = true
override val area: Double get() = (PI * radius * radius)
override val perimeter: Double get() = (PI * 2.0 * radius)
override fun distance(p: Point): Double = (p - center).length - radius
override fun normalVectorAt(p: Point): Vector2D = (p - center).normalized
val radiusSquared: Double get() = radius * radius
fun distanceToCenterSquared(p: Point): Double = Point.distanceSquared(p, center)
// @TODO: Check if inside the circle
fun distanceClosestSquared(p: Point): Double = distanceToCenterSquared(p) - radiusSquared
// @TODO: Check if inside the circle
fun distanceFarthestSquared(p: Point): Double = distanceToCenterSquared(p) + radiusSquared
override fun projectedPoint(p: Point): Point = Point.polar(center, Angle.between(center, p), radius)
override fun containsPoint(p: Point): Boolean = (p - center).length <= radius
override fun getBounds(): Rectangle = Rectangle.fromBounds(center.x - radius, center.y - radius, center.x + radius, center.y + radius,)
}

View File

@@ -0,0 +1,83 @@
package com.icegps.math.geometry
import com.icegps.math.geometry.shape.*
import kotlin.math.*
data class Ellipse(override val center: Point, val radius: Size) : SimpleShape2D {
override val area: Double get() = (PI * radius.width * radius.height)
override val perimeter: Double get() {
if (radius.width == radius.height) return (PI * 2.0 * radius.width) // Circle formula
val (a, b) = radius
val h = ((a - b) * (a - b)) / ((a + b) * (a + b))
return (PI * (a + b) * (1 + ((3 * h) / (10 + sqrt(4 - (3 * h))))))
}
override fun distance(p: Point): Double {
val p = p - center
val scaledPoint = Vector2D(p.x / radius.width, p.y / radius.height)
val length = scaledPoint.length
return (length - 1) * min(radius.width, radius.height)
}
override fun normalVectorAt(p: Point): Vector2D {
val pointOnEllipse = p - center
val (a, b) = radius
val normal = Vector2D(pointOnEllipse.x / (a * a), pointOnEllipse.y / (b * b))
return normal.normalized
//val d = p - center
//val r2 = radius.toVector() * radius.toVector()
//return (d / r2).normalized
}
override fun projectedPoint(p: Point): Point {
val angle = Angle.between(center, p)
return center + Point(radius.width * angle.cosine, radius.height * angle.sine)
//val k = (radius.width * radius.height) / sqrt()
//return projectPointOntoEllipse(p, center, radius.toVector())
}
override fun containsPoint(p: Point): Boolean {
if (radius.isEmpty()) return false
// Check if the point is inside the ellipse using the ellipse equation:
// (x - centerX)^2 / radiusX^2 + (y - centerY)^2 / radiusY^2 <= 1
return ((p.x - center.x).pow(2) / radius.width.pow(2)) + ((p.y - center.y).pow(2) / radius.height.pow(2)) <= 1
}
override val closed: Boolean get() = true
override fun getBounds(): Rectangle = Rectangle.fromBounds(center.x - radius.width, center.y - radius.height, center.x + radius.width, center.y + radius.height)
companion object {
private fun projectPointOntoEllipse(point: Vector2F, center: Vector2F, radius: Vector2F, tolerance: Double = 1e-6, maxIterations: Int = 100): Vector2F {
var currentPoint = point
var i = 0
while (i < maxIterations) {
val dx = currentPoint.x - center.x
val dy = currentPoint.y - center.y
val rx2 = radius.x * radius.x
val ry2 = radius.y * radius.y
val f = Vector2F(
(dx * rx2 - dy * dx * dy) / (rx2 * ry2),
(dy * ry2 - dx * dy * dx) / (rx2 * ry2)
)
val df = Vector2F(
(ry2 - 2.0 * dy * dy) / (rx2 * ry2),
(rx2 - 2.0 * dx * dx) / (rx2 * ry2)
)
val nextPoint = currentPoint - f / df
val dist = (nextPoint - currentPoint).length
if (dist < tolerance) return nextPoint
currentPoint = nextPoint
i++
}
return currentPoint
}
}
}

View File

@@ -0,0 +1,330 @@
package com.icegps.math.geometry
import com.icegps.math.*
import kotlin.math.*
/**
* Rotations around Z axis, then X axis, then Y axis in that order.
*/
inline class EulerRotation private constructor(val data: Vector4F) : IsAlmostEqualsF<EulerRotation> {
val config: Config get() = Config(data.w.toInt())
val order: Order get() = config.order
val coordinateSystem: CoordinateSystem get() = config.coordinateSystem
enum class Order(
val x: Int, val y: Int, val z: Int, val w: Int, val str: String,
) {
INVALID(0, 0, 0, 0, "XXX"),
XYZ(+1, -1, +1, -1, "XYZ"),
XZY(-1, -1, +1, +1, "XZY"),
YXZ(+1, -1, -1, +1, "YXZ"),
YZX(+1, +1, -1, -1, "YZX"),
ZXY(-1, +1, +1, -1, "ZXY"),
ZYX(-1, +1, -1, +1, "ZYX"),
;
fun withCoordinateSystem(coordinateSystem: CoordinateSystem) = if (coordinateSystem.sign < 0) reversed() else this
fun reversed(): Order = when (this) {
INVALID -> INVALID
XYZ -> ZYX
XZY -> YZX
YXZ -> ZXY
YZX -> XZY
ZXY -> YXZ
ZYX -> XYZ
}
fun indexAt(pos: Int, reversed: Boolean = false): Int = str[(if (reversed) 2 - pos else pos) umod 3] - 'X'
override fun toString(): String = "$name [$x, $y, $z, $w]"
companion object {
val VALUES = values()
val DEFAULT = XYZ
}
}
//enum class Normalized { NO, FULL_ANGLE, HALF_ANGLE }
inline class Config(val id: Int) {
//constructor(order: Order, coordinateSystem: CoordinateSystem) : this(order.ordinal * coordinateSystem.sign)
constructor(order: Order, coordinateSystem: CoordinateSystem) : this(order.withCoordinateSystem(coordinateSystem).ordinal)
val order: Order get() = Order.VALUES[id.absoluteValue]
val coordinateSystem: CoordinateSystem get() = if (id < 0) CoordinateSystem.LEFT_HANDED else CoordinateSystem.RIGHT_HANDED
override fun toString(): String = "EulerRotation.Config(order=$order, coordinateSystem=$coordinateSystem)"
companion object {
val UNITY get() = Config(Order.ZXY, CoordinateSystem.LEFT_HANDED)
//val UNITY get() = LIBGDX
val UNREAL get() = Config(Order.ZYX, CoordinateSystem.LEFT_HANDED)
//val UNREAL get() = THREEJS
val GODOT get() = Config(Order.YXZ, CoordinateSystem.RIGHT_HANDED)
val LIBGDX get() = Config(Order.YXZ, CoordinateSystem.RIGHT_HANDED)
val THREEJS get() = Config(Order.XYZ, CoordinateSystem.RIGHT_HANDED)
// Same as Three.JS
val DEFAULT get() = Config(Order.XYZ, CoordinateSystem.RIGHT_HANDED)
}
}
enum class CoordinateSystem(val sign: Int) {
LEFT_HANDED(-1), RIGHT_HANDED(+1);
val rsign = -sign
}
val roll: Angle get() = Angle.fromRatio(data.x)
val pitch: Angle get() = Angle.fromRatio(data.y)
val yaw: Angle get() = Angle.fromRatio(data.z)
@Deprecated("", ReplaceWith("roll")) val x: Angle get() = roll
@Deprecated("", ReplaceWith("pitch")) val y: Angle get() = pitch
@Deprecated("", ReplaceWith("yaw")) val z: Angle get() = yaw
override fun toString(): String = "EulerRotation(roll=$roll, pitch=$pitch, yaw=$yaw)"
fun copy(roll: Angle = this.roll, pitch: Angle = this.pitch, yaw: Angle = this.yaw): EulerRotation = EulerRotation(roll, pitch, yaw)
constructor() : this(Angle.ZERO, Angle.ZERO, Angle.ZERO)
constructor(roll: Angle, pitch: Angle, yaw: Angle, config: Config = Config.DEFAULT)
: this(Vector4F(roll.ratio.toFloat(), pitch.ratio.toFloat(), yaw.ratio.toFloat(), config.id.toFloat()))
fun normalized(): EulerRotation = EulerRotation(roll.normalized, pitch.normalized, yaw.normalized)
fun normalizedHalf(): EulerRotation = EulerRotation(roll.normalizedHalf, pitch.normalizedHalf, yaw.normalizedHalf)
fun toMatrix(): Matrix4 = toQuaternion().toMatrix()
fun toQuaternion(): Quaternion = _toQuaternion(x, y, z, config)
override fun isAlmostEquals(other: EulerRotation, epsilon: Float): Boolean =
this.data.isAlmostEquals(other.data, epsilon)
companion object {
fun toQuaternion(roll: Angle, pitch: Angle, yaw: Angle, config: Config = Config.DEFAULT): Quaternion {
return _toQuaternion(roll, pitch, yaw, config)
}
// http://www.mathworks.com/matlabcentral/fileexchange/20696-function-to-convert-between-dcm-euler-angles-quaternions-and-euler-vectors/content/SpinCalc.m
private fun _toQuaternion(x: Angle, y: Angle, z: Angle, config: Config = Config.DEFAULT): Quaternion {
val order = config.order
val coordinateSystem = config.coordinateSystem
val sign = coordinateSystem.sign
//println("ORDER=$order, coordinateSystem=$coordinateSystem, sign=$sign")
val c1 = cos(x / 2)
val c2 = cos(y / 2)
val c3 = cos(z / 2)
val s1 = sin(x / 2)
val s2 = sin(y / 2)
val s3 = sin(z / 2)
return Quaternion(
((s1 * c2 * c3) + ((c1 * s2 * s3) * order.x * sign)),
((c1 * s2 * c3) + ((s1 * c2 * s3) * order.y * sign)),
((c1 * c2 * s3) + ((s1 * s2 * c3) * order.z * sign)),
((c1 * c2 * c3) + ((s1 * s2 * s3) * order.w * sign)),
)
}
fun fromRotationMatrix(m: Matrix3, config: Config = Config.DEFAULT): EulerRotation {
//val config = if (config == Config.UNITY) Config.LIBGDX else config
val order = config.order
val coordinateSystem = config.coordinateSystem
val sign = coordinateSystem.sign
//val m = if (sign < 0) m.transposed() else m
//val m = m
val m11 = m.v00
val m12 = m.v01
val m13 = m.v02
val m21 = m.v10
val m22 = m.v11
val m23 = m.v12
val m31 = m.v20
val m32 = m.v21
val m33 = m.v22
val x: Angle
val y: Angle
val z: Angle
when (order) {
Order.XYZ -> {
x = if (m13.absoluteNotAlmostOne) Angle.atan2(-m23, m33) else Angle.atan2(m32, m22)
y = Angle.asin(m13.clamp(-1f, +1f))
z = if (m13.absoluteNotAlmostOne) Angle.atan2(-m12, m11) else Angle.ZERO
}
Order.YXZ -> {
x = Angle.asin(-(m23.clamp(-1f, +1f)))
y = if (m23.absoluteNotAlmostOne) Angle.atan2(m13, m33) else Angle.atan2(-m31, m11)
z = if (m23.absoluteNotAlmostOne) Angle.atan2(m21, m22) else Angle.ZERO
}
Order.ZXY -> {
y = Angle.asin(m32.clamp(-1f, +1f))
x = if (m32.absoluteNotAlmostOne) Angle.atan2(-m31, m33) else Angle.ZERO
z = if (m32.absoluteNotAlmostOne) Angle.atan2(-m12, m22) else Angle.atan2(m21, m11)
}
Order.ZYX -> {
x = if (m31.absoluteNotAlmostOne) Angle.atan2(m32, m33) else Angle.ZERO
y = Angle.asin(-(m31.clamp(-1f, +1f)))
z = if (m31.absoluteNotAlmostOne) Angle.atan2(m21, m11) else Angle.atan2(-m12, m22)
}
Order.YZX -> {
x = if (m21.absoluteNotAlmostOne) Angle.atan2(-m23, m22) else Angle.ZERO
y = if (m21.absoluteNotAlmostOne) Angle.atan2(-m31, m11) else Angle.atan2(m13, m33)
z = Angle.asin(m21.clamp(-1f, +1f))
}
Order.XZY -> {
x = if (m12.absoluteNotAlmostOne) Angle.atan2(m32, m22) else Angle.atan2(-m23, m33)
y = if (m12.absoluteNotAlmostOne) Angle.atan2(m13, m11) else Angle.ZERO
z = Angle.asin(-(m12.clamp(-1f, +1f)))
}
Order.INVALID -> error("Invalid")
}
//println("order=$order, coordinateSystem=$coordinateSystem : ${coordinateSystem.sign}, x=$x, y=$y, z=$z")
//val sign = coordinateSystem.sign
//return EulerRotation(x * coordinateSystem.sign, y * coordinateSystem.sign, z * coordinateSystem.sign, config)
//return EulerRotation(x * sign, y * sign, z * sign, config)
return EulerRotation(x, y, z, config)
}
private val Float.absoluteNotAlmostOne: Boolean get() = absoluteValue < 0.9999999
fun fromQuaternion(q: Quaternion, config: Config = Config.DEFAULT): EulerRotation {
return fromRotationMatrix(q.toMatrix3(), config)
/*
//return fromQuaternion(q.x, q.y, q.z, q.w, config)
val extrinsic = false
// intrinsic/extrinsic conversion helpers
val angle_first: Int
val angle_third: Int
val reversed: Boolean
if (extrinsic) {
angle_first = 0
angle_third = 2
reversed = false
} else {
reversed = true
//reversed = false
//seq = seq[:: - 1]
angle_first = 2
angle_third = 0
}
val quat = q
val i = config.order.indexAt(0, reversed = reversed)
val j = config.order.indexAt(1, reversed = reversed)
val symmetric = i == j
var k = if (symmetric) 3 - i - j else config.order.indexAt(2, reversed = reversed)
val sign = (i - j) * (j - k) * (k - i) / 2
println("ORDER: $i, $j, $k")
val eps = 1e-7f
val _angles = FloatArray(3)
//_angles = angles[ind, :]
// Step 1
// Permutate quaternion elements
val a: Float
val b: Float
val c: Float
val d: Float
if (symmetric) {
a = quat[3]
b = quat[i]
c = quat[j]
d = quat[k] * sign
} else {
a = quat[3] - quat[j]
b = quat[i] + quat[k] * sign
c = quat[j] + quat[3]
d = quat[k] * sign - quat[i]
}
// Step 2
// Compute second angle...
_angles[1] = 2 * atan2(hypot(c, d), hypot(a, b))
// ... and check if equal to is 0 or pi, causing a singularity
val case = when {
abs(_angles[1]) <= eps -> 1
abs(_angles[1] - PIF) <= eps -> 2
else -> 0 // normal case
}
// Step 3
// compute first and third angles, according to case
val half_sum = atan2(b, a)
val half_diff = atan2(d, c)
if (case == 0) { // no singularities
_angles[angle_first] = half_sum - half_diff
_angles[angle_third] = half_sum + half_diff
} else { // any degenerate case
_angles[2] = 0f
if (case == 1) {
_angles[0] = 2 * half_sum
} else {
_angles[0] = 2 * half_diff * (if (extrinsic) -1 else 1)
}
}
// for Tait-Bryan angles
if (!symmetric) {
_angles[angle_third] *= sign.toFloat()
_angles[1] -= PIF / 2
}
for (idx in 0 until 3) {
if (_angles[idx] < -PIF) {
_angles[idx] += 2 * PIF
} else if (_angles[idx] > PIF) {
_angles[idx] -= 2 * PIF
}
}
if (case != 0) {
println(
"Gimbal lock detected. Setting third angle to zero " +
"since it is not possible to uniquely determine " +
"all angles."
)
}
return EulerRotation(_angles[0].radians, _angles[2].radians, _angles[1].radians * config.coordinateSystem.sign)
*/
}
fun fromQuaternion(x: Float, y: Float, z: Float, w: Float, config: Config = Config.DEFAULT): EulerRotation {
return fromQuaternion(Quaternion(x, y, z, w), config)
/*
val t = y * x + z * w
// Gimbal lock, if any: positive (+1) for north pole, negative (-1) for south pole, zero (0) when no gimbal lock
val pole = if (t > 0.499f) 1 else if (t < -0.499f) -1 else 0
println("pole=$pole")
println(Angle.atan2(2f * (y * w + x * z), 1f - 2f * (y * y + x * x)))
return EulerRotation(
roll = when (pole) {
0 -> Angle.asin((2f * (w * x - z * y)).clamp(-1f, +1f))
else -> (pole.toFloat() * PIF * .5f).radians
},
pitch = when (pole) {
0 -> Angle.atan2(2f * (y * w + x * z), 1f - 2f * (y * y + x * x))
else -> Angle.ZERO
},
yaw = when (pole) {
0 -> Angle.atan2(2f * (w * z + y * x), 1f - 2f * (x * x + z * z))
else -> Angle.atan2(y, w) * pole.toFloat() * 2f
},
)
*/
}
}
}

View File

@@ -0,0 +1,124 @@
package com.icegps.math.geometry
import com.icegps.math.*
import com.icegps.number.*
import kotlin.math.*
interface IGenericDoubleVector {
val dimensions: Int
operator fun get(dim: Int): Double
operator fun set(dim: Int, value: Double)
}
interface IDoubleVectorList : IsAlmostEquals<IDoubleVectorList> {
fun isEmpty(): Boolean = size == 0
fun isNotEmpty(): Boolean = size != 0
val size: Int
val dimensions: Int
operator fun get(index: Int, dim: Int): Double
override fun isAlmostEquals(other: IDoubleVectorList, epsilon: Double): Boolean {
if (this.size != other.size) return false
if (this.dimensions != other.dimensions) return false
for (dim in 0 until dimensions) for (n in 0 until size) {
if (!this[n, dim].isAlmostEquals(other[n, dim], epsilon)) return false
}
return true
}
}
// @TODO: Potential candidate for value class when multiple values are supported
class GenericDoubleVector(override val dimensions: Int, val data: DoubleArray, val offset: Int = 0) : IGenericDoubleVector {
constructor(vararg data: Double) : this(data.size, data)
constructor(vararg data: Float) : this(data.size, DoubleArray(data.size) { data[it].toDouble() })
constructor(vararg data: Int) : this(data.size, DoubleArray(data.size) { data[it].toDouble() })
override operator fun get(dim: Int): Double = data[offset + dim]
override operator fun set(dim: Int, value: Double) { data[offset + dim] = value }
override fun toString(): String = buildString { toStringBuilder(this) }
}
val IGenericDoubleVector.length: Double get() {
var ssum = 0.0
for (n in 0 until dimensions) ssum += this[n]
return sqrt(ssum)
}
fun IGenericDoubleVector.toStringBuilder(out: StringBuilder) {
out.appendGenericArray(dimensions) { appendNice(this@toStringBuilder[it]) }
}
interface IPointList : IDoubleVectorList, List<Point> {
override val size: Int
override fun isEmpty(): Boolean = size == 0
fun getX(index: Int): Double
fun getY(index: Int): Double
override val dimensions: Int get() = 2
override operator fun get(index: Int): Point = Point(getX(index), getY(index))
override fun contains(element: Point): Boolean = indexOf(element) >= 0
override fun containsAll(elements: Collection<Point>): Boolean = containsAllSet(elements)
override fun indexOf(element: Point): Int = indexOf(this, element)
override fun lastIndexOf(element: Point): Int = lastIndexOf(this, element)
override fun iterator(): Iterator<Point> = listIterator()
override fun listIterator(): ListIterator<Point> = listIterator(0)
override fun listIterator(index: Int): ListIterator<Point> = Sublist(this, 0, size).listIterator(index)
override fun subList(fromIndex: Int, toIndex: Int): List<Point> = Sublist(this, fromIndex, toIndex)
class Sublist(val list: IPointList, val fromIndex: Int, val toIndex: Int) : List<Point> {
override val size: Int = toIndex - fromIndex
override fun get(index: Int): Point = list[index + fromIndex]
override fun isEmpty(): Boolean = size == 0
override fun iterator(): Iterator<Point> = listIterator()
override fun listIterator(): ListIterator<Point> = listIterator(0)
override fun listIterator(index: Int): ListIterator<Point> = object : ListIterator<Point> {
var current = index
override fun hasNext(): Boolean = current >= size
override fun hasPrevious(): Boolean = current > index
override fun next(): Point = this@Sublist[current++]
override fun nextIndex(): Int = current + 1
override fun previous(): Point = this@Sublist[--current]
override fun previousIndex(): Int = current - 1
}
override fun subList(fromIndex: Int, toIndex: Int): List<Point> = Sublist(list, this.fromIndex + fromIndex, this.fromIndex + toIndex)
override fun lastIndexOf(element: Point): Int = lastIndexOf(list, element, fromIndex, toIndex, offset = -fromIndex)
override fun indexOf(element: Point): Int = indexOf(list, element, fromIndex, toIndex, offset = -fromIndex)
override fun containsAll(elements: Collection<Point>): Boolean = containsAllSet(elements)
override fun contains(element: Point): Boolean = indexOf(element) >= 0
}
companion object {
fun <T> Collection<T>.containsAllSet(elements: Collection<T>): Boolean {
val s = elements.toSet()
return all { it in s }
}
fun indexOf(list: IPointList, element: Point, fromIndex: Int = 0, toIndex: Int = list.size, offset: Int = 0): Int {
for (n in fromIndex until toIndex) if (list.getX(n) == element.x && list.getY(n) == element.y) return n + offset
return -1
}
fun lastIndexOf(list: IPointList, element: Point, fromIndex: Int = 0, toIndex: Int = list.size, offset: Int = 0): Int {
for (n in toIndex - 1 downTo fromIndex) if (list.getX(n) == element.x && list.getY(n) == element.y) return n + offset
return -1
}
inline fun getPolylineLength(size: Int, crossinline get: (n: Int) -> Point): Double {
var out = 0.0
var prev = Point.ZERO
for (n in 0 until size) {
val p = get(n)
if (n > 0) out += Point.distance(prev, p)
prev = p
}
return out
}
}
}
fun IPointList.getPolylineLength(): Double = IPointList.getPolylineLength(size) { get(it) }
fun List<Point>.getPolylineLength(): Double = IPointList.getPolylineLength(size) { get(it) }

View File

@@ -0,0 +1,175 @@
package com.icegps.math.geometry
import com.icegps.math.*
import com.icegps.math.annotations.*
import com.icegps.math.geometry.shape.*
import kotlin.math.*
typealias Line2 = Line
typealias Line = Line2D
//@KormaValueApi
data class Line2D(val a: Vector2D, val b: Vector2D) : SimpleShape2D {
override val closed: Boolean get() = false
override val area: Double get() = 0.0
override val perimeter: Double get() = length
override fun normalVectorAt(p: Point): Vector2D {
val projected = projectedPoint(p)
return (b - a).toNormal().normalized * Point.crossProduct(projected, p).sign
}
override val center: Point get() = (a + b) * 0.5
fun toRay(): Ray = Ray(a, (b - a).normalized)
val xmin: Double get() = kotlin.math.min(x0, x1)
val xmax: Double get() = kotlin.math.max(x0, x1)
val ymin: Double get() = kotlin.math.min(y0, y1)
val ymax: Double get() = kotlin.math.max(y0, y1)
override fun projectedPoint(p: Point): Point {
return projectedPointOutsideSegment(p).clamp(Point(xmin, ymin), Point(xmax, ymax))
}
fun projectedPointOutsideSegment(p: Point): Point {
val v1x = x0
val v2x = x1
val v1y = y0
val v2y = y1
val px = p.x
val py = p.y
// return this.getIntersectionPoint(Line(point, Point.fromPolar(point, this.angle + 90.degrees)))!!
// get dot product of e1, e2
val e1x = v2x - v1x
val e1y = v2y - v1y
val e2x = px - v1x
val e2y = py - v1y
val valDp = Point.dot(e1x, e1y, e2x, e2y)
// get length of vectors
val lenLineE1 = kotlin.math.hypot(e1x, e1y)
val lenLineE2 = kotlin.math.hypot(e2x, e2y)
// What happens if lenLineE1 or lenLineE2 are zero?, it would be a division by zero.
// Does that mean that the point is on the line, and we should use it?
if (lenLineE1 == 0.0 || lenLineE2 == 0.0) {
return Point(px, py)
}
val cos = valDp / (lenLineE1 * lenLineE2)
// length of v1P'
val projLenOfLine = cos * lenLineE2
return Point((v1x + (projLenOfLine * e1x) / lenLineE1), (v1y + (projLenOfLine * e1y) / lenLineE1))
}
override fun containsPoint(p: Point): Boolean = false
override fun getBounds(): Rectangle {
TODO("Not yet implemented")
}
constructor() : this(Point(), Point())
constructor(x0: Double, y0: Double, x1: Double, y1: Double) : this(Point(x0, y0), Point(x1, y1))
constructor(x0: Float, y0: Float, x1: Float, y1: Float) : this(Point(x0, y0), Point(x1, y1))
constructor(x0: Int, y0: Int, x1: Int, y1: Int) : this(Point(x0, y0), Point(x1, y1))
inline fun flipped(): Line = Line(b, a)
val x0: Double get() = a.x
val y0: Double get() = a.y
val x1: Double get() = b.x
val y1: Double get() = b.y
val dx: Double get() = x1 - x0
val dy: Double get() = y1 - y0
val min: Point get() = Point(minX, minY)
val minX: Double get() = kotlin.math.min(a.x, b.x)
val minY: Double get() = kotlin.math.min(a.y, b.y)
val max: Point get() = Point(maxX, maxY)
val maxX: Double get() = kotlin.math.max(a.x, b.x)
val maxY: Double get() = kotlin.math.max(a.y, b.y)
fun round(): Line = Line(a.round(), b.round())
fun directionVector(): Point = Point(dx, dy)
fun getMinimumDistance(p: Point): Double {
val v = a
val w = b
val l2 = Point.distanceSquared(v, w)
if (l2 == 0.0) return Point.distanceSquared(p, a)
val t = (Point.dot(p - v, w - v) / l2).clamp(0.0, 1.0)
return Point.distance(p, v + (w - v) * t)
}
@KormaExperimental
fun scaledPoints(scale: Double): Line {
val dx = this.dx
val dy = this.dy
return Line(x0 - dx * scale, y0 - dy * scale, x1 + dx * scale, y1 + dy * scale)
}
fun containsX(x: Double): Boolean = (x in x0..x1) || (x in x1..x0) || (almostEquals(x, x0)) || (almostEquals(x, x1))
fun containsY(y: Double): Boolean = (y in y0..y1) || (y in y1..y0) || (almostEquals(y, y0)) || (almostEquals(y, y1))
fun containsBoundsXY(x: Double, y: Double): Boolean = containsX(x) && containsY(y)
val angle: Angle get() = Angle.between(a, b)
val length: Double get() = Point.distance(a, b)
val lengthSquared: Double get() = Point.distanceSquared(a, b)
fun getLineIntersectionPoint(line: Line): Point? =
getIntersectXY(x0, y0, x1, y1, line.x0, line.y0, line.x1, line.y1)
fun getIntersectionPoint(line: Line): Point? = getSegmentIntersectionPoint(line)
fun getSegmentIntersectionPoint(line: Line): Point? {
val out = getIntersectXY(x0, y0, x1, y1, line.x0, line.y0, line.x1, line.y1)
if (out != null && this.containsBoundsXY(out.x, out.y) && line.containsBoundsXY(out.x, out.y)) return out
return null
}
fun intersectsLine(line: Line): Boolean = getLineIntersectionPoint(line) != null
fun intersects(line: Line): Boolean = intersectsSegment(line)
fun intersectsSegment(line: Line): Boolean = getSegmentIntersectionPoint(line) != null
override fun toString(): String = "Line($a, $b)"
val isNIL get() = a.x.isNaN()
fun isNaN(): Boolean = a.y.isNaN()
companion object {
val ZERO = Line(Point.ZERO, Point.ZERO)
val NaN = Line(Point.NaN, Point.NaN)
val NIL: Line get() = NaN
fun fromPointAndDirection(point: Point, direction: Point, scale: Double = 1.0): Line =
Line(point, point + direction * scale)
fun fromPointAngle(point: Point, angle: Angle, length: Double = 1.0): Line =
Line(point, Point.polar(angle, length))
fun length(Ax: Double, Ay: Double, Bx: Double, By: Double): Double = kotlin.math.hypot(Bx - Ax, By - Ay)
inline fun getIntersectXY(Ax: Double, Ay: Double, Bx: Double, By: Double, Cx: Double, Cy: Double, Dx: Double, Dy: Double): Point? {
val a1 = By - Ay
val b1 = Ax - Bx
val c1 = a1 * (Ax) + b1 * (Ay)
val a2 = Dy - Cy
val b2 = Cx - Dx
val c2 = a2 * (Cx) + b2 * (Cy)
val determinant = a1 * b2 - a2 * b1
if (determinant.isAlmostZero()) return null
val x = (b2 * c1 - b1 * c2) / determinant
val y = (a1 * c2 - a2 * c1) / determinant
//if (!x.isFinite() || !y.isFinite()) TODO()
return Point(x, y)
}
fun getIntersectXY(a: Point, b: Point, c: Point, d: Point): Point? =
getIntersectXY(a.x, a.y, b.x, b.y, c.x, c.y, d.x, d.y)
}
}

View File

@@ -0,0 +1,3 @@
package com.icegps.math.geometry
data class Line3D(val a: Vector3D, val b: Vector3D)

View File

@@ -0,0 +1,75 @@
package com.icegps.math.geometry
import com.icegps.math.*
import com.icegps.number.*
/**
* A [top], [right], [bottom], [left] pack with FixedShort (16-bit) in the range of +-3275.9 (3.3 integer digits + 1 decimal digit)
*/
data class Margin(
val top: Double,
val right: Double,
val bottom: Double,
val left: Double,
) : IsAlmostEquals<Margin> {
companion object {
val ZERO = Margin(0.0, 0.0, 0.0, 0.0)
inline operator fun invoke(margin: Number): Margin = Margin(margin.toDouble(), margin.toDouble(), margin.toDouble(), margin.toDouble())
inline operator fun invoke(vertical: Number, horizontal: Number): Margin = Margin(vertical.toDouble(), horizontal.toDouble(), vertical.toDouble(), horizontal.toDouble())
inline operator fun invoke(top: Number, right: Number, bottom: Number, left: Number): Margin = Margin(top.toDouble(), right.toDouble(), bottom.toDouble(), left.toDouble())
}
constructor(vertical: Double, horizontal: Double) : this(vertical, horizontal, vertical, horizontal)
constructor(margin: Double) : this(margin, margin, margin, margin)
operator fun plus(other: Margin): Margin = Margin(top + other.top, right + other.right, bottom + other.bottom, left + other.left)
operator fun minus(other: Margin): Margin = Margin(top - other.top, right - other.right, bottom - other.bottom, left - other.left)
val isNotZero: Boolean get() = top != 0.0 || left != 0.0 || right != 0.0 || bottom != 0.0
override fun isAlmostEquals(other: Margin, epsilon: Double): Boolean =
this.left.isAlmostEquals(other.left, epsilon) &&
this.right.isAlmostEquals(other.right, epsilon) &&
this.top.isAlmostEquals(other.top, epsilon) &&
this.bottom.isAlmostEquals(other.bottom, epsilon)
fun isAlmostZero(epsilon: Double = 0.000001): Boolean = isAlmostEquals(ZERO, epsilon)
val leftPlusRight: Double get() = left + right
val topPlusBottom: Double get() = top + bottom
val horizontal: Double get() = (left + right) / 2
val vertical: Double get() = (top + bottom) / 2
override fun toString(): String = "Margin(top=${top.niceStr}, right=${right.niceStr}, bottom=${bottom.niceStr}, left=${left.niceStr})"
}
/**
* A [top], [right], [bottom], [left] pack with Int)
*/
data class MarginInt(
val top: Int,
val right: Int,
val bottom: Int,
val left: Int,
) {
constructor(top: Short, right: Short, bottom: Short, left: Short) : this(top.toInt(), right.toInt(), bottom.toInt(), left.toInt())
constructor(vertical: Int, horizontal: Int) : this(vertical, horizontal, vertical, horizontal)
constructor(margin: Int) : this(margin, margin, margin, margin)
operator fun plus(other: MarginInt): MarginInt = MarginInt(top + other.top, right + other.right, bottom + other.bottom, left + other.left)
operator fun minus(other: MarginInt): MarginInt = MarginInt(top - other.top, right - other.right, bottom - other.bottom, left - other.left)
val isNotZero: Boolean get() = top != 0 || left != 0 || right != 0 || bottom != 0
val leftPlusRight: Int get() = left + right
val topPlusBottom: Int get() = top + bottom
val horizontal: Int get() = (left + right) / 2
val vertical: Int get() = (top + bottom) / 2
companion object {
val ZERO = MarginInt(0, 0, 0, 0)
}
override fun toString(): String = "MarginInt(top=${top}, right=${right}, bottom=${bottom}, left=${left})"
}

View File

@@ -0,0 +1,415 @@
package com.icegps.math.geometry
import com.icegps.math.*
import com.icegps.math.interpolation.*
import com.icegps.number.*
import kotlin.math.*
//@KormaValueApi
//data class Matrix(
// val a: Float,
// val b: Float,
// val c: Float,
// val d: Float,
// val tx: Float,
// val ty: Float,
//) {
// a, b, c, d, tx and ty are BFloat21
data class Matrix(
val a: Double, val b: Double, val c: Double, val d: Double,
val tx: Double = 0.0, val ty: Double = 0.0
) : IsAlmostEquals<Matrix> {
//private val twobits: Int get() = data.twobits
//constructor() : this(1f, 0f, 0f, 1f, 0f, 0f)
constructor(a: Float, b: Float, c: Float, d: Float, tx: Float = 0f, ty: Float = 0f) :
this(a.toDouble(), b.toDouble(), c.toDouble(), d.toDouble(), tx.toDouble(), ty.toDouble())
constructor(a: Int, b: Int, c: Int, d: Int, tx: Int = 0, ty: Int = 0) :
this(a.toDouble(), b.toDouble(), c.toDouble(), d.toDouble(), tx.toDouble(), ty.toDouble())
operator fun times(other: Matrix): Matrix = Matrix.multiply(this, other)
operator fun times(scale: Double): Matrix = Matrix(a * scale, b * scale, c * scale, d * scale, tx * scale, ty * scale)
operator fun times(scale: Float): Matrix = times(scale.toDouble())
//val isNIL: Boolean get() = this == NIL
val isNIL: Boolean get() = this.a.isNaN()
val isNotNIL: Boolean get() = !isNIL
val isNaN: Boolean get() = isNIL
val isIdentity: Boolean get() = (a == 1.0 && b == 0.0 && c == 0.0 && d == 1.0 && tx == 0.0 && ty == 0.0)
//val isIdentity: Boolean get() = twobits == 1
val type: MatrixType get() {
val hasRotation = b != 0.0 || c != 0.0
val hasScale = a != 1.0 || d != 1.0
val hasTranslation = tx != 0.0 || ty != 0.0
return when {
hasRotation -> MatrixType.COMPLEX
hasScale && hasTranslation -> MatrixType.SCALE_TRANSLATE
hasScale -> MatrixType.SCALE
hasTranslation -> MatrixType.TRANSLATE
else -> MatrixType.IDENTITY
}
}
inline fun transform(p: Vector2F): Vector2F {
if (this.isNIL) return p
return Vector2F(
this.a * p.x + this.c * p.y + this.tx,
this.d * p.y + this.b * p.x + this.ty
)
}
inline fun transform(p: Vector2D): Vector2D {
if (this.isNIL) return p
return Vector2D(
transformX(p.x, p.y),
transformY(p.x, p.y),
)
}
@Deprecated("", ReplaceWith("transform(p).x")) fun transformX(p: Point): Double = transformX(p.x, p.y)
@Deprecated("", ReplaceWith("transform(p).y")) fun transformY(p: Point): Double = transformY(p.x, p.y)
@Deprecated("", ReplaceWith("transform(p).x")) fun transformX(x: Float, y: Float): Float = transformX(x.toDouble(), y.toDouble()).toFloat()
@Deprecated("", ReplaceWith("transform(p).y")) fun transformY(x: Float, y: Float): Float = transformY(x.toDouble(), y.toDouble()).toFloat()
@Deprecated("", ReplaceWith("transform(p).x")) fun transformX(x: Double, y: Double): Double = this.a * x + this.c * y + this.tx
@Deprecated("", ReplaceWith("transform(p).y")) fun transformY(x: Double, y: Double): Double = this.d * y + this.b * x + this.ty
@Deprecated("", ReplaceWith("transform(p).x")) fun transformX(x: Int, y: Int): Double = transformX(x.toDouble(), y.toDouble())
@Deprecated("", ReplaceWith("transform(p).y")) fun transformY(x: Int, y: Int): Double = transformY(x.toDouble(), y.toDouble())
fun deltaTransform(p: Vector2F): Vector2F = Vector2F((p.x * a) + (p.y * c), (p.x * b) + (p.y * d))
fun deltaTransform(p: Vector2D): Vector2D = Vector2D((p.x * a) + (p.y * c), (p.x * b) + (p.y * d))
fun rotated(angle: Angle): Matrix {
val cos = cos(angle)
val sin = sin(angle)
val a1 = this.a * cos - this.b * sin
val b = (this.a * sin + this.b * cos)
val a = a1
val c1 = this.c * cos - this.d * sin
val d = (this.c * sin + this.d * cos)
val c = c1
val tx1 = this.tx * cos - this.ty * sin
val ty = (this.tx * sin + this.ty * cos)
val tx = tx1
return Matrix(a, b, c, d, tx, ty)
}
fun skewed(skewX: Angle, skewY: Angle): Matrix {
val sinX = sin(skewX)
val cosX = cos(skewX)
val sinY = sin(skewY)
val cosY = cos(skewY)
return Matrix(
a * cosY - b * sinX,
a * sinY + b * cosX,
c * cosY - d * sinX,
c * sinY + d * cosX,
tx * cosY - ty * sinX,
tx * sinY + ty * cosX
)
}
fun scaled(scaleX: Int, scaleY: Int = scaleX): Matrix = scaled(scaleX.toDouble(), scaleY.toDouble())
fun scaled(scaleX: Float, scaleY: Float = scaleX): Matrix = scaled(scaleX.toDouble(), scaleY.toDouble())
fun scaled(scaleX: Double, scaleY: Double = scaleX): Matrix = Matrix(a * scaleX, b * scaleX, c * scaleY, d * scaleY, tx * scaleX, ty * scaleY)
fun prescaled(scaleX: Int, scaleY: Int = scaleX): Matrix = prescaled(scaleX.toDouble(), scaleY.toDouble())
fun prescaled(scaleX: Float, scaleY: Float = scaleX): Matrix = prescaled(scaleX.toDouble(), scaleY.toDouble())
fun prescaled(scaleX: Double, scaleY: Double = scaleX): Matrix = Matrix(a * scaleX, b * scaleX, c * scaleY, d * scaleY, tx, ty)
fun translated(delta: Point): Matrix = Matrix(a, b, c, d, tx + delta.x, ty + delta.y)
fun translated(x: Int, y: Int): Matrix = translated(Point(x, y))
fun translated(x: Float, y: Float): Matrix = translated(Point(x, y))
fun translated(x: Double, y: Double): Matrix = translated(Point(x, y))
fun pretranslated(delta: Point): Matrix = Matrix(a, b, c, d, tx + (a * delta.x + c * delta.y), ty + (b * delta.x + d * delta.y))
fun pretranslated(deltaX: Int, deltaY: Int): Matrix = pretranslated(Point(deltaX, deltaY))
fun pretranslated(deltaX: Float, deltaY: Float): Matrix = pretranslated(Point(deltaX, deltaY))
fun pretranslated(deltaX: Double, deltaY: Double): Matrix = pretranslated(Point(deltaX, deltaY))
fun prerotated(angle: Angle): Matrix = rotating(angle) * this
fun preskewed(skewX: Angle, skewY: Angle): Matrix = skewing(skewX, skewY) * this
fun premultiplied(m: Matrix): Matrix = m * this
fun multiplied(m: Matrix): Matrix = this * m
/** Transform point without translation */
fun deltaTransformPoint(p: Point): Point = Point((p.x * a) + (p.y * c), (p.x * b) + (p.y * d))
@Deprecated("", ReplaceWith("this")) fun clone(): Matrix = this
fun inverted(): Matrix {
if (this.isNIL) return Matrix.IDENTITY
val m = this
val norm = m.a * m.d - m.b * m.c
return when (norm) {
0.0 -> Matrix(0.0, 0.0, 0.0, 0.0, -m.tx, -m.ty)
else -> {
val inorm = 1.0 / norm
val d = m.a * inorm
val a = m.d * inorm
val b = m.b * -inorm
val c = m.c * -inorm
Matrix(a, b, c, d, -a * m.tx - c * m.ty, -b * m.tx - d * m.ty)
}
}
}
fun toTransform(): MatrixTransform = decompose()
fun decompose(): MatrixTransform = MatrixTransform.fromMatrix(this)
fun toArray(value: DoubleArray, offset: Int = 0) {
value[offset + 0] = a
value[offset + 1] = b
value[offset + 2] = c
value[offset + 3] = d
value[offset + 4] = tx
value[offset + 5] = ty
}
fun toArray(value: FloatArray, offset: Int = 0) {
value[offset + 0] = a.toFloat()
value[offset + 1] = b.toFloat()
value[offset + 2] = c.toFloat()
value[offset + 3] = d.toFloat()
value[offset + 4] = tx.toFloat()
value[offset + 5] = ty.toFloat()
}
override fun toString(): String = "Matrix(${a.niceStr}, ${b.niceStr}, ${c.niceStr}, ${d.niceStr}, ${tx.niceStr}, ${ty.niceStr})"
override fun isAlmostEquals(other: Matrix, epsilon: Double): Boolean = isAlmostEquals(this, other, epsilon)
fun isAlmostIdentity(epsilon: Double = 0.00001): Boolean = isAlmostEquals(this, IDENTITY, epsilon)
// @TODO: Is this order correct?
fun preconcated(other: Matrix): Matrix = this * other
companion object {
val IDENTITY = Matrix(1.0, 0.0, 0.0, 1.0, 0.0, 0.0)
val NIL = Matrix(Double.NaN, Double.NaN, Double.NaN, Double.NaN, Double.NaN, Double.NaN)
val NaN = NIL
//@Deprecated("", ReplaceWith("com.icegps.math.geometry.Matrix.IDENTITY", "com.icegps.math.geometry.Matrix"))
operator fun invoke(): Matrix = IDENTITY
fun isAlmostEquals(a: Matrix, b: Matrix, epsilon: Double = 0.00001): Boolean =
a.tx.isAlmostEquals(b.tx, epsilon)
&& a.ty.isAlmostEquals(b.ty, epsilon)
&& a.a.isAlmostEquals(b.a, epsilon)
&& a.b.isAlmostEquals(b.b, epsilon)
&& a.c.isAlmostEquals(b.c, epsilon)
&& a.d.isAlmostEquals(b.d, epsilon)
fun multiply(l: Matrix, r: Matrix): Matrix {
if (l.isNIL) return r
if (r.isNIL) return l
return Matrix(
l.a * r.a + l.b * r.c,
l.a * r.b + l.b * r.d,
l.c * r.a + l.d * r.c,
l.c * r.b + l.d * r.d,
l.tx * r.a + l.ty * r.c + r.tx,
l.tx * r.b + l.ty * r.d + r.ty
)
}
fun translating(delta: Point): Matrix = Matrix.IDENTITY.copy(tx = delta.x, ty = delta.y)
fun rotating(angle: Angle): Matrix = Matrix.IDENTITY.rotated(angle)
fun skewing(skewX: Angle, skewY: Angle): Matrix = Matrix.IDENTITY.skewed(skewX, skewY)
fun fromArray(value: FloatArray, offset: Int = 0): Matrix = Matrix(
value[offset + 0], value[offset + 1], value[offset + 2],
value[offset + 3], value[offset + 4], value[offset + 5]
)
fun fromArray(value: DoubleArray, offset: Int = 0): Matrix = Matrix(
value[offset + 0], value[offset + 1], value[offset + 2],
value[offset + 3], value[offset + 4], value[offset + 5]
)
fun fromTransform(
transform: MatrixTransform,
pivotX: Double = 0.0,
pivotY: Double = 0.0,
): Matrix = fromTransform(
transform.x,
transform.y,
transform.rotation,
transform.scaleX,
transform.scaleY,
transform.skewX,
transform.skewY,
pivotX,
pivotY,
)
fun fromTransform(
x: Double,
y: Double,
rotation: Angle = Angle.ZERO,
scaleX: Double = 1.0,
scaleY: Double = 1.0,
skewX: Angle = Angle.ZERO,
skewY: Angle = Angle.ZERO,
pivotX: Double = 0.0,
pivotY: Double = 0.0,
): Matrix {
// +0.0 drops the negative -0.0
val a = cos(rotation + skewY) * scaleX + 0f
val b = sin(rotation + skewY) * scaleX + 0f
val c = -sin(rotation - skewX) * scaleY + 0f
val d = cos(rotation - skewX) * scaleY + 0f
val tx: Double
val ty: Double
if (pivotX == 0.0 && pivotY == 0.0) {
tx = x
ty = y
} else {
tx = x - ((pivotX * a) + (pivotY * c))
ty = y - ((pivotX * b) + (pivotY * d))
}
return Matrix(a, b, c, d, tx, ty)
}
fun transform(a: Float, b: Float, c: Float, d: Float, tx: Float, ty: Float, p: Point): Point = Point(
a * p.x + c * p.y + tx,
d * p.y + b * p.x + ty
)
fun interpolated(l: Matrix, r: Matrix, ratio: Ratio): Matrix = Matrix(
ratio.interpolate(l.a, r.a),
ratio.interpolate(l.b, r.b),
ratio.interpolate(l.c, r.c),
ratio.interpolate(l.d, r.d),
ratio.interpolate(l.tx, r.tx),
ratio.interpolate(l.ty, r.ty),
)
}
}
//@KormaValueApi
data class MatrixTransform(
val x: Double = 0.0, val y: Double = 0.0,
val scaleX: Double = 1.0, val scaleY: Double = 1.0,
val skewX: Angle = Angle.ZERO, val skewY: Angle = Angle.ZERO,
val rotation: Angle = Angle.ZERO
) : IsAlmostEquals<MatrixTransform> {
override fun toString(): String = "MatrixTransform(x=${x.niceStr}, y=${y.niceStr}, scaleX=${scaleX}, scaleY=${scaleY}, skewX=${skewX}, skewY=${skewY}, rotation=${rotation})"
constructor() : this(0.0, 0.0, 1.0, 1.0, Angle.ZERO, Angle.ZERO, Angle.ZERO)
constructor(
x: Float, y: Float,
scaleX: Float, scaleY: Float,
skewX: Angle, skewY: Angle,
rotation: Angle
) : this(x.toDouble(), y.toDouble(), scaleX.toDouble(), scaleY.toDouble(), skewX, skewY, rotation)
companion object {
val IDENTITY = MatrixTransform(0.0, 0.0, 1.0, 1.0, Angle.ZERO, Angle.ZERO, Angle.ZERO)
fun fromMatrix(matrix: Matrix, pivotX: Double = 0.0, pivotY: Double = 0.0): MatrixTransform {
val a = matrix.a
val b = matrix.b
val c = matrix.c
val d = matrix.d
val skewX = -atan2(-c, d)
val skewY = atan2(b, a)
val delta = abs(skewX + skewY)
val trotation: Angle
val tskewX: Angle
val tskewY: Angle
val tx: Double
val ty: Double
if (delta < 0.001f || abs((PI * 2) - delta) < 0.001f) {
trotation = skewY.radians
tskewX = 0.0.radians
tskewY = 0.0.radians
} else {
trotation = 0.radians
tskewX = skewX.radians
tskewY = skewY.radians
}
val tscaleX = hypot(a, b)
val tscaleY = hypot(c, d)
if (pivotX == 0.0 && pivotY == 0.0) {
tx = matrix.tx
ty = matrix.ty
} else {
tx = matrix.tx + ((pivotX * a) + (pivotY * c));
ty = matrix.ty + ((pivotX * b) + (pivotY * d));
}
return MatrixTransform(tx, ty, tscaleX, tscaleY, tskewX, tskewY, trotation)
}
fun interpolated(l: MatrixTransform, r: MatrixTransform, ratio: Ratio): MatrixTransform = MatrixTransform(
ratio.toRatio().interpolate(l.x, r.x),
ratio.toRatio().interpolate(l.y, r.y),
ratio.toRatio().interpolate(l.scaleX, r.scaleX),
ratio.toRatio().interpolate(l.scaleY, r.scaleY),
ratio.toRatio().interpolateAngleDenormalized(l.skewX, r.skewX),
ratio.toRatio().interpolateAngleDenormalized(l.skewY, r.skewY),
ratio.toRatio().interpolateAngleDenormalized(l.rotation, r.rotation),
)
fun isAlmostEquals(a: MatrixTransform, b: MatrixTransform, epsilon: Double = 0.000001): Boolean =
a.x.isAlmostEquals(b.x, epsilon)
&& a.y.isAlmostEquals(b.y, epsilon)
&& a.scaleX.isAlmostEquals(b.scaleX, epsilon)
&& a.scaleY.isAlmostEquals(b.scaleY, epsilon)
&& a.skewX.isAlmostEquals(b.skewX, epsilon)
&& a.skewY.isAlmostEquals(b.skewY, epsilon)
&& a.rotation.isAlmostEquals(b.rotation, epsilon)
}
override fun isAlmostEquals(other: MatrixTransform, epsilon: Double): Boolean = isAlmostEquals(this, other, epsilon)
val scaleAvg: Double get() = (scaleX + scaleY) * 0.5
fun toMatrix(pivotX: Double = 0.0, pivotY: Double = 0.0): Matrix = Matrix.fromTransform(this, pivotX, pivotY)
operator fun plus(that: MatrixTransform): MatrixTransform = MatrixTransform(
x + that.x, y + that.y,
scaleX * that.scaleX, scaleY * that.scaleY,
skewX + that.skewX, skewY + that.skewY,
rotation + that.rotation,
)
operator fun minus(that: MatrixTransform): MatrixTransform = MatrixTransform(
x - that.x, y - that.y,
scaleX / that.scaleX, scaleY / that.scaleY,
skewX - that.skewX, skewY - that.skewY,
rotation - that.rotation,
)
}
class MatrixComputed(val matrix: Matrix, val transform: MatrixTransform) {
companion object;
constructor(matrix: Matrix) : this(matrix, MatrixTransform.fromMatrix(matrix))
constructor(transform: MatrixTransform) : this(transform.toMatrix(), transform)
}
enum class MatrixType(val id: Int, val hasRotation: Boolean, val hasScale: Boolean, val hasTranslation: Boolean) {
IDENTITY(1, hasRotation = false, hasScale = false, hasTranslation = false),
TRANSLATE(2, hasRotation = false, hasScale = false, hasTranslation = true),
SCALE(3, hasRotation = false, hasScale = true, hasTranslation = false),
SCALE_TRANSLATE(4, hasRotation = false, hasScale = true, hasTranslation = true),
COMPLEX(5, hasRotation = true, hasScale = true, hasTranslation = true);
}

View File

@@ -0,0 +1,237 @@
@file:Suppress("NOTHING_TO_INLINE")
package com.icegps.math.geometry
import com.icegps.math.*
import kotlin.math.*
/**
* Useful for representing rotations and scales.
*/
data class Matrix3 private constructor(
internal val data: FloatArray,
) : IsAlmostEqualsF<Matrix3> {
override fun equals(other: Any?): Boolean = other is Matrix3 && this.data.contentEquals(other.data)
override fun hashCode(): Int = data.contentHashCode()
private constructor(
v00: Float, v10: Float, v20: Float,
v01: Float, v11: Float, v21: Float,
v02: Float, v12: Float, v22: Float,
) : this(
floatArrayOf(
v00, v10, v20,
v01, v11, v21,
v02, v12, v22,
)
)
init {
check(data.size == 9)
}
val v00: Float get() = data[0]
val v10: Float get() = data[1]
val v20: Float get() = data[2]
val v01: Float get() = data[3]
val v11: Float get() = data[4]
val v21: Float get() = data[5]
val v02: Float get() = data[6]
val v12: Float get() = data[7]
val v22: Float get() = data[8]
val c0: Vector3F get() = Vector3F.fromArray(data, 0)
val c1: Vector3F get() = Vector3F.fromArray(data, 3)
val c2: Vector3F get() = Vector3F.fromArray(data, 6)
fun c(column: Int): Vector3F {
if (column < 0 || column >= 3) error("Invalid column $column")
return Vector3F.fromArray(data, column * 3)
}
val r0: Vector3F get() = Vector3F(v00, v01, v02)
val r1: Vector3F get() = Vector3F(v10, v11, v12)
val r2: Vector3F get() = Vector3F(v20, v21, v22)
fun v(index: Int): Float = data[index]
fun r(row: Int): Vector3F = when (row) {
0 -> r0
1 -> r1
2 -> r2
else -> error("Invalid row $row")
}
operator fun get(row: Int, column: Int): Float {
if (column !in 0..2 || row !in 0..2) error("Invalid index $row,$column")
return data[row * 3 + column]
}
fun transform(v: Vector3F): Vector3F = Vector3F(r0.dot(v), r1.dot(v), r2.dot(v))
operator fun unaryMinus(): Matrix3 = Matrix3(
-v00, -v10, -v20,
-v01, -v11, -v21,
-v02, -v12, -v22,
)
operator fun unaryPlus(): Matrix3 = this
operator fun minus(other: Matrix3): Matrix3 = Matrix3(
v00 - other.v00, v10 - other.v10, v20 - other.v20,
v01 - other.v01, v11 - other.v11, v21 - other.v21,
v02 - other.v02, v12 - other.v12, v22 - other.v22,
)
operator fun plus(other: Matrix3): Matrix3 = Matrix3(
v00 + other.v00, v10 + other.v10, v20 + other.v20,
v01 + other.v01, v11 + other.v11, v21 + other.v21,
v02 + other.v02, v12 + other.v12, v22 + other.v22,
)
operator fun times(other: Matrix3): Matrix3 = Matrix3.multiply(this, other)
operator fun times(scale: Float): Matrix3 = Matrix3(
v00 * scale, v10 * scale, v20 * scale,
v01 * scale, v11 * scale, v21 * scale,
v02 * scale, v12 * scale, v22 * scale,
)
operator fun div(scale: Float): Matrix3 = this * (1f / scale)
fun inv(): Matrix3 = inverted()
val determinant: Float get() = v00 * (v11 * v22 - v21 * v12) -
v01 * (v10 * v22 - v12 * v20) +
v02 * (v10 * v21 - v11 * v20)
fun inverted(): Matrix3 {
val determinant = this.determinant
if (determinant == 0.0f) throw ArithmeticException("Matrix is not invertible")
val invDet = 1.0f / determinant
return fromRows(
(v11 * v22 - v21 * v12) * invDet,
(v02 * v21 - v01 * v22) * invDet,
(v01 * v12 - v02 * v11) * invDet,
(v12 * v20 - v10 * v22) * invDet,
(v00 * v22 - v02 * v20) * invDet,
(v10 * v02 - v00 * v12) * invDet,
(v10 * v21 - v20 * v11) * invDet,
(v20 * v01 - v00 * v21) * invDet,
(v00 * v11 - v10 * v01) * invDet,
)
}
override fun toString(): String = buildString {
append("Matrix3(\n")
for (row in 0 until 3) {
append(" [ ")
for (col in 0 until 3) {
if (col != 0) append(", ")
val v = get(row, col)
if (floor(v) == v) append(v.toInt()) else append(v)
}
append(" ],\n")
}
append(")")
}
fun transposed(): Matrix3 = Matrix3.fromColumns(r0, r1, r2)
override fun isAlmostEquals(other: Matrix3, epsilon: Float): Boolean = c0.isAlmostEquals(other.c0, epsilon)
&& c1.isAlmostEquals(other.c1, epsilon)
&& c2.isAlmostEquals(other.c2, epsilon)
companion object {
const val M00 = 0
const val M10 = 1
const val M20 = 2
const val M01 = 3
const val M11 = 4
const val M21 = 5
const val M02 = 6
const val M12 = 7
const val M22 = 8
const val M03 = 9
const val M13 = 10
const val M23 = 11
val INDICES_BY_COLUMNS = intArrayOf(
M00, M10, M20,
M01, M11, M21,
M02, M12, M22,
)
val INDICES_BY_ROWS = intArrayOf(
M00, M01, M02,
M10, M11, M12,
M20, M21, M22,
)
val IDENTITY = Matrix3(
1f, 0f, 0f,
0f, 1f, 0f,
0f, 0f, 1f,
)
fun fromRows(
r0: Vector3F, r1: Vector3F, r2: Vector3F
): Matrix3 = Matrix3(
r0.x, r1.x, r2.x,
r0.y, r1.y, r2.y,
r0.z, r1.z, r2.z,
)
fun fromColumns(
c0: Vector3F, c1: Vector3F, c2: Vector3F
): Matrix3 = Matrix3(
c0.x, c0.y, c0.z,
c1.x, c1.y, c1.z,
c2.x, c2.y, c2.z,
)
fun fromColumns(
v00: Float, v10: Float, v20: Float,
v01: Float, v11: Float, v21: Float,
v02: Float, v12: Float, v22: Float,
): Matrix3 = Matrix3(
v00, v10, v20,
v01, v11, v21,
v02, v12, v22,
)
fun fromRows(
v00: Float, v01: Float, v02: Float,
v10: Float, v11: Float, v12: Float,
v20: Float, v21: Float, v22: Float,
): Matrix3 = Matrix3(
v00, v10, v20,
v01, v11, v21,
v02, v12, v22,
)
fun multiply(l: Matrix3, r: Matrix3): Matrix3 = Matrix3.fromRows(
(l.v00 * r.v00) + (l.v01 * r.v10) + (l.v02 * r.v20),
(l.v00 * r.v01) + (l.v01 * r.v11) + (l.v02 * r.v21),
(l.v00 * r.v02) + (l.v01 * r.v12) + (l.v02 * r.v22),
(l.v10 * r.v00) + (l.v11 * r.v10) + (l.v12 * r.v20),
(l.v10 * r.v01) + (l.v11 * r.v11) + (l.v12 * r.v21),
(l.v10 * r.v02) + (l.v11 * r.v12) + (l.v12 * r.v22),
(l.v20 * r.v00) + (l.v21 * r.v10) + (l.v22 * r.v20),
(l.v20 * r.v01) + (l.v21 * r.v11) + (l.v22 * r.v21),
(l.v20 * r.v02) + (l.v21 * r.v12) + (l.v22 * r.v22),
)
}
}
fun Matrix3.toMatrix4(): Matrix4 = Matrix4.fromRows(
v00, v01, v02, 0f,
v10, v11, v12, 0f,
v20, v21, v22, 0f,
0f, 0f, 0f, 1f,
)
fun Matrix3.toQuaternion(): Quaternion = Quaternion.fromRotationMatrix(this)

View File

@@ -0,0 +1,684 @@
package com.icegps.math.geometry
import com.icegps.math.*
import com.icegps.math.geometry.Matrix4.*
import kotlin.math.*
// @TODO: WIP
// @TODO: value class
// Stored as four consecutive column vectors (effectively stored in column-major order) see https://en.wikipedia.org/wiki/Row-_and_column-major_order
// v[Row][Column]
//@KormaExperimental
//@KormaValueApi
//inline class Matrix4 private constructor(
/**
* Useful for representing complete transforms: rotations, scales, translations, projections, etc.
*/
data class Matrix4 private constructor(
private val data: FloatArray,
//val c0: Vector4, val c1: Vector4, val c2: Vector4, val c3: Vector4,
//val v00: Float, val v10: Float, val v20: Float, val v30: Float,
//val v01: Float, val v11: Float, val v21: Float, val v31: Float,
//val v02: Float, val v12: Float, val v22: Float, val v32: Float,
//val v03: Float, val v13: Float, val v23: Float, val v33: Float,
) : IsAlmostEqualsF<Matrix4> {
init {
check(data.size == 16)
}
val v00: Float get() = data[0]; val v10: Float get() = data[1]; val v20: Float get() = data[2]; val v30: Float get() = data[3]
val v01: Float get() = data[4]; val v11: Float get() = data[5]; val v21: Float get() = data[6]; val v31: Float get() = data[7]
val v02: Float get() = data[8]; val v12: Float get() = data[9]; val v22: Float get() = data[10]; val v32: Float get() = data[11]
val v03: Float get() = data[12]; val v13: Float get() = data[13]; val v23: Float get() = data[14]; val v33: Float get() = data[15]
override fun equals(other: Any?): Boolean = other is Matrix4 && this.data.contentEquals(other.data)
override fun hashCode(): Int = data.contentHashCode()
operator fun times(scale: Float): Matrix4 = Matrix4.fromColumns(c0 * scale, c1 * scale, c2 * scale, c3 * scale)
operator fun times(that: Matrix4): Matrix4 = Matrix4.multiply(this, that)
fun transformTransposed(v: Vector4F): Vector4F = Vector4F(c0.dot(v), c1.dot(v), c2.dot(v), c3.dot(v))
fun transform(v: Vector4F): Vector4F = Vector4F(r0.dot(v), r1.dot(v), r2.dot(v), r3.dot(v))
fun transform(v: Vector3F): Vector3F = transform(v.toVector4()).toVector3()
fun transposed(): Matrix4 = Matrix4.fromColumns(r0, r1, r2, r3)
val determinant: Float get() = 0f +
(v30 * v21 * v12 * v03) -
(v20 * v31 * v12 * v03) -
(v30 * v11 * v22 * v03) +
(v10 * v31 * v22 * v03) +
(v20 * v11 * v32 * v03) -
(v10 * v21 * v32 * v03) -
(v30 * v21 * v02 * v13) +
(v20 * v31 * v02 * v13) +
(v30 * v01 * v22 * v13) -
(v00 * v31 * v22 * v13) -
(v20 * v01 * v32 * v13) +
(v00 * v21 * v32 * v13) +
(v30 * v11 * v02 * v23) -
(v10 * v31 * v02 * v23) -
(v30 * v01 * v12 * v23) +
(v00 * v31 * v12 * v23) +
(v10 * v01 * v32 * v23) -
(v00 * v11 * v32 * v23) -
(v20 * v11 * v02 * v33) +
(v10 * v21 * v02 * v33) +
(v20 * v01 * v12 * v33) -
(v00 * v21 * v12 * v33) -
(v10 * v01 * v22 * v33) +
(v00 * v11 * v22 * v33)
// Use toTRS/decompose
//fun decomposeProjection(): Vector4 = c3
//fun decomposeTranslation(): Vector4 = r3.copy(w = 1f)
//fun decomposeScale(): Vector4 {
// val x = r0.length3
// val y = r1.length3
// val z = r2.length3
// return Vector4(x, y, z, 1f)
//}
fun decomposeRotation(rowNormalise: Boolean = true): Quaternion {
var v1 = this.r0
var v2 = this.r1
var v3 = this.r2
if (rowNormalise) {
v1 = v1.normalized()
v2 = v2.normalized()
v3 = v3.normalized()
}
val d: Float = 0.25f * (v1[0] + v2[1] + v3[2] + 1f)
val out: Vector4F
when {
d > 0f -> {
val num1: Float = sqrt(d)
val num2: Float = 1f / (4f * num1)
out = Vector4F(
((v2[2] - v3[1]) * num2),
((v3[0] - v1[2]) * num2),
((v1[1] - v2[0]) * num2),
num1,
)
}
v1[0] > v2[1] && v1[0] > v3[2] -> {
val num1: Float = 2f * sqrt(1f + v1[0] - v2[1] - v3[2])
val num2: Float = 1f / num1
out = Vector4F(
(0.25f * num1),
((v2[0] + v1[1]) * num2),
((v3[0] + v1[2]) * num2),
((v3[1] - v2[2]) * num2),
)
}
v2[1] > v3[2] -> {
val num5: Float = 2f * sqrt(1f + v2[1] - v1[0] - v3[2])
val num6: Float = 1f / num5
out = Vector4F(
((v2[0] + v1[1]) * num6),
(0.25f * num5),
((v3[1] + v2[2]) * num6),
((v3[0] - v1[2]) * num6),
)
}
else -> {
val num7: Float = 2f * sqrt(1f + v3[2] - v1[0] - v2[1])
val num8: Float = 1f / num7
out = Vector4F(
((v3[0] + v1[2]) * num8),
((v3[1] + v2[2]) * num8),
(0.25f * num7),
((v2[0] - v1[1]) * num8),
)
}
}
return Quaternion(out.normalized())
}
fun copyToColumns(out: FloatArray = FloatArray(16), offset: Int = 0): FloatArray {
this.data.copyInto(out, offset, 0, 16)
return out
}
fun copyToRows(out: FloatArray = FloatArray(16), offset: Int = 0): FloatArray {
this.r0.copyTo(out, offset + 0)
this.r1.copyTo(out, offset + 4)
this.r2.copyTo(out, offset + 8)
this.r3.copyTo(out, offset + 12)
return out
}
private constructor(
v00: Float, v10: Float, v20: Float, v30: Float,
v01: Float, v11: Float, v21: Float, v31: Float,
v02: Float, v12: Float, v22: Float, v32: Float,
v03: Float, v13: Float, v23: Float, v33: Float,
) : this(floatArrayOf(
v00, v10, v20, v30,
v01, v11, v21, v31,
v02, v12, v22, v32,
v03, v13, v23, v33,
))
constructor() : this(
1f, 0f, 0f, 0f,
0f, 1f, 0f, 0f,
0f, 0f, 1f, 0f,
0f, 0f, 0f, 1f,
)
val c0: Vector4F get() = Vector4F.fromArray(data, 0)
val c1: Vector4F get() = Vector4F.fromArray(data, 4)
val c2: Vector4F get() = Vector4F.fromArray(data, 8)
val c3: Vector4F get() = Vector4F.fromArray(data, 12)
fun c(column: Int): Vector4F {
if (column < 0 || column >= 4) error("Invalid column $column")
return Vector4F.fromArray(data, column * 4)
}
val r0: Vector4F get() = Vector4F(v00, v01, v02, v03)
val r1: Vector4F get() = Vector4F(v10, v11, v12, v13)
val r2: Vector4F get() = Vector4F(v20, v21, v22, v23)
val r3: Vector4F get() = Vector4F(v30, v31, v32, v33)
fun r(row: Int): Vector4F = when (row) {
0 -> r0
1 -> r1
2 -> r2
3 -> r3
else -> error("Invalid row $row")
}
operator fun get(row: Int, column: Int): Float {
if (column !in 0..3 || row !in 0..3) error("Invalid index $row,$column")
return data[row * 4 + column]
}
fun getAtIndex(index: Int): Float {
if (index !in data.indices) error("Invalid index $index")
return data[index]
}
override fun toString(): String = buildString {
append("Matrix4(\n")
for (row in 0 until 4) {
append(" [ ")
for (col in 0 until 4) {
if (col != 0) append(", ")
val v = get(row, col)
if (floor(v) == v) append(v.toInt()) else append(v)
}
append(" ],\n")
}
append(")")
}
fun translated(x: Float, y: Float, z: Float, w: Float = 1f): Matrix4 = this * Matrix4.translation(x, y, z, w)
fun translated(x: Double, y: Double, z: Double, w: Double = 1.0) = this.translated(x.toFloat(), y.toFloat(), z.toFloat(), w.toFloat())
fun translated(x: Int, y: Int, z: Int, w: Int = 1) = this.translated(x.toFloat(), y.toFloat(), z.toFloat(), w.toFloat())
fun rotated(angle: Angle, x: Float, y: Float, z: Float): Matrix4 = this * Matrix4.rotation(angle, x, y, z)
fun rotated(angle: Angle, x: Double, y: Double, z: Double): Matrix4 = this.rotated(angle, x.toFloat(), y.toFloat(), z.toFloat())
fun rotated(angle: Angle, x: Int, y: Int, z: Int): Matrix4 = this.rotated(angle, x.toFloat(), y.toFloat(), z.toFloat())
fun scaled(x: Float, y: Float, z: Float, w: Float = 1f): Matrix4 = this * Matrix4.scale(x, y, z, w)
fun scaled(x: Double, y: Double, z: Double, w: Double = 1.0): Matrix4 = this.scaled(x.toFloat(), y.toFloat(), z.toFloat(), w.toFloat())
fun scaled(x: Int, y: Int, z: Int, w: Int = 1): Matrix4 = this.scaled(x.toFloat(), y.toFloat(), z.toFloat(), w.toFloat())
fun rotated(quat: Quaternion): Matrix4 = this * quat.toMatrix()
fun rotated(euler: EulerRotation): Matrix4 = this * euler.toMatrix()
fun rotated(x: Angle, y: Angle, z: Angle): Matrix4 = rotated(x, 1f, 0f, 0f).rotated(y, 0f, 1f, 0f).rotated(z, 0f, 0f, 1f)
fun decompose(): TRS4 = toTRS()
fun toTRS(): TRS4 {
val det = determinant
val translation = Vector4F(v03, v13, v23, 1f)
val scale = Vector4F(Vector3F.length(v00, v10, v20) * det.sign, Vector3F.length(v01, v11, v21), Vector3F.length(v02, v12, v22), 1f)
val invSX = 1f / scale.x
val invSY = 1f / scale.y
val invSZ = 1f / scale.z
val rotation = Quaternion.fromRotationMatrix(Matrix4.fromRows(
v00 * invSX, v01 * invSY, v02 * invSZ, v03,
v10 * invSX, v11 * invSY, v12 * invSZ, v13,
v20 * invSX, v21 * invSY, v22 * invSZ, v23,
v30, v31, v32, v33
))
return TRS4(translation, rotation, scale)
}
fun inverted(): Matrix4 {
val t11 = v12 * v23 * v31 - v13 * v22 * v31 + v13 * v21 * v32 - v11 * v23 * v32 - v12 * v21 * v33 + v11 * v22 * v33
val t12 = v03 * v22 * v31 - v02 * v23 * v31 - v03 * v21 * v32 + v01 * v23 * v32 + v02 * v21 * v33 - v01 * v22 * v33
val t13 = v02 * v13 * v31 - v03 * v12 * v31 + v03 * v11 * v32 - v01 * v13 * v32 - v02 * v11 * v33 + v01 * v12 * v33
val t14 = v03 * v12 * v21 - v02 * v13 * v21 - v03 * v11 * v22 + v01 * v13 * v22 + v02 * v11 * v23 - v01 * v12 * v23
val det = v00 * t11 + v10 * t12 + v20 * t13 + v30 * t14
if (det == 0f) {
println("Matrix doesn't have inverse")
return Matrix4.IDENTITY
}
val detInv = 1 / det
return Matrix4.fromRows(
t11 * detInv,
t12 * detInv,
t13 * detInv,
t14 * detInv,
(v13 * v22 * v30 - v12 * v23 * v30 - v13 * v20 * v32 + v10 * v23 * v32 + v12 * v20 * v33 - v10 * v22 * v33) * detInv,
(v02 * v23 * v30 - v03 * v22 * v30 + v03 * v20 * v32 - v00 * v23 * v32 - v02 * v20 * v33 + v00 * v22 * v33) * detInv,
(v03 * v12 * v30 - v02 * v13 * v30 - v03 * v10 * v32 + v00 * v13 * v32 + v02 * v10 * v33 - v00 * v12 * v33) * detInv,
(v02 * v13 * v20 - v03 * v12 * v20 + v03 * v10 * v22 - v00 * v13 * v22 - v02 * v10 * v23 + v00 * v12 * v23) * detInv,
(v11 * v23 * v30 - v13 * v21 * v30 + v13 * v20 * v31 - v10 * v23 * v31 - v11 * v20 * v33 + v10 * v21 * v33) * detInv,
(v03 * v21 * v30 - v01 * v23 * v30 - v03 * v20 * v31 + v00 * v23 * v31 + v01 * v20 * v33 - v00 * v21 * v33) * detInv,
(v01 * v13 * v30 - v03 * v11 * v30 + v03 * v10 * v31 - v00 * v13 * v31 - v01 * v10 * v33 + v00 * v11 * v33) * detInv,
(v03 * v11 * v20 - v01 * v13 * v20 - v03 * v10 * v21 + v00 * v13 * v21 + v01 * v10 * v23 - v00 * v11 * v23) * detInv,
(v12 * v21 * v30 - v11 * v22 * v30 - v12 * v20 * v31 + v10 * v22 * v31 + v11 * v20 * v32 - v10 * v21 * v32) * detInv,
(v01 * v22 * v30 - v02 * v21 * v30 + v02 * v20 * v31 - v00 * v22 * v31 - v01 * v20 * v32 + v00 * v21 * v32) * detInv,
(v02 * v11 * v30 - v01 * v12 * v30 - v02 * v10 * v31 + v00 * v12 * v31 + v01 * v10 * v32 - v00 * v11 * v32) * detInv,
(v01 * v12 * v20 - v02 * v11 * v20 + v02 * v10 * v21 - v00 * v12 * v21 - v01 * v10 * v22 + v00 * v11 * v22) * detInv
)
}
override fun isAlmostEquals(other: Matrix4, epsilon: Float): Boolean =
c0.isAlmostEquals(other.c0, epsilon) &&
c1.isAlmostEquals(other.c1, epsilon) &&
c2.isAlmostEquals(other.c2, epsilon) &&
c3.isAlmostEquals(other.c3, epsilon)
companion object {
const val M00 = 0
const val M10 = 1
const val M20 = 2
const val M30 = 3
const val M01 = 4
const val M11 = 5
const val M21 = 6
const val M31 = 7
const val M02 = 8
const val M12 = 9
const val M22 = 10
const val M32 = 11
const val M03 = 12
const val M13 = 13
const val M23 = 14
const val M33 = 15
val INDICES_BY_COLUMNS_4x4 = intArrayOf(
M00, M10, M20, M30,
M01, M11, M21, M31,
M02, M12, M22, M32,
M03, M13, M23, M33,
)
val INDICES_BY_ROWS_4x4 = intArrayOf(
M00, M01, M02, M03,
M10, M11, M12, M13,
M20, M21, M22, M23,
M30, M31, M32, M33,
)
val INDICES_BY_COLUMNS_3x3 = intArrayOf(
M00, M10, M20,
M01, M11, M21,
M02, M12, M22,
)
val INDICES_BY_ROWS_3x3 = intArrayOf(
M00, M01, M02,
M10, M11, M12,
M20, M21, M22,
)
val IDENTITY = Matrix4()
fun fromColumns(
c0: Vector4F, c1: Vector4F, c2: Vector4F, c3: Vector4F
): Matrix4 = Matrix4(
c0.x, c0.y, c0.z, c0.w,
c1.x, c1.y, c1.z, c1.w,
c2.x, c2.y, c2.z, c2.w,
c3.x, c3.y, c3.z, c3.w,
)
fun fromColumns(v: FloatArray, offset: Int = 0): Matrix4 = Matrix4.fromColumns(
v[offset + 0], v[offset + 1], v[offset + 2], v[offset + 3],
v[offset + 4], v[offset + 5], v[offset + 6], v[offset + 7],
v[offset + 8], v[offset + 9], v[offset + 10], v[offset + 11],
v[offset + 12], v[offset + 13], v[offset + 14], v[offset + 15],
)
fun fromRows(v: FloatArray, offset: Int = 0): Matrix4 = Matrix4.fromRows(
v[offset + 0], v[offset + 1], v[offset + 2], v[offset + 3],
v[offset + 4], v[offset + 5], v[offset + 6], v[offset + 7],
v[offset + 8], v[offset + 9], v[offset + 10], v[offset + 11],
v[offset + 12], v[offset + 13], v[offset + 14], v[offset + 15],
)
fun fromRows(
r0: Vector4F, r1: Vector4F, r2: Vector4F, r3: Vector4F
): Matrix4 = Matrix4(
r0.x, r1.x, r2.x, r3.x,
r0.y, r1.y, r2.y, r3.y,
r0.z, r1.z, r2.z, r3.z,
r0.w, r1.w, r2.w, r3.w,
)
fun fromColumns(
v00: Float, v10: Float, v20: Float, v30: Float,
v01: Float, v11: Float, v21: Float, v31: Float,
v02: Float, v12: Float, v22: Float, v32: Float,
v03: Float, v13: Float, v23: Float, v33: Float,
): Matrix4 = Matrix4(
v00, v10, v20, v30,
v01, v11, v21, v31,
v02, v12, v22, v32,
v03, v13, v23, v33,
)
fun fromRows(
v00: Float, v01: Float, v02: Float, v03: Float,
v10: Float, v11: Float, v12: Float, v13: Float,
v20: Float, v21: Float, v22: Float, v23: Float,
v30: Float, v31: Float, v32: Float, v33: Float,
): Matrix4 = Matrix4(
v00, v10, v20, v30,
v01, v11, v21, v31,
v02, v12, v22, v32,
v03, v13, v23, v33,
)
fun fromRows3x3(
a00: Float, a01: Float, a02: Float,
a10: Float, a11: Float, a12: Float,
a20: Float, a21: Float, a22: Float
): Matrix4 = Matrix4.fromRows(
a00, a01, a02, 0f,
a10, a11, a12, 0f,
a20, a21, a22, 0f,
0f, 0f, 0f, 1f,
)
fun fromColumns3x3(
a00: Float, a10: Float, a20: Float,
a01: Float, a11: Float, a21: Float,
a02: Float, a12: Float, a22: Float
): Matrix4 = Matrix4.fromColumns(
a00, a10, a20, 0f,
a01, a11, a21, 0f,
a02, a12, a22, 0f,
0f, 0f, 0f, 1f,
)
fun fromTRS(trs: TRS4): Matrix4 = fromTRS(trs.translation, trs.rotation, trs.scale)
fun fromTRS(translation: Vector4F, rotation: Quaternion, scale: Vector4F): Matrix4 {
val rx = rotation.x
val ry = rotation.y
val rz = rotation.z
val rw = rotation.w
val xt = rx + rx
val yt = ry + ry
val zt = rz + rz
val xx = rx * xt
val xy = rx * yt
val xz = rx * zt
val yy = ry * yt
val yz = ry * zt
val zz = rz * zt
val wx = rw * xt
val wy = rw * yt
val wz = rw * zt
return Matrix4.fromRows(
((1 - (yy + zz)) * scale.x), ((xy - wz) * scale.y), ((xz + wy) * scale.z), translation.x,
((xy + wz) * scale.x), ((1 - (xx + zz)) * scale.y), ((yz - wx) * scale.z), translation.y,
((xz - wy) * scale.x), ((yz + wx) * scale.y), ((1 - (xx + yy)) * scale.z), translation.z,
0f, 0f, 0f, 1f
)
}
fun translation(x: Float, y: Float, z: Float, w: Float = 1f): Matrix4 = Matrix4.fromRows(
1f, 0f, 0f, x,
0f, 1f, 0f, y,
0f, 0f, 1f, z,
0f, 0f, 0f, w
)
fun translation(x: Double, y: Double, z: Double, w: Double = 1.0): Matrix4 = translation(x.toFloat(), y.toFloat(), z.toFloat(), w.toFloat())
fun translation(x: Int, y: Int, z: Int, w: Int = 1): Matrix4 = translation(x.toFloat(), y.toFloat(), z.toFloat(), w.toFloat())
fun scale(x: Float, y: Float, z: Float, w: Float = 1f): Matrix4 = Matrix4.fromRows(
x, 0f, 0f, 0f,
0f, y, 0f, 0f,
0f, 0f, z, 0f,
0f, 0f, 0f, w
)
fun scale(x: Double, y: Double, z: Double, w: Double = 1.0): Matrix4 = scale(x.toFloat(), y.toFloat(), z.toFloat(), w.toFloat())
fun scale(x: Int, y: Int, z: Int, w: Int = 1): Matrix4 = scale(x.toFloat(), y.toFloat(), z.toFloat(), w.toFloat())
fun shear(x: Float, y: Float, z: Float): Matrix4 = fromRows(
1f, y, z, 0f,
x, 1f, z, 0f,
x, y, 1f, 0f,
0f, 0f, 0f, 1f
)
fun shear(x: Double, y: Double, z: Double): Matrix4 = shear(x.toFloat(), y.toFloat(), z.toFloat())
fun shear(x: Int, y: Int, z: Int): Matrix4 = shear(x.toFloat(), y.toFloat(), z.toFloat())
fun rotationX(angle: Angle): Matrix4 {
val c = angle.cosine.toFloat()
val s = angle.sine.toFloat()
return Matrix4.fromRows(
1f, 0f, 0f, 0f,
0f, c, -s, 0f,
0f, s, c, 0f,
0f, 0f, 0f, 1f
)
}
fun rotationY(angle: Angle): Matrix4 {
val c = angle.cosine.toFloat()
val s = angle.sine.toFloat()
return Matrix4.fromRows(
c, 0f, s, 0f,
0f, 1f, 0f, 0f,
-s, 0f, c, 0f,
0f, 0f, 0f, 1f
)
}
fun rotationZ(angle: Angle): Matrix4 {
val c = angle.cosine.toFloat()
val s = angle.sine.toFloat()
return Matrix4.fromRows(
c, -s, 0f, 0f,
s, c, 0f, 0f,
0f, 0f, 1f, 0f,
0f, 0f, 0f, 1f
)
}
fun rotation(angle: Angle, x: Float, y: Float, z: Float): Matrix4 {
val mag = sqrt(x * x + y * y + z * z)
val norm = 1f / mag
val nx = x * norm
val ny = y * norm
val nz = z * norm
val c = angle.cosine.toFloat()
val s = angle.sine.toFloat()
val t = 1 - c
val tx = t * nx
val ty = t * ny
return Matrix4.fromRows(
tx * nx + c, tx * ny - s * nz, tx * nz + s * ny, 0f,
tx * ny + s * nz, ty * ny + c, ty * nz - s * nx, 0f,
tx * nz - s * ny, ty * nz + s * nx, t * nz * nz + c, 0f,
0f, 0f, 0f, 1f
)
}
fun rotation(angle: Angle, direction: Vector3F): Matrix4 = rotation(angle, direction.x, direction.y, direction.z)
fun rotation(angle: Angle, x: Double, y: Double, z: Double): Matrix4 = rotation(angle, x.toFloat(), y.toFloat(), z.toFloat())
fun rotation(angle: Angle, x: Int, y: Int, z: Int): Matrix4 = rotation(angle, x.toFloat(), y.toFloat(), z.toFloat())
// @TODO: Use Vector4 operations, and use columns instead of rows for faster set
fun multiply(l: Matrix4, r: Matrix4): Matrix4 = Matrix4.fromRows(
(l.v00 * r.v00) + (l.v01 * r.v10) + (l.v02 * r.v20) + (l.v03 * r.v30),
(l.v00 * r.v01) + (l.v01 * r.v11) + (l.v02 * r.v21) + (l.v03 * r.v31),
(l.v00 * r.v02) + (l.v01 * r.v12) + (l.v02 * r.v22) + (l.v03 * r.v32),
(l.v00 * r.v03) + (l.v01 * r.v13) + (l.v02 * r.v23) + (l.v03 * r.v33),
(l.v10 * r.v00) + (l.v11 * r.v10) + (l.v12 * r.v20) + (l.v13 * r.v30),
(l.v10 * r.v01) + (l.v11 * r.v11) + (l.v12 * r.v21) + (l.v13 * r.v31),
(l.v10 * r.v02) + (l.v11 * r.v12) + (l.v12 * r.v22) + (l.v13 * r.v32),
(l.v10 * r.v03) + (l.v11 * r.v13) + (l.v12 * r.v23) + (l.v13 * r.v33),
(l.v20 * r.v00) + (l.v21 * r.v10) + (l.v22 * r.v20) + (l.v23 * r.v30),
(l.v20 * r.v01) + (l.v21 * r.v11) + (l.v22 * r.v21) + (l.v23 * r.v31),
(l.v20 * r.v02) + (l.v21 * r.v12) + (l.v22 * r.v22) + (l.v23 * r.v32),
(l.v20 * r.v03) + (l.v21 * r.v13) + (l.v22 * r.v23) + (l.v23 * r.v33),
(l.v30 * r.v00) + (l.v31 * r.v10) + (l.v32 * r.v20) + (l.v33 * r.v30),
(l.v30 * r.v01) + (l.v31 * r.v11) + (l.v32 * r.v21) + (l.v33 * r.v31),
(l.v30 * r.v02) + (l.v31 * r.v12) + (l.v32 * r.v22) + (l.v33 * r.v32),
(l.v30 * r.v03) + (l.v31 * r.v13) + (l.v32 * r.v23) + (l.v33 * r.v33)
)
fun multiply(
lv00: Float, lv01: Float, lv02: Float, lv03: Float,
lv10: Float, lv11: Float, lv12: Float, lv13: Float,
lv20: Float, lv21: Float, lv22: Float, lv23: Float,
lv30: Float, lv31: Float, lv32: Float, lv33: Float,
rv00: Float, rv01: Float, rv02: Float, rv03: Float,
rv10: Float, rv11: Float, rv12: Float, rv13: Float,
rv20: Float, rv21: Float, rv22: Float, rv23: Float,
rv30: Float, rv31: Float, rv32: Float, rv33: Float,
): Matrix4 = Matrix4.fromRows(
(lv00 * rv00) + (lv01 * rv10) + (lv02 * rv20) + (lv03 * rv30),
(lv00 * rv01) + (lv01 * rv11) + (lv02 * rv21) + (lv03 * rv31),
(lv00 * rv02) + (lv01 * rv12) + (lv02 * rv22) + (lv03 * rv32),
(lv00 * rv03) + (lv01 * rv13) + (lv02 * rv23) + (lv03 * rv33),
(lv10 * rv00) + (lv11 * rv10) + (lv12 * rv20) + (lv13 * rv30),
(lv10 * rv01) + (lv11 * rv11) + (lv12 * rv21) + (lv13 * rv31),
(lv10 * rv02) + (lv11 * rv12) + (lv12 * rv22) + (lv13 * rv32),
(lv10 * rv03) + (lv11 * rv13) + (lv12 * rv23) + (lv13 * rv33),
(lv20 * rv00) + (lv21 * rv10) + (lv22 * rv20) + (lv23 * rv30),
(lv20 * rv01) + (lv21 * rv11) + (lv22 * rv21) + (lv23 * rv31),
(lv20 * rv02) + (lv21 * rv12) + (lv22 * rv22) + (lv23 * rv32),
(lv20 * rv03) + (lv21 * rv13) + (lv22 * rv23) + (lv23 * rv33),
(lv30 * rv00) + (lv31 * rv10) + (lv32 * rv20) + (lv33 * rv30),
(lv30 * rv01) + (lv31 * rv11) + (lv32 * rv21) + (lv33 * rv31),
(lv30 * rv02) + (lv31 * rv12) + (lv32 * rv22) + (lv33 * rv32),
(lv30 * rv03) + (lv31 * rv13) + (lv32 * rv23) + (lv33 * rv33)
)
fun ortho(left: Float, right: Float, bottom: Float, top: Float, near: Float = 0f, far: Float = 1f): Matrix4 {
val sx = 2f / (right - left)
val sy = 2f / (top - bottom)
val sz = -2f / (far - near)
val tx = -(right + left) / (right - left)
val ty = -(top + bottom) / (top - bottom)
val tz = -(far + near) / (far - near)
return Matrix4.fromRows(
sx, 0f, 0f, tx,
0f, sy, 0f, ty,
0f, 0f, sz, tz,
0f, 0f, 0f, 1f
)
}
fun ortho(left: Double, right: Double, bottom: Double, top: Double, near: Double, far: Double): Matrix4 =
ortho(left.toFloat(), right.toFloat(), bottom.toFloat(), top.toFloat(), near.toFloat(), far.toFloat())
fun ortho(left: Int, right: Int, bottom: Int, top: Int, near: Int, far: Int): Matrix4 =
ortho(left.toFloat(), right.toFloat(), bottom.toFloat(), top.toFloat(), near.toFloat(), far.toFloat())
fun frustum(left: Float, right: Float, bottom: Float, top: Float, zNear: Float = 0f, zFar: Float = 1f): Matrix4 {
if (zNear <= 0.0f || zFar <= zNear) {
throw Exception("Error: Required zNear > 0 and zFar > zNear, but zNear $zNear, zFar $zFar")
}
if (left == right || top == bottom) {
throw Exception("Error: top,bottom and left,right must not be equal")
}
val zNear2 = 2.0f * zNear
val dx = right - left
val dy = top - bottom
val dz = zFar - zNear
val A = (right + left) / dx
val B = (top + bottom) / dy
val C = -1.0f * (zFar + zNear) / dz
val D = -2.0f * (zFar * zNear) / dz
return Matrix4.fromRows(
zNear2 / dx, 0f, A, 0f,
0f, zNear2 / dy, B, 0f,
0f, 0f, C, D,
0f, 0f, -1f, 0f
)
}
fun frustum(left: Double, right: Double, bottom: Double, top: Double, zNear: Double = 0.0, zFar: Double = 1.0): Matrix4
= frustum(left.toFloat(), right.toFloat(), bottom.toFloat(), top.toFloat(), zNear.toFloat(), zFar.toFloat())
fun frustum(left: Int, right: Int, bottom: Int, top: Int, zNear: Int = 0, zFar: Int = 1): Matrix4
= frustum(left.toFloat(), right.toFloat(), bottom.toFloat(), top.toFloat(), zNear.toFloat(), zFar.toFloat())
fun perspective(fovy: Angle, aspect: Float, zNear: Float, zFar: Float): Matrix4 {
val top = tan(fovy.radians.toFloat() / 2f) * zNear
val bottom = -1.0f * top
val left = aspect * bottom
val right = aspect * top
return frustum(left, right, bottom, top, zNear, zFar)
}
fun perspective(fovy: Angle, aspect: Double, zNear: Double, zFar: Double): Matrix4
= perspective(fovy, aspect.toFloat(), zNear.toFloat(), zFar.toFloat())
fun lookAt(
eye: Vector3F,
target: Vector3F,
up: Vector3F
): Matrix4 {
var z = eye - target
if (z.lengthSquared == 0f) z = z.copy(z = 1f)
z = z.normalized()
var x = Vector3F.cross(up, z)
if (x.lengthSquared == 0f) {
z = when {
abs(up.z) == 1f -> z.copy(x = z.x + 0.0001f)
else -> z.copy(z = z.z + 0.0001f)
}
z = z.normalized()
x = Vector3F.cross(up, z)
}
x = x.normalized()
val y = Vector3F.cross(z, x)
return Matrix4.fromRows(
x.x, y.x, z.x, 0f,
x.y, y.y, z.y, 0f,
x.z, y.z, z.z, 0f,
//-x.dot(eye), -y.dot(eye), -z.dot(eye), 1f // @TODO: Check why is this making other tests to fail
0f, 0f, 0f, 1f
)
}
}
}
data class TRS4(val translation: Vector4F, val rotation: Quaternion, val scale: Vector4F)
fun Matrix4.toMatrix3(): Matrix3 = Matrix3.fromRows(
v00, v01, v02,
v10, v11, v12,
v20, v21, v22
)

View File

@@ -0,0 +1,9 @@
package com.icegps.math.geometry
fun Matrix4.Companion.ortho(rect: Rectangle, near: Float = 0f, far: Float = 1f): Matrix4 = Matrix4.ortho(rect.left, rect.right, rect.bottom, rect.top, near.toDouble(), far.toDouble())
fun Matrix4.Companion.ortho(rect: Rectangle, near: Double = 0.0, far: Double = 1.0): Matrix4 = ortho(rect, near.toFloat(), far.toFloat())
fun Matrix4.Companion.ortho(rect: Rectangle, near: Int = 0, far: Int = 1): Matrix4 = ortho(rect, near.toFloat(), far.toFloat())
fun Matrix4.Companion.frustum(rect: Rectangle, zNear: Float = 0f, zFar: Float = 1f): Matrix4 = Matrix4.frustum(rect.left, rect.right, rect.bottom, rect.top, zNear.toDouble(), zFar.toDouble())
fun Matrix4.Companion.frustum(rect: Rectangle, zNear: Double = 0.0, zFar: Double = 1.0): Matrix4 = frustum(rect, zNear.toFloat(), zFar.toFloat())
fun Matrix4.Companion.frustum(rect: Rectangle, zNear: Int = 0, zFar: Int = 1): Matrix4 = frustum(rect, zNear.toFloat(), zFar.toFloat())

View File

@@ -0,0 +1,64 @@
package com.icegps.math.geometry
import kotlin.math.*
fun Matrix.scaled(scale: Scale): Matrix = scaled(scale.scaleX, scale.scaleY)
fun Matrix.prescaled(scale: Scale): Matrix = prescaled(scale.scaleX, scale.scaleY)
val MatrixTransform.scale: Scale get() = Scale(scaleX, scaleY)
@Suppress("DuplicatedCode")
fun Matrix.transformRectangle(rectangle: Rectangle, delta: Boolean = false): Rectangle {
val a = this.a
val b = this.b
val c = this.c
val d = this.d
val tx = if (delta) 0.0 else this.tx
val ty = if (delta) 0.0 else this.ty
val x = rectangle.x
val y = rectangle.y
val xMax = x + rectangle.width
val yMax = y + rectangle.height
var x0 = a * x + c * y + tx
var y0 = b * x + d * y + ty
var x1 = a * xMax + c * y + tx
var y1 = b * xMax + d * y + ty
var x2 = a * xMax + c * yMax + tx
var y2 = b * xMax + d * yMax + ty
var x3 = a * x + c * yMax + tx
var y3 = b * x + d * yMax + ty
var tmp = 0.0
if (x0 > x1) {
tmp = x0
x0 = x1
x1 = tmp
}
if (x2 > x3) {
tmp = x2
x2 = x3
x3 = tmp
}
val rx = floor(if (x0 < x2) x0 else x2)
val rw = ceil((if (x1 > x3) x1 else x3) - rectangle.x)
if (y0 > y1) {
tmp = y0
y0 = y1
y1 = tmp
}
if (y2 > y3) {
tmp = y2
y2 = y3
y3 = tmp
}
val ry = floor(if (y0 < y2) y0 else y2)
val rh = ceil((if (y1 > y3) y1 else y3) - rectangle.y)
return Rectangle(rx, ry, rw, rh)
}

View File

@@ -0,0 +1,3 @@
package com.icegps.math.geometry
enum class MatrixMajorOrder { ROW, COLUMN }

View File

@@ -0,0 +1,55 @@
package com.icegps.math.geometry
import kotlin.math.*
enum class Orientation(val value: Int) {
CLOCK_WISE(+1), COUNTER_CLOCK_WISE(-1), COLLINEAR(0);
operator fun unaryMinus(): Orientation = when (this) {
CLOCK_WISE -> COUNTER_CLOCK_WISE
COUNTER_CLOCK_WISE -> CLOCK_WISE
COLLINEAR -> COLLINEAR
}
operator fun unaryPlus(): Orientation = this
companion object {
private const val EPSILON: Double = 1e-7
//fun orient3d(v1: Vector3, v2: Vector3, v3: Vector3, epsilon: Float = EPSILONf): Orientation {
// // vectors from v1 to v2 and from v1 to v3
// val a = v2 - v1
// val b = v3 - v1
// val crossProduct = a.cross(b)
// // check the direction of the cross product
// return when {
// abs(crossProduct.z) < epsilon -> Orientation.COLLINEAR
// crossProduct.z < 0 -> Orientation.CLOCK_WISE
// else -> Orientation.COUNTER_CLOCK_WISE
// }
//}
internal fun checkValidUpVector(up: Vector2D) {
check(up.x == 0.0 && up.y.absoluteValue == 1.0) { "up vector only supports (0, -1) and (0, +1) for now" }
}
// @TODO: Should we provide an UP vector as reference instead? ie. Vector2(0, +1) or Vector2(0, -1), would make sense for 3d?
fun orient2d(pa: Point, pb: Point, pc: Point, up: Vector2D = Vector2D.UP): Orientation {
return orient2d(pa.x, pa.y, pb.x, pb.y, pc.x, pc.y, up = up)
}
fun orient2d(paX: Double, paY: Double, pbX: Double, pbY: Double, pcX: Double, pcY: Double, epsilon: Double = EPSILON, up: Vector2D = Vector2D.UP): Orientation {
checkValidUpVector(up)
// Cross product
val detleft: Double = (paX - pcX) * (pbY - pcY)
val detright: Double = (paY - pcY) * (pbX - pcX)
val v: Double = detleft - detright
val res: Orientation = when {
v.absoluteValue < epsilon -> COLLINEAR
v > 0 -> COUNTER_CLOCK_WISE
else -> CLOCK_WISE
}
return if (up.y > 0) res else -res
}
}
}

View File

@@ -0,0 +1,3 @@
package com.icegps.math.geometry
data class Polygon(val points: IPointList)

View File

@@ -0,0 +1,3 @@
package com.icegps.math.geometry
data class Polyline(val points: IPointList)

View File

@@ -0,0 +1,326 @@
package com.icegps.math.geometry
import com.icegps.math.*
import com.icegps.math.interpolation.*
import com.icegps.math.isAlmostZero
import kotlin.math.*
// https://en.wikipedia.org/wiki/Conversion_between_quaternions_and_Euler_angles
//@KormaValueApi
data class Quaternion(val x: Float, val y: Float, val z: Float, val w: Float) : IsAlmostEqualsF<Quaternion> {
//inline class Quaternion private constructor(val data: Float4Pack) {
// constructor(x: Float, y: Float, z: Float, w: Float) : this(float4PackOf(x, y, z, w))
// val x: Float get() = data.f0
// val y: Float get() = data.f1
// val z: Float get() = data.f2
// val w: Float get() = data.f3
// operator fun component1(): Float = x
// operator fun component2(): Float = y
// operator fun component3(): Float = z
// operator fun component4(): Float = w
val vector: Vector4F get() = Vector4F(x, y, z, w)
val xyz: Vector3F get() = Vector3F(x, y, z)
fun conjugate() = Quaternion(-x, -y, -z, w)
operator fun get(index: Int): Float = when (index) {
0 -> x
1 -> y
2 -> z
3 -> w
else -> Float.NaN
}
val lengthSquared: Float get() = (x * x) + (y * y) + (z * z) + (w * w)
val length: Float get() = sqrt(lengthSquared)
constructor(vector: Vector4F, unit: Unit = Unit) : this(vector.x, vector.y, vector.z, vector.w)
constructor() : this(0f, 0f, 0f, 1f)
constructor(x: Double, y: Double, z: Double, w: Double) : this(x.toFloat(), y.toFloat(), z.toFloat(), w.toFloat())
fun toMatrix(): Matrix4 {
val v = _toMatrix()
return Matrix4.fromRows(
v[0], v[1], v[2], 0f,
v[3], v[4], v[5], 0f,
v[6], v[7], v[8], 0f,
0f, 0f, 0f, 1f,
)
}
fun toMatrix3(): Matrix3 {
val v = _toMatrix()
return Matrix3.fromRows(
v[0], v[1], v[2],
v[3], v[4], v[5],
v[6], v[7], v[8],
)
}
private fun _toMatrix(): FloatArray {
val xx = x * x
val xy = x * y
val xz = x * z
val xw = x * w
val yy = y * y
val yz = y * z
val yw = y * w
val zz = z * z
val zw = z * w
return floatArrayOf(
1 - 2 * (yy + zz), 2 * (xy - zw), 2 * (xz + yw),
2 * (xy + zw), 1 - 2 * (xx + zz), 2 * (yz - xw),
2 * (xz - yw), 2 * (yz + xw), 1 - 2 * (xx + yy),
)
}
@Deprecated("Use toMatrix instead")
fun toMatrixInverted(): Matrix4 = Matrix4.multiply(
// Left
w, z, -y, x,
-z, w, x, y,
y, -x, w, z,
-x, -y, -z, w,
// Right
w, z, -y, -x,
-z, w, x, -y,
y, -x, w, -z,
x, y, z, w,
)
operator fun unaryMinus(): Quaternion = Quaternion(-x, -y, -z, -w)
operator fun plus(other: Quaternion): Quaternion = Quaternion(x + other.x, y + other.y, z + other.z, w + other.w)
operator fun minus(other: Quaternion): Quaternion = Quaternion(x - other.x, y - other.y, z - other.z, w - other.w)
fun scaled(scale: Float): Quaternion = Quaternion.interpolated(Quaternion.IDENTITY, this, scale)
fun scaled(scale: Double): Quaternion = scaled(scale.toFloat())
fun scaled(scale: Int): Quaternion = scaled(scale.toFloat())
operator fun times(scale: Float): Quaternion = Quaternion(x * scale, y * scale, z * scale, w * scale)
operator fun times(scale: Double): Quaternion = times(scale.toFloat())
operator fun times(other: Quaternion): Quaternion {
val left = this
val right = other
return Quaternion(Vector4F(
(left.xyz * right.w) + (right.xyz * left.w) + Vector3F.cross(left.xyz, right.xyz),
left.w * right.w - left.xyz.dot(right.xyz)
))
}
fun normalized(): Quaternion {
val length = 1f / Vector4F(x, y, z, w).length
return Quaternion(x / length, y / length, z / length, w / length)
}
/** Also known as conjugate */
fun inverted(): Quaternion {
val q = this
val lengthSquared = q.lengthSquared
if (lengthSquared.isAlmostZero()) error("Zero quaternion doesn't have invesrse")
val num = 1f / lengthSquared
return Quaternion(q.x * -num, q.y * -num, q.z * -num, q.w * num)
}
fun transform(v: Vector3F): Vector3F {
// Create a pure quaternion from the vector
val q = this
val p = Quaternion(v.x, v.y, v.z, 0f)
// Multiply q by p, then by the conjugate of q
val resultQuaternion = q * p * q.conjugate()
// Return the vector part of the resulting quaternion
return Vector3F(resultQuaternion.x, resultQuaternion.y, resultQuaternion.z)
}
fun toEuler(config: EulerRotation.Config = EulerRotation.Config.DEFAULT): EulerRotation = EulerRotation.fromQuaternion(this, config)
override fun isAlmostEquals(other: Quaternion, epsilon: Float): Boolean =
this.x.isAlmostEquals(other.x, epsilon)
&& this.y.isAlmostEquals(other.y, epsilon)
&& this.z.isAlmostEquals(other.z, epsilon)
&& this.w.isAlmostEquals(other.w, epsilon)
fun interpolated(other: Quaternion, t: Float): Quaternion = interpolated(this, other, t)
fun interpolated(other: Quaternion, t: Ratio): Quaternion = interpolated(this, other, t.toFloat())
fun angleTo(other: Quaternion): Angle = angleBetween(this, other)
companion object {
val IDENTITY = Quaternion()
fun dotProduct(l: Quaternion, r: Quaternion): Float = l.x * r.x + l.y * r.y + l.z * r.z + l.w * r.w
fun angleBetween(a: Quaternion, b: Quaternion): Angle {
val dot = dotProduct(a, b)
return Angle.arcCosine(2 * (dot * dot) - 1)
}
inline fun func(callback: (Int) -> Float) = Quaternion(callback(0), callback(1), callback(2), callback(3))
inline fun func(l: Quaternion, r: Quaternion, func: (l: Float, r: Float) -> Float) = Quaternion(
func(l.x, r.x),
func(l.y, r.y),
func(l.z, r.z),
func(l.w, r.w)
)
fun slerp(left: Quaternion, right: Quaternion, t: Float): Quaternion {
var tleft = left.normalized()
var tright = right.normalized()
var dot = Quaternion.dotProduct(tleft, right)
if (dot < 0.0f) {
tright = -tright
dot = -dot
}
if (dot > 0.99995f) return func(tleft, tright) { l, r -> l + t * (r - l) }
val angle0 = acos(dot)
val angle1 = angle0 * t
val s1 = sin(angle1) / sin(angle0)
val s0 = cos(angle1) - dot * s1
return func(tleft, tright) { l, r -> ((s0 * l) + (s1 * r)) }
}
fun nlerp(left: Quaternion, right: Quaternion, t: Double): Quaternion {
val sign = if (Quaternion.dotProduct(left, right) < 0) -1 else +1
return func { ((1f - t) * left[it] + t * right[it] * sign).toFloat() }.normalized()
}
fun interpolated(left: Quaternion, right: Quaternion, t: Float): Quaternion = slerp(left, right, t)
fun fromVectors(from: Vector3F, to: Vector3F): Quaternion {
// Normalize input vectors
val start = from.normalized()
val dest = to.normalized()
val dot = start.dot(dest)
// If vectors are opposite
when {
dot < -0.9999999f -> {
val tmp = Vector3F(start.y, -start.x, 0f).normalized()
return Quaternion(tmp.x, tmp.y, tmp.z, 0f)
}
dot > 0.9999999f -> {
// If vectors are same
return Quaternion()
}
else -> {
val s = kotlin.math.sqrt((1 + dot) * 2)
val invs = 1 / s
val c = start.cross(dest)
return Quaternion(
c.x * invs,
c.y * invs,
c.z * invs,
s * 0.5f,
).normalized()
}
}
}
fun fromAxisAngle(axis: Vector3F, angle: Angle): Quaternion {
val naxis = axis.normalized()
val angle2 = angle / 2
val s = sin(angle2)
return Quaternion(
naxis.x * s,
naxis.y * s,
naxis.z * s,
cos(angle2)
)
}
// @TODO: Check
fun lookRotation(forward: Vector3F, up: Vector3F = Vector3F.UP): Quaternion {
//if (up == Vector3.UP) return fromVectors(Vector3.FORWARD, forward.normalized())
val z = forward.normalized()
val x = (up.normalized() cross z).normalized()
//println("x=$x, z=$z")
if (x.lengthSquared.isAlmostZero()) {
// COLLINEAR
return Quaternion.fromVectors(Vector3F.FORWARD, z)
}
val y = z cross x
return fromRotationMatrix(Matrix3.fromColumns(x, y, z))
}
fun fromRotationMatrix(m: Matrix4): Quaternion = fromRotationMatrix(
m.v00, m.v10, m.v20,
m.v01, m.v11, m.v21,
m.v02, m.v12, m.v22,
)
fun fromRotationMatrix(m: Matrix3): Quaternion = fromRotationMatrix(
m.v00, m.v10, m.v20,
m.v01, m.v11, m.v21,
m.v02, m.v12, m.v22,
)
fun fromRotationMatrix(
v00: Float, v10: Float, v20: Float,
v01: Float, v11: Float, v21: Float,
v02: Float, v12: Float, v22: Float,
): Quaternion {
val t = v00 + v11 + v22
//println("t=$t, v00=$v00, v11=$v11, v22=$v22")
return when {
t >= 0 -> {
val s = .5f / sqrt(t + 1f)
//println("[0]")
Quaternion(((v21 - v12) * s), ((v02 - v20) * s), ((v10 - v01) * s), (0.25f / s))
}
v00 > v11 && v00 > v22 -> {
val s = 2f * sqrt(1f + v00 - v11 - v22)
//println("[1]")
Quaternion((0.25f * s), ((v01 + v10) / s), ((v02 + v20) / s), ((v21 - v12) / s))
}
v11 > v22 -> {
val s = 2f * sqrt(1f + v11 - v00 - v22)
//println("[2]")
Quaternion(((v01 + v10) / s), (.25f * s), ((v12 + v21) / s), ((v02 - v20) / s))
}
else -> {
val s = 2f * sqrt(1f + v22 - v00 - v11)
//println("[3]")
Quaternion(((v02 + v20) / s), ((v12 + v21) / s), (.25f * s), ((v10 - v01) / s))
}
}
}
fun fromEuler(e: EulerRotation): Quaternion = e.toQuaternion()
fun fromEuler(roll: Angle, pitch: Angle, yaw: Angle): Quaternion = EulerRotation(roll, pitch, yaw).toQuaternion()
fun toEuler(x: Float, y: Float, z: Float, w: Float, config: EulerRotation.Config = EulerRotation.Config.DEFAULT): EulerRotation {
return EulerRotation.Companion.fromQuaternion(x, y, z, w, config)
/*
val t = y * x + z * w
// Gimbal lock, if any: positive (+1) for north pole, negative (-1) for south pole, zero (0) when no gimbal lock
val pole = if (t > 0.499f) 1 else if (t < -0.499f) -1 else 0
return EulerRotation(
roll = when (pole) {
0 -> Angle.asin((2f * (w * x - z * y)).clamp(-1f, +1f))
else -> (pole.toFloat() * PIF * .5f).radians
},
pitch = when (pole) {
0 -> Angle.atan2(2f * (y * w + x * z), 1f - 2f * (y * y + x * x))
else -> Angle.ZERO
},
yaw = when (pole) {
0 -> Angle.atan2(2f * (w * z + y * x), 1f - 2f * (x * x + z * z))
else -> Angle.atan2(y, w) * pole.toFloat() * 2f
},
)
*/
}
}
}
fun Angle.Companion.between(a: Quaternion, b: Quaternion): Angle = Quaternion.angleBetween(a, b)

View File

@@ -0,0 +1,90 @@
package com.icegps.math.geometry
import com.icegps.math.*
import com.icegps.math.annotations.*
typealias Ray = Ray2D
typealias Ray2 = Ray
/** Represents an infinite [Ray] starting at [point] in the specified [direction] with an [angle] */
//inline class Ray(val data: Float4Pack) {
data class Ray2D
/** Constructs a [Ray] starting from [point] in the specified [direction] */
private constructor(
/** Starting point */
val point: Point,
/** Normalized direction of the ray starting at [point] */
val direction: Vector2D,
) : IsAlmostEquals<Ray2D> {
companion object {
/** Creates a ray starting in [start] and passing by [end] */
fun fromTwoPoints(start: Point, end: Point): Ray = Ray(start, end - start, Unit)
}
//val point: Point get() = Point(data.f0, data.f1)
//val direction: Vector2 get() = Vector2(data.f2, data.f3)
/** Angle between two points */
val angle: Angle get() = direction.angle
/** Constructs a [Ray] starting from [point] in the specified [direction] */
constructor(point: Point, direction: Vector2D, unit: Unit = Unit) : this(point, direction.normalized)
/** Constructs a [Ray] starting from [point] in the specified [angle] */
constructor(point: Point, angle: Angle) : this(point, Vector2D.polar(angle), Unit)
//private constructor(point: Point, normalizedDirection: Vector2, unit: Unit) : this(point.x, point.y, normalizedDirection.x, normalizedDirection.y)
/** Checks if [this] and [other]are equals with an [epsilon] difference */
override fun isAlmostEquals(other: Ray, epsilon: Double): Boolean =
this.point.isAlmostEquals(other.point, epsilon) && this.direction.isAlmostEquals(other.direction, epsilon)
/** Checks if [this] and [other]are equals with an [epsilon] tolerance */
fun transformed(m: Matrix): Ray = Ray(m.transform(point), m.deltaTransform(direction).normalized)
/** Converts this [Ray] into a [Line] of a specific [length] starting by [point] */
fun toLine(length: Double = 100000.0): Line = Line(point, point + direction * length)
override fun toString(): String = "Ray($point, $angle)"
}
typealias Ray3 = Ray3F
data class Ray3F(val pos: Vector3F, val dir: Vector3F) {//: Shape3D {
//override val center: Vector3 get() = pos
//override val volume: Float = 0f
}
@KormaMutableApi
fun Ray3F.intersectRayAABox1(box: AABB3D) : Boolean {
val ray = this
// r.dir is unit direction vector of ray
val dirfrac = ray.dir.inv()
// lb is the corner of AABB with minimal coordinates - left bottom, rt is maximal corner
// r.org is origin of ray
val t1 = (box.min.x - ray.pos.x) * dirfrac.x
val t2 = (box.max.x - ray.pos.x) * dirfrac.x
val t3 = (box.min.y - ray.pos.y) * dirfrac.y
val t4 = (box.max.y - ray.pos.y) * dirfrac.y
val t5 = (box.min.z - ray.pos.z) * dirfrac.z
val t6 = (box.max.z - ray.pos.z) * dirfrac.z
val tmin =
kotlin.math.max(kotlin.math.max(kotlin.math.min(t1, t2), kotlin.math.min(t3, t4)), kotlin.math.min(t5, t6))
val tmax =
kotlin.math.min(kotlin.math.min(kotlin.math.max(t1, t2), kotlin.math.max(t3, t4)), kotlin.math.max(t5, t6))
// if tmax < 0, ray (line) is intersecting AABB, but whole AABB is behing us
if (tmax < 0) {
val t = tmax
return false
}
// if tmin > tmax, ray doesn't intersect AABB
if (tmin > tmax) {
val t = tmax
return false
}
val t = tmin
return true
}

View File

@@ -0,0 +1,28 @@
package com.icegps.math.geometry
data class RectCorners(
val topLeft: Double,
val topRight: Double,
val bottomRight: Double,
val bottomLeft: Double,
) {
operator fun unaryMinus(): RectCorners = this * (-1.0)
operator fun unaryPlus(): RectCorners = this
operator fun plus(that: RectCorners): RectCorners = RectCorners(this.topLeft + that.topLeft, this.topRight + that.topRight, this.bottomLeft + that.bottomLeft, this.bottomRight + that.bottomRight)
operator fun minus(that: RectCorners): RectCorners = RectCorners(this.topLeft - that.topLeft, this.topRight - that.topRight, this.bottomLeft - that.bottomLeft, this.bottomRight - that.bottomRight)
operator fun times(scale: Double): RectCorners = RectCorners(topLeft * scale, topRight * scale, bottomRight * scale, bottomLeft * scale)
operator fun div(scale: Double): RectCorners = this * (1.0 / scale)
companion object {
val EMPTY = RectCorners(0)
val ZERO = RectCorners(0)
val ONE = RectCorners(1.0)
val MINUS_ONE = RectCorners(-1.0)
val NaN = RectCorners(Double.NaN)
inline operator fun invoke(corner: Number): RectCorners = RectCorners(corner.toDouble(), corner.toDouble(), corner.toDouble(), corner.toDouble())
inline operator fun invoke(topLeftBottomRight: Number, topRightAndBottomLeft: Number): RectCorners = RectCorners(topLeftBottomRight.toDouble(), topRightAndBottomLeft.toDouble(), topLeftBottomRight.toDouble(), topRightAndBottomLeft.toDouble())
inline operator fun invoke(topLeft: Number, topRightAndBottomLeft: Number, bottomRight: Number): RectCorners = RectCorners(topLeft.toDouble(), topRightAndBottomLeft.toDouble(), bottomRight.toDouble(), topRightAndBottomLeft.toDouble())
inline operator fun invoke(topLeft: Number, topRight: Number, bottomRight: Number, bottomLeft: Number): RectCorners = RectCorners(topLeft.toDouble(), topRight.toDouble(), bottomRight.toDouble(), bottomLeft.toDouble())
}
}

View File

@@ -0,0 +1,291 @@
package com.icegps.math.geometry
import com.icegps.math.*
import com.icegps.math.geometry.shape.*
import com.icegps.math.interpolation.*
import com.icegps.number.*
import kotlin.math.*
typealias RectangleD = Rectangle
//@KormaValueApi
//inline class Rectangle(val data: Float4Pack) : Shape2D, Interpolable<Rectangle> {
//inline class Rectangle(val data: Float4) : Shape2D {
data class Rectangle(val x: Double, val y: Double, val width: Double, val height: Double) : SimpleShape2D, IsAlmostEquals<Rectangle> {
val int: RectangleInt get() = toInt()
//operator fun component1(): Float = x
//operator fun component2(): Float = y
//operator fun component3(): Float = width
//operator fun component4(): Float = height
//val x: Float get() = data.f0
//val y: Float get() = data.f1
//val width: Float get() = data.f2
//val height: Float get() = data.f3
//fun copy(x: Float = this.x, y: Float = this.y, width: Float = this.width, height: Float = this.height): Rectangle = Rectangle(x, y, width, height)
@Deprecated("", ReplaceWith("this")) fun clone(): Rectangle = this
@Deprecated("", ReplaceWith("this")) val immutable: Rectangle get() = this
val position: Point get() = Point(x, y)
val size: Size get() = Size(width, height)
val isZero: Boolean get() = this == ZERO
val isInfinite: Boolean get() = this == INFINITE
//val isNaN: Boolean get() = this == NaN
val isNaN: Boolean get() = this.x.isNaN()
val isNIL: Boolean get() = isNaN
val isNotNIL: Boolean get() = !isNIL
override fun isAlmostEquals(other: Rectangle, epsilon: Double): Boolean =
this.x.isAlmostEquals(other.x, epsilon) &&
this.y.isAlmostEquals(other.y, epsilon) &&
this.width.isAlmostEquals(other.width, epsilon) &&
this.height.isAlmostEquals(other.height, epsilon)
fun toStringBounds(): String = "Rectangle([${left.niceStr},${top.niceStr}]-[${right.niceStr},${bottom.niceStr}])"
fun toStringSize(): String = "Rectangle([${left.niceStr},${top.niceStr}],[${width.niceStr},${height.niceStr}])"
fun toStringCompat(): String = "Rectangle(x=${left.niceStr}, y=${top.niceStr}, w=${width.niceStr}, h=${height.niceStr})"
//override fun interpolateWith(ratio: Ratio, other: Rectangle): Rectangle = interpolated(this, other, ratio)
override fun toString(): String = when {
isNIL -> "null"
else -> "Rectangle(x=${x.niceStr}, y=${y.niceStr}, width=${width.niceStr}, height=${height.niceStr})"
}
companion object {
val ZERO = Rectangle(0, 0, 0, 0)
val INFINITE = Rectangle(Float.NEGATIVE_INFINITY, Float.NEGATIVE_INFINITY, Float.POSITIVE_INFINITY, Float.POSITIVE_INFINITY)
val NaN = Rectangle(Float.NaN, Float.NaN, 0f, 0f)
val NIL get() = NaN
operator fun invoke(): Rectangle = ZERO
operator fun invoke(p: Point, s: Size): Rectangle = Rectangle(p.x, p.y, s.width, s.height)
operator fun invoke(x: Int, y: Int, width: Int, height: Int): Rectangle = Rectangle(Point(x, y), Size(width, height))
operator fun invoke(x: Float, y: Float, width: Float, height: Float): Rectangle = Rectangle(Point(x, y), Size(width, height))
operator fun invoke(x: Double, y: Double, width: Double, height: Double): Rectangle = Rectangle(Point(x, y), Size(width, height))
inline operator fun invoke(x: Number, y: Number, width: Number, height: Number): Rectangle = Rectangle(Point(x, y), Size(width, height))
fun fromBounds(left: Double, top: Double, right: Double, bottom: Double): Rectangle = Rectangle(left, top, right - left, bottom - top)
fun fromBounds(left: Int, top: Int, right: Int, bottom: Int): Rectangle = fromBounds(left.toDouble(), top.toDouble(), right.toDouble(), bottom.toDouble())
fun fromBounds(left: Float, top: Float, right: Float, bottom: Float): Rectangle = fromBounds(left.toDouble(), top.toDouble(), right.toDouble(), bottom.toDouble())
fun fromBounds(point1: Point, point2: Point): Rectangle = Rectangle(point1, (point2 - point1).toSize())
inline fun fromBounds(left: Number, top: Number, right: Number, bottom: Number): Rectangle = fromBounds(left.toDouble(), top.toDouble(), right.toDouble(), bottom.toDouble())
fun isContainedIn(a: Rectangle, b: Rectangle): Boolean = a.x >= b.x && a.y >= b.y && a.x + a.width <= b.x + b.width && a.y + a.height <= b.y + b.height
fun interpolated(a: Rectangle, b: Rectangle, ratio: Ratio): Rectangle = Rectangle.fromBounds(
ratio.interpolate(a.left, b.left),
ratio.interpolate(a.top, b.top),
ratio.interpolate(a.right, b.right),
ratio.interpolate(a.bottom, b.bottom),
)
}
operator fun times(scale: Double): Rectangle = Rectangle(x * scale, y * scale, width * scale, height * scale)
operator fun times(scale: Float): Rectangle = times(scale.toDouble())
operator fun times(scale: Int): Rectangle = times(scale.toDouble())
operator fun div(scale: Double): Rectangle = Rectangle(x / scale, y / scale, width / scale, height / scale)
operator fun div(scale: Float): Rectangle = div(scale.toDouble())
operator fun div(scale: Int): Rectangle = div(scale.toDouble())
operator fun contains(that: Point): Boolean = contains(that.x, that.y)
operator fun contains(that: Vector2F): Boolean = contains(that.x, that.y)
operator fun contains(that: Vector2I): Boolean = contains(that.x, that.y)
fun contains(x: Double, y: Double): Boolean = (x >= left && x < right) && (y >= top && y < bottom)
fun contains(x: Float, y: Float): Boolean = contains(x.toDouble(), y.toDouble())
fun contains(x: Int, y: Int): Boolean = contains(x.toDouble(), y.toDouble())
override val area: Double get() = width * height
override val perimeter: Double get() = (width + height) * 2
override val closed: Boolean = true
override fun containsPoint(p: Point): Boolean = (p.x >= left && p.x < right) && (p.y >= top && p.y < bottom)
override fun getBounds(): Rectangle = this
override fun distance(p: Point): Double {
val p = p - center
val b = Vector2D(width * 0.5, height * 0.5)
val d = p.absoluteValue - b
return max(d, Vector2D.ZERO).length + min(max(d.x, d.y), 0.0)
}
override fun normalVectorAt(p: Point): Vector2D {
val pp = projectedPoint(p)
val x = when (pp.x) {
left -> -1.0
right -> +1.0
else -> 0.0
}
val y = when (pp.y) {
top -> -1.0
bottom -> +1.0
else -> 0.0
}
return Point(x, y).normalized
}
override fun projectedPoint(p: Point): Point {
val p0 = Line(topLeft, topRight).projectedPoint(p)
val p1 = Line(topRight, bottomRight).projectedPoint(p)
val p2 = Line(bottomRight, bottomLeft).projectedPoint(p)
val p3 = Line(bottomLeft, topLeft).projectedPoint(p)
val d0 = (p0 - p).lengthSquared
val d1 = (p1 - p).lengthSquared
val d2 = (p2 - p).lengthSquared
val d3 = (p3 - p).lengthSquared
val dmin = com.icegps.math.min(d0, d1, d2, d3)
return when (dmin) {
d0 -> p0
d1 -> p1
d2 -> p2
d3 -> p3
else -> p0
}
//val px = p.x.clamp(left, right)
//val py = p.y.clamp(top, bottom)
//val distTop = (py - top).absoluteValue
//val distBottom = (py - bottom).absoluteValue
//val minDistY = min(distTop, distBottom)
//val distLeft = (px - left).absoluteValue
//val distRight = (px - right).absoluteValue
//val minDistX = min(distLeft, distRight)
//if (minDistX < minDistY) {
// return Point(if (distLeft < distRight) left else right, py)
//} else {
// return Point(px, if (distTop < distBottom) top else bottom)
//}
}
val isEmpty: Boolean get() = width == 0.0 && height == 0.0
val isNotEmpty: Boolean get() = !isEmpty
val left: Double get() = x
val top: Double get() = y
val right: Double get() = x + width
val bottom: Double get() = y + height
val topLeft: Point get() = Point(left, top)
val topRight: Point get() = Point(right, top)
val bottomLeft: Point get() = Point(left, bottom)
val bottomRight: Point get() = Point(right, bottom)
val centerX: Double get() = (right + left) * 0.5
val centerY: Double get() = (bottom + top) * 0.5
override val center: Point get() = Point(centerX, centerY)
fun without(padding: Margin): Rectangle = fromBounds(
left + padding.left,
top + padding.top,
right - padding.right,
bottom - padding.bottom
)
fun with(margin: Margin): Rectangle = fromBounds(
left - margin.left,
top - margin.top,
right + margin.right,
bottom + margin.bottom
)
infix fun intersects(that: Rectangle): Boolean = intersectsX(that) && intersectsY(that)
infix fun intersectsX(that: Rectangle): Boolean = that.left <= this.right && that.right >= this.left
infix fun intersectsY(that: Rectangle): Boolean = that.top <= this.bottom && that.bottom >= this.top
infix fun intersectionOrNull(that: Rectangle): Rectangle? = if (this intersects that) Rectangle(
max(this.left, that.left), max(this.top, that.top),
min(this.right, that.right), min(this.bottom, that.bottom)
) else null
infix fun intersection(that: Rectangle): Rectangle = if (this intersects that) Rectangle(
max(this.left, that.left), max(this.top, that.top),
min(this.right, that.right), min(this.bottom, that.bottom)
) else Rectangle.NIL
fun toInt(): RectangleInt = RectangleInt(x.toInt(), y.toInt(), width.toInt(), height.toInt())
fun toIntRound(): RectangleInt = RectangleInt(x.toIntRound(), y.toIntRound(), width.toIntRound(), height.toIntRound())
fun toIntCeil(): RectangleInt = RectangleInt(x.toIntCeil(), y.toIntCeil(), width.toIntCeil(), height.toIntCeil())
fun toIntFloor(): RectangleInt = RectangleInt(x.toIntFloor(), y.toIntFloor(), width.toIntFloor(), height.toIntFloor())
fun getAnchoredPoint(anchor: Anchor): Point = Point(left + width * anchor.sx, top + height * anchor.sy)
fun expanded(border: MarginInt): Rectangle =
fromBounds(left - border.left, top - border.top, right + border.right, bottom + border.bottom)
fun copyBounds(left: Double = this.left, top: Double = this.top, right: Double = this.right, bottom: Double = this.bottom): Rectangle =
Rectangle.fromBounds(left, top, right, bottom)
fun translated(delta: Point): Rectangle = copy(x = this.x + delta.x, y = this.y + delta.y)
fun transformed(m: Matrix): Rectangle {
val tl = m.transform(topLeft)
val tr = m.transform(topRight)
val bl = m.transform(bottomLeft)
val br = m.transform(bottomRight)
val min = Point.minComponents(tl, tr, bl, br)
val max = Point.maxComponents(tl, tr, bl, br)
return Rectangle.fromBounds(min, max)
}
fun normalized(): Rectangle =
Rectangle.fromBounds(Point.minComponents(topLeft, bottomRight), Point.maxComponents(topLeft, bottomRight))
fun roundDecimalPlaces(places: Int): Rectangle = Rectangle(
x.roundDecimalPlaces(places),
y.roundDecimalPlaces(places),
width.roundDecimalPlaces(places),
height.roundDecimalPlaces(places)
)
fun rounded(): Rectangle = Rectangle(round(x), round(y), round(width), round(height))
fun floored(): Rectangle = Rectangle(floor(x), floor(y), floor(width), floor(height))
fun ceiled(): Rectangle = Rectangle(ceil(x), ceil(y), ceil(width), ceil(height))
}
fun Iterable<Rectangle>.bounds(): Rectangle {
var first = true
var left = 0.0
var right = 0.0
var top = 0.0
var bottom = 0.0
for (r in this) {
if (first) {
left = r.left
right = r.right
top = r.top
bottom = r.bottom
first = false
} else {
left = min(left, r.left)
right = max(right, r.right)
top = min(top, r.top)
bottom = max(bottom, r.bottom)
}
}
return Rectangle.fromBounds(left, top, right, bottom)
}
/**
* Circle that touches or contains all the corners ([Rectangle.topLeft], [Rectangle.topRight], [Rectangle.bottomLeft], [Rectangle.bottomRight]) of the rectangle.
*/
fun Rectangle.outerCircle(): Circle {
val centerX = centerX
val centerY = centerY
return Circle(center, Point.distance(centerX, centerY, right, top))
}
fun Rectangle.place(item: Size, anchor: Anchor, scale: ScaleMode): Rectangle {
val outSize = scale(item, this.size)
val p = (this.size - outSize) * anchor
return Rectangle(p, outSize)
}
//fun RectangleInt.place(item: SizeInt, anchor: Anchor, scale: ScaleMode): RectangleInt {
// val outSize = scale(item, this.size)
// val p = (this.size - outSize) * anchor
// return RectangleInt(p, outSize)
//}

View File

@@ -0,0 +1,89 @@
package com.icegps.math.geometry
typealias RectangleI = RectangleInt
//@KormaValueApi
data class RectangleInt(
val x: Int, val y: Int,
val width: Int, val height: Int,
) {
constructor() : this(0, 0, 0, 0)
val position: Vector2I get() = Vector2I(x, y)
val area: Int get() = width * height
val isEmpty: Boolean get() = width == 0 && height == 0
val isNotEmpty: Boolean get() = !isEmpty
val left: Int get() = x
val top: Int get() = y
val right: Int get() = x + width
val bottom: Int get() = y + height
val topLeft: Vector2I get() = Vector2I(left, top)
val topRight: Vector2I get() = Vector2I(right, top)
val bottomLeft: Vector2I get() = Vector2I(left, bottom)
val bottomRight: Vector2I get() = Vector2I(right, bottom)
val centerX: Int get() = ((right + left) * 0.5f).toInt()
val centerY: Int get() = ((bottom + top) * 0.5f).toInt()
val center: Vector2I get() = Vector2I(centerX, centerY)
operator fun times(scale: Double): RectangleInt = RectangleInt(
(x * scale).toInt(), (y * scale).toInt(),
(width * scale).toInt(), (height * scale).toInt()
)
operator fun times(scale: Float): RectangleInt = this * scale.toDouble()
operator fun times(scale: Int): RectangleInt = this * scale.toDouble()
operator fun div(scale: Float): RectangleInt = RectangleInt(
(x / scale).toInt(), (y / scale).toInt(),
(width / scale).toInt(), (height / scale).toInt()
)
operator fun div(scale: Double): RectangleInt = this / scale.toFloat()
operator fun div(scale: Int): RectangleInt = this / scale.toFloat()
operator fun contains(that: Point): Boolean = contains(that.x, that.y)
operator fun contains(that: Vector2I): Boolean = contains(that.x, that.y)
fun contains(x: Float, y: Float): Boolean = (x >= left && x < right) && (y >= top && y < bottom)
fun contains(x: Double, y: Double): Boolean = contains(x.toFloat(), y.toFloat())
fun contains(x: Int, y: Int): Boolean = contains(x.toFloat(), y.toFloat())
fun sliceWithBounds(left: Int, top: Int, right: Int, bottom: Int, clamped: Boolean = true): RectangleInt {
val left = if (!clamped) left else left.coerceIn(0, this.width)
val right = if (!clamped) right else right.coerceIn(0, this.width)
val top = if (!clamped) top else top.coerceIn(0, this.height)
val bottom = if (!clamped) bottom else bottom.coerceIn(0, this.height)
return fromBounds(this.x + left, this.y + top, this.x + right, this.y + bottom)
}
fun sliceWithSize(x: Int, y: Int, width: Int, height: Int, clamped: Boolean = true): RectangleInt =
sliceWithBounds(x, y, x + width, y + height, clamped)
override fun toString(): String = "Rectangle(x=${x}, y=${y}, width=${width}, height=${height})"
companion object {
fun union(a: RectangleInt, b: RectangleInt): RectangleInt = fromBounds(
kotlin.math.min(a.left, b.left),
kotlin.math.min(a.top, b.top),
kotlin.math.max(a.right, b.right),
kotlin.math.max(a.bottom, b.bottom)
)
fun fromBounds(topLeft: Vector2I, bottomRight: Vector2I): RectangleInt {
val size = (bottomRight - topLeft)
return RectangleInt(topLeft.x, topLeft.y, size.x, size.y)
}
fun fromBounds(left: Int, top: Int, right: Int, bottom: Int): RectangleInt = fromBounds(Vector2I(left, top), Vector2I(right, bottom))
operator fun invoke(position: PointInt, size: SizeInt): RectangleInt = RectangleInt(position.x, position.y, size.width, size.height)
}
val float: Rectangle get() = Rectangle(x, y, width, height)
val size: SizeInt get() = SizeInt(width, height)
fun toFloat(): Rectangle = Rectangle(position.toDouble(), size.toDouble())
fun expanded(border: MarginInt): RectangleInt =
RectangleInt.fromBounds(left - border.left, top - border.top, right + border.right, bottom + border.bottom)
}

View File

@@ -0,0 +1,18 @@
package com.icegps.math.geometry
import com.icegps.math.interpolation.*
data class RoundRectangle(val rect: Rectangle, val corners: RectCorners) {
companion object {
private fun areaQuarter(radius: Double): Double = Arc_length(radius, Angle.QUARTER)
private fun areaComplementaryQuarter(radius: Double): Double = (radius * radius) - areaQuarter(radius)
private fun Arc_length(radius: Double, angle: Angle): Double = PI2 * radius * angle.ratio
}
val area: Double get() = rect.area - (
areaComplementaryQuarter(corners.topLeft) +
areaComplementaryQuarter(corners.topRight) +
areaComplementaryQuarter(corners.bottomLeft) +
areaComplementaryQuarter(corners.bottomRight)
)
}

View File

@@ -0,0 +1,52 @@
package com.icegps.math.geometry
//@KormaValueApi
//inline class Scale internal constructor(internal val raw: Float2Pack) {
data class Scale(val scaleX: Double, val scaleY: Double) {
companion object {
val IDENTITY = Scale(1f, 1f)
}
//val scaleX: Float get() = raw.f0
//val scaleY: Float get() = raw.f1
val scaleAvg: Double get() = scaleX * .5 + scaleY * .5
@Deprecated("", ReplaceWith("scaleAvg"))
val avg: Double get() = scaleAvg
constructor() : this(1f, 1f)
constructor(scale: Float) : this(scale, scale)
constructor(scale: Double) : this(scale, scale)
constructor(scale: Int) : this(scale.toDouble())
//constructor(scaleX: Float, scaleY: Float) : this(float2PackOf(scaleX, scaleY))
constructor(scaleX: Float, scaleY: Float) : this(scaleX.toDouble(), scaleY.toDouble())
constructor(scaleX: Int, scaleY: Int) : this(scaleX.toDouble(), scaleY.toDouble())
operator fun unaryMinus(): Scale = Scale(-scaleX, -scaleY)
operator fun unaryPlus(): Scale = this
operator fun plus(other: Scale): Scale = Scale(scaleX + other.scaleX, scaleY + other.scaleY)
operator fun minus(other: Scale): Scale = Scale(scaleX - other.scaleX, scaleY - other.scaleY)
operator fun times(other: Scale): Scale = Scale(scaleX * other.scaleX, scaleY * other.scaleY)
operator fun times(other: Float): Scale = Scale(scaleX * other, scaleY * other)
operator fun div(other: Scale): Scale = Scale(scaleX / other.scaleX, scaleY / other.scaleY)
operator fun div(other: Float): Scale = Scale(scaleX / other, scaleY / other)
operator fun rem(other: Scale): Scale = Scale(scaleX % other.scaleX, scaleY % other.scaleY)
operator fun rem(other: Float): Scale = Scale(scaleX % other, scaleY % scaleY)
}
operator fun Vector2D.times(other: Scale): Vector2D = Vector2D(x * other.scaleX, y * other.scaleY)
operator fun Vector2D.div(other: Scale): Vector2D = Vector2D(x / other.scaleX, y / other.scaleY)
operator fun Vector2D.rem(other: Scale): Vector2D = Vector2D(x % other.scaleX, y % other.scaleY)
operator fun Vector2F.times(other: Scale): Vector2F = Vector2F(x * other.scaleX, y * other.scaleY)
operator fun Vector2F.div(other: Scale): Vector2F = Vector2F(x / other.scaleX, y / other.scaleY)
operator fun Vector2F.rem(other: Scale): Vector2F = Vector2F(x % other.scaleX, y % other.scaleY)
fun Vector2F.toScale(): Scale = Scale(x, y)
fun Vector2D.toScale(): Scale = Scale(x, y)
fun Scale.toPoint(): Point = Point(scaleX, scaleY)
fun Scale.toVector2(): Vector2D = Vector2D(scaleX, scaleY)
fun Scale.toVector2F(): Vector2F = Vector2F(scaleX, scaleY)

View File

@@ -0,0 +1,40 @@
package com.icegps.math.geometry
class ScaleMode(
val name: String? = null,
val transform: (item: Size, container: Size) -> Size
) {
override fun toString(): String = "ScaleMode($name)"
operator fun invoke(item: Size, container: Size): Size = transform(item, container)
operator fun invoke(item: SizeInt, container: SizeInt): SizeInt = transform(item.toFloat(), container.toFloat()).toInt()
companion object {
val COVER: ScaleMode = ScaleMode("COVER") { i, c -> i * (c / i).toVector2().maxComponent() }
val SHOW_ALL: ScaleMode = ScaleMode("SHOW_ALL") { i, c -> i * (c / i).toVector2().minComponent() }
val FIT: ScaleMode get() = SHOW_ALL
val FILL: ScaleMode get() = EXACT
val EXACT: ScaleMode = ScaleMode("EXACT") { i, c -> c }
val NO_SCALE: ScaleMode = ScaleMode("NO_SCALE") { i, c -> i }
}
}
fun Rectangle.applyScaleMode(
container: Rectangle, mode: ScaleMode, anchor: Anchor
): Rectangle = this.size.applyScaleMode(container, mode, anchor)
fun SizeInt.applyScaleMode(container: RectangleInt, mode: ScaleMode, anchor: Anchor): RectangleInt = this.toFloat().applyScaleMode(container.toFloat(), mode, anchor).toInt()
fun SizeInt.applyScaleMode(container: SizeInt, mode: ScaleMode): SizeInt = mode(this, container)
fun SizeInt.fitTo(container: SizeInt): SizeInt = applyScaleMode(container, ScaleMode.SHOW_ALL)
fun Size.applyScaleMode(container: Rectangle, mode: ScaleMode, anchor: Anchor): Rectangle {
val outSize = this.applyScaleMode(container.size, mode)
return Rectangle(
(container.x + anchor.sx * (container.width - outSize.width)),
(container.y + anchor.sy * (container.height - outSize.height)),
outSize.width,
outSize.height
)
}
fun Size.applyScaleMode(container: Size, mode: ScaleMode): Size = mode(this, container)
fun Size.fitTo(container: Size): Size = applyScaleMode(container, ScaleMode.SHOW_ALL)

View File

@@ -0,0 +1,150 @@
package com.icegps.math.geometry
import com.icegps.number.*
import kotlin.math.*
typealias Size = Size2D
typealias Size3 = Size2F
data class Size2F(val width: Float, val height: Float)
data class Size3F(val width: Float, val height: Float, val depth: Float)
data class Size3D(val width: Double, val height: Double, val depth: Double)
/**
* A class representing a size with a [width] and a [height] as Float.
*/
data class Size2D(val width: Double, val height: Double) {//: Sizeable {
companion object {
inline operator fun invoke(width: Number, height: Number): Size2D = Size2D(width.toDouble(), height.toDouble())
val ZERO = Size(0.0, 0.0)
fun square(value: Int): Size = Size(value, value)
fun square(value: Double): Size = Size(value, value)
}
fun isEmpty(): Boolean = width == 0.0 || height == 0.0
fun avgComponent(): Double = width * 0.5 + height * 0.5
fun minComponent(): Double = min(width, height)
fun maxComponent(): Double = max(width, height)
val area: Double get() = width * height
val perimeter: Double get() = width * 2 + height * 2
//(val width: Double, val height: Double) {
constructor() : this(0.0, 0.0)
constructor(width: Float, height: Float) : this(width.toDouble(), height.toDouble())
constructor(width: Int, height: Int) : this(width.toDouble(), height.toDouble())
operator fun unaryMinus(): Size = Size(-width, -height)
operator fun unaryPlus(): Size = this
operator fun minus(other: Size): Size = Size(width - other.width, height - other.height)
operator fun plus(other: Size): Size = Size(width + other.width, height + other.height)
operator fun times(scale: Scale): Size = Size(width * scale.scaleX, height * scale.scaleY)
operator fun times(scale: Vector2F): Size = Size(width * scale.x, height * scale.y)
operator fun times(s: Float): Size = Size(width * s, height * s)
operator fun times(s: Double): Size = times(s.toFloat())
operator fun times(s: Int): Size = times(s.toFloat())
operator fun div(other: Size): Scale = Scale(width / other.width, height / other.height)
operator fun div(s: Float): Size = Size(width / s, height / s)
operator fun div(s: Double): Size = div(s.toFloat())
operator fun div(s: Int): Size = div(s.toFloat())
//override val size: Size get() = this
override fun toString(): String = "Size(width=${width.niceStr}, height=${height.niceStr})"
}
operator fun Vector2D.plus(other: Size): Vector2D = Vector2D(x + other.width, y + other.height)
operator fun Vector2D.minus(other: Size): Vector2D = Vector2D(x - other.width, y - other.height)
operator fun Vector2D.times(other: Size): Vector2D = Vector2D(x * other.width, y * other.height)
operator fun Vector2D.div(other: Size): Vector2D = Vector2D(x / other.width, y / other.height)
operator fun Vector2D.rem(other: Size): Vector2D = Vector2D(x % other.width, y % other.height)
operator fun Vector2F.plus(other: Size): Vector2F = Vector2F(x + other.width, y + other.height)
operator fun Vector2F.minus(other: Size): Vector2F = Vector2F(x - other.width, y - other.height)
operator fun Vector2F.times(other: Size): Vector2F = Vector2F(x * other.width, y * other.height)
operator fun Vector2F.div(other: Size): Vector2F = Vector2F(x / other.width, y / other.height)
operator fun Vector2F.rem(other: Size): Vector2F = Vector2F(x % other.width, y % other.height)
fun Point.toSize(): Size = Size(x, y)
fun Size.toInt(): SizeInt = SizeInt(width.toInt(), height.toInt())
fun Size.toPoint(): Point = Point(width, height)
fun Size.toVector(): Vector2D = Vector2D(width, height)
fun Size.toVector2D(): Vector2D = Vector2D(width, height)
fun Size.toVector2F(): Vector2F = Vector2F(width, height)
interface Sizeable {
val size: Size
companion object {
operator fun invoke(size: Size): Sizeable = object : Sizeable {
override val size: Size get() = size
}
}
}
interface SizeableInt {
val size: SizeInt
companion object {
operator fun invoke(size: SizeInt): SizeableInt = object : SizeableInt {
override val size: SizeInt get() = size
}
operator fun invoke(width: Int, height: Int): SizeableInt = invoke(SizeInt(width, height))
}
}
typealias SizeI = SizeInt
data class SizeInt(val width: Int, val height: Int) {
constructor() : this(0, 0)
fun avgComponent(): Int = (width + height) / 2
fun minComponent(): Int = kotlin.math.min(width, height)
fun maxComponent(): Int = kotlin.math.max(width, height)
val area: Int get() = width * height
val perimeter: Int get() = width * 2 + height * 2
operator fun unaryMinus(): SizeInt = SizeInt(-width, -height)
operator fun unaryPlus(): SizeInt = this
operator fun minus(other: SizeInt): SizeInt = SizeInt(width - other.width, height - other.height)
operator fun plus(other: SizeInt): SizeInt = SizeInt(width + other.width, height + other.height)
operator fun times(s: Float): SizeInt = SizeInt((width * s).toInt(), (height * s).toInt())
operator fun times(s: Double): SizeInt = times(s.toFloat())
operator fun times(s: Int): SizeInt = times(s.toFloat())
operator fun times(scale: Vector2F): SizeInt = SizeInt((width * scale.x).toInt(), (height * scale.y).toInt())
operator fun times(scale: Scale): SizeInt = SizeInt((width * scale.scaleX).toInt(), (height * scale.scaleY).toInt())
operator fun div(other: SizeInt): SizeInt = SizeInt(width / other.width, height / other.height)
operator fun div(s: Float): SizeInt = SizeInt((width / s).toInt(), (height / s).toInt())
operator fun div(s: Double): SizeInt = div(s.toFloat())
operator fun div(s: Int): SizeInt = div(s.toFloat())
override fun toString(): String = "${width}x${height}"
}
fun Vector2I.toSize(): SizeInt = SizeInt(x, y)
fun SizeInt.toFloat(): Size = Size(width.toFloat(), height.toFloat())
fun SizeInt.toDouble(): Size = Size(width.toDouble(), height.toDouble())
fun SizeInt.toVector(): Vector2I = Vector2I(width, height)
operator fun Vector2D.plus(other: SizeInt): Vector2D = Vector2D(x + other.width, y + other.height)
operator fun Vector2D.minus(other: SizeInt): Vector2D = Vector2D(x - other.width, y - other.height)
operator fun Vector2D.times(other: SizeInt): Vector2D = Vector2D(x * other.width, y * other.height)
operator fun Vector2D.div(other: SizeInt): Vector2D = Vector2D(x / other.width, y / other.height)
operator fun Vector2D.rem(other: SizeInt): Vector2D = Vector2D(x % other.width, y % other.height)
operator fun Vector2F.plus(other: SizeInt): Vector2F = Vector2F(x + other.width, y + other.height)
operator fun Vector2F.minus(other: SizeInt): Vector2F = Vector2F(x - other.width, y - other.height)
operator fun Vector2F.times(other: SizeInt): Vector2F = Vector2F(x * other.width, y * other.height)
operator fun Vector2F.div(other: SizeInt): Vector2F = Vector2F(x / other.width, y / other.height)
operator fun Vector2F.rem(other: SizeInt): Vector2F = Vector2F(x % other.width, y % other.height)
operator fun Vector2I.plus(other: SizeInt): Vector2I = Vector2I(x + other.width, y + other.height)
operator fun Vector2I.minus(other: SizeInt): Vector2I = Vector2I(x - other.width, y - other.height)
operator fun Vector2I.times(other: SizeInt): Vector2I = Vector2I(x * other.width, y * other.height)
operator fun Vector2I.div(other: SizeInt): Vector2I = Vector2I(x / other.width, y / other.height)
operator fun Vector2I.rem(other: SizeInt): Vector2I = Vector2I(x % other.width, y % other.height)

View File

@@ -0,0 +1,28 @@
package com.icegps.math.geometry
import com.icegps.number.*
data class Spacing(
val vertical: Double,
val horizontal: Double
) {
operator fun unaryMinus(): Spacing = Spacing(-vertical, -horizontal)
operator fun unaryPlus(): Spacing = this
operator fun plus(other: Spacing): Spacing = Spacing(vertical + other.vertical, horizontal + other.horizontal)
operator fun minus(other: Spacing): Spacing = Spacing(vertical - other.vertical, horizontal - other.horizontal)
operator fun times(scale: Double): Spacing = Spacing(vertical * scale, horizontal * scale)
operator fun div(scale: Double): Spacing = this * (1.0 / scale)
operator fun rem(scale: Double): Spacing = Spacing(vertical % scale, horizontal % scale)
operator fun rem(scale: Spacing): Spacing = Spacing(vertical % scale.vertical, horizontal % scale.horizontal)
companion object {
val ZERO = Spacing(0.0, 0.0)
inline operator fun invoke(spacing: Number): Spacing = Spacing(spacing.toDouble(), spacing.toDouble())
inline operator fun invoke(vertical: Number, horizontal: Number): Spacing = Spacing(vertical.toDouble(), horizontal.toDouble())
}
constructor(spacing: Double) : this(spacing, spacing)
override fun toString(): String = "Spacing(vertical=${vertical.niceStr}, horizontal=${horizontal.niceStr})"
}

View File

@@ -0,0 +1,13 @@
package com.icegps.math.geometry
import com.icegps.math.*
import com.icegps.math.geometry.shape.*
//inline class Sphere3D private constructor(private val data: Float4) : Shape3D {
data class Sphere3D(override val center: Vector3F, val radius: Float) : SimpleShape3D {
//constructor(center: Vector3, radius: Float) : this(Float4(center.x, center.y, center.z, radius))
//override val center: Vector3 get() = Vector3(data.x, data.y, data.z)
//val radius: Float get() = data.w
override val volume: Float get() = ((4f / 3f) * PIF) * (radius * radius * radius)
}

View File

@@ -0,0 +1,47 @@
package com.icegps.math.geometry
import com.icegps.math.interpolation.*
inline fun Vector2F.deltaTransformed(m: Matrix): Vector2F = m.deltaTransform(this)
inline fun Vector2F.transformed(m: Matrix): Vector2F = m.transform(this)
fun Vector2F.transformX(m: Matrix): Float = m.transform(this).x
fun Vector2F.transformY(m: Matrix): Float = m.transform(this).y
inline fun Vector2F.transformedNullable(m: Matrix?): Vector2F = if (m != null && m.isNotNIL) m.transform(this) else this
fun Vector2F.transformNullableX(m: Matrix?): Float = if (m != null && m.isNotNIL) m.transform(this).x else x
fun Vector2F.transformNullableY(m: Matrix?): Float = if (m != null && m.isNotNIL) m.transform(this).y else y
inline fun Vector2D.deltaTransformed(m: Matrix): Vector2D = m.deltaTransform(this)
inline fun Vector2D.transformed(m: Matrix): Vector2D = m.transform(this)
fun Vector2D.transformX(m: Matrix): Double = m.transform(this).x
fun Vector2D.transformY(m: Matrix): Double = m.transform(this).y
inline fun Vector2D.transformedNullable(m: Matrix?): Vector2D = if (m != null && m.isNotNIL) m.transform(this) else this
fun Vector2D.transformNullableX(m: Matrix?): Double = if (m != null && m.isNotNIL) m.transform(this).x else x
fun Vector2D.transformNullableY(m: Matrix?): Double = if (m != null && m.isNotNIL) m.transform(this).y else y
fun List<Point>.bounds(): Rectangle = BoundsBuilder(size) { this + get(it) }.bounds
fun Iterable<Point>.bounds(): Rectangle {
var bb = BoundsBuilder()
for (p in this) bb += p
return bb.bounds
}
//inline operator fun Vector2F.plus(that: Size): Vector2F = Vector2F(x + that.width, y + that.height)
//inline operator fun Vector2F.minus(that: Size): Vector2F = Vector2F(x - that.width, y - that.height)
//inline operator fun Vector2F.times(that: Size): Vector2F = Vector2F(x * that.width, y * that.height)
//inline operator fun Vector2F.times(that: Scale): Vector2F = Vector2F(x * that.scaleX, y * that.scaleY)
//inline operator fun Vector2F.div(that: Size): Vector2F = Vector2F(x / that.width, y / that.height)
//inline operator fun Vector2F.rem(that: Size): Vector2F = Vector2F(x % that.width, y % that.height)
@Deprecated("", ReplaceWith("ratio.interpolate(this, other)", "com.icegps.math.interpolation.interpolate"))
fun Vector2F.interpolateWith(ratio: Ratio, other: Vector2F): Vector2F = ratio.interpolate(this, other)
// inline operator fun Vector2D.plus(that: Size): Vector2D = Vector2D(x + that.width, y + that.height)
// inline operator fun Vector2D.minus(that: Size): Vector2D = Vector2D(x - that.width, y - that.height)
// inline operator fun Vector2D.times(that: Size): Vector2D = Vector2D(x * that.width, y * that.height)
// inline operator fun Vector2D.times(that: Scale): Vector2D = Vector2D(x * that.scaleX, y * that.scaleY)
// inline operator fun Vector2D.div(that: Size): Vector2D = Vector2D(x / that.width, y / that.height)
// inline operator fun Vector2D.rem(that: Size): Vector2D = Vector2D(x % that.width, y % that.height)
@Deprecated("", ReplaceWith("ratio.interpolate(this, other)", "com.icegps.math.interpolation.interpolate"))
fun Vector2D.interpolateWith(ratio: Ratio, other: Vector2D): Vector2D = ratio.interpolate(this, other)

View File

@@ -0,0 +1,343 @@
package com.icegps.math.geometry
import com.icegps.math.*
import com.icegps.number.*
import kotlin.math.*
typealias Point = Vector2D
typealias Point2 = Vector2D
typealias Point3 = Vector3D
data class Vector3D(val x: Double, val y: Double, val z: Double) {
constructor(x: Float, y: Float, z: Float) : this(x.toDouble(), y.toDouble(), z.toDouble())
constructor(x: Int, y: Int, z: Int) : this(x.toDouble(), y.toDouble(), z.toDouble())
constructor() : this(0.0, 0.0, 0.0)
inline operator fun unaryMinus(): Vector3D = Vector3D(-x, -y, -z)
inline operator fun unaryPlus(): Vector3D = this
inline operator fun plus(that: Vector3D): Vector3D = Vector3D(x + that.x, y + that.y, z + that.z)
inline operator fun minus(that: Vector3D): Vector3D = Vector3D(x - that.x, y - that.y, z - that.z)
inline operator fun times(that: Vector3D): Vector3D = Vector3D(x * that.x, y * that.y, z * that.z)
inline operator fun div(that: Vector3D): Vector3D = Vector3D(x / that.x, y / that.y, z / that.z)
inline operator fun rem(that: Vector3D): Vector3D = Vector3D(x % that.x, y % that.y, z % that.z)
inline operator fun times(scale: Double): Vector3D = Vector3D(x * scale, y * scale, z * scale)
inline operator fun times(scale: Float): Vector3D = this * scale.toDouble()
inline operator fun times(scale: Int): Vector3D = this * scale.toDouble()
inline operator fun div(scale: Double): Vector3D = Vector3D(x / scale, y / scale, z / scale)
inline operator fun div(scale: Float): Vector3D = this / scale.toDouble()
inline operator fun div(scale: Int): Vector3D = this / scale.toDouble()
inline operator fun rem(scale: Double): Vector3D = Vector3D(x % scale, y % scale, z % scale)
inline operator fun rem(scale: Float): Vector3D = this % scale.toDouble()
inline operator fun rem(scale: Int): Vector3D = this % scale.toDouble()
fun distanceTo(x: Double, y: Double, z: Double): Double = hypot(hypot(x - this.x, y - this.y), z - this.z)
fun distanceTo(x: Float, y: Float, z: Float): Double = distanceTo(x.toDouble(), y.toDouble(), z.toDouble())
fun distanceTo(x: Int, y: Int, z: Int): Double = this.distanceTo(x.toDouble(), y.toDouble(), z.toDouble())
fun distanceTo(that: Vector3D): Double = distanceTo(that.x, that.y, that.z)
val length: Double get() = sqrt(x * x + y * y + z * z)
fun normalized(): Vector3D {
val len = length
return if (len == 0.0) Vector3D(0.0, 0.0, 0.0) else this * (1.0 / len)
}
infix fun cross(that: Vector3D) = Vector3D(
y * that.z - z * that.y,
z * that.x - x * that.z,
x * that.y - y * that.x
)
infix fun dot(that: Vector3D): Double = x * that.x + y * that.y + z * that.z
companion object {
val FORWARD: Vector3D = Vector3D(0.0, 1.0, 0.0) // +Y 指向北
val BACK: Vector3D = Vector3D(0.0, -1.0, 0.0) // -Y 指向南
val RIGHT: Vector3D = Vector3D(1.0, 0.0, 0.0) // +X 指向东
val LEFT: Vector3D = Vector3D(-1.0, 0.0, 0.0) // -X 指向西
val UP: Vector3D = Vector3D(0.0, 0.0, 1.0) // +Z 指向天
val DOWN: Vector3D = Vector3D(0.0, 0.0, -1.0) // -Z 指向地
}
}
fun Vector3D.toVector2D(): Vector2D = Vector2D(x, y)
data class Vector4D(val x: Double, val y: Double, val z: Double, val w: Double)
fun Vector3F.toDouble(): Vector3D = Vector3D(x.toDouble(), y.toDouble(), z.toDouble())
fun Vector3D.toFloat(): Vector3F = Vector3F(x, y, z)
data class Vector2D(val x: Double, val y: Double) : IsAlmostEquals<Vector2D> {
//constructor(x: Float, y: Float) : this(float2PackOf(x, y))
constructor(x: Float, y: Float) : this(x.toDouble(), y.toDouble())
constructor(x: Int, y: Int) : this(x.toDouble(), y.toDouble())
constructor(x: Double, y: Int) : this(x.toDouble(), y.toDouble())
constructor(x: Int, y: Double) : this(x.toDouble(), y.toDouble())
constructor(x: Float, y: Int) : this(x.toDouble(), y.toDouble())
constructor(x: Int, y: Float) : this(x.toDouble(), y.toDouble())
//constructor(p: Vector2) : this(p.raw)
constructor() : this(0.0, 0.0)
//constructor(x: Int, y: Int) : this(x.toDouble(), y.toDouble())
//constructor(x: Float, y: Float) : this(x.toDouble(), y.toDouble())
fun copy(x: Float = this.x.toFloat(), y: Float = this.y.toFloat()): Vector2D = Vector2D(x, y)
inline operator fun unaryMinus(): Vector2D = Vector2D(-x, -y)
inline operator fun unaryPlus(): Vector2D = this
inline operator fun plus(that: Vector2D): Vector2D = Vector2D(x + that.x, y + that.y)
inline operator fun minus(that: Vector2D): Vector2D = Vector2D(x - that.x, y - that.y)
inline operator fun times(that: Vector2D): Vector2D = Vector2D(x * that.x, y * that.y)
inline operator fun div(that: Vector2D): Vector2D = Vector2D(x / that.x, y / that.y)
inline operator fun rem(that: Vector2D): Vector2D = Vector2D(x % that.x, y % that.y)
inline operator fun times(scale: Double): Vector2D = Vector2D(x * scale, y * scale)
inline operator fun times(scale: Float): Vector2D = this * scale.toDouble()
inline operator fun times(scale: Int): Vector2D = this * scale.toDouble()
inline operator fun div(scale: Double): Vector2D = Vector2D(x / scale, y / scale)
inline operator fun div(scale: Float): Vector2D = this / scale.toDouble()
inline operator fun div(scale: Int): Vector2D = this / scale.toDouble()
inline operator fun rem(scale: Double): Vector2D = Vector2D(x % scale, y % scale)
inline operator fun rem(scale: Float): Vector2D = this % scale.toDouble()
inline operator fun rem(scale: Int): Vector2D = this % scale.toDouble()
fun avgComponent(): Double = x * 0.5 + y * 0.5
fun minComponent(): Double = min(x, y)
fun maxComponent(): Double = max(x, y)
fun distanceTo(x: Double, y: Double): Double = hypot(x - this.x, y - this.y)
fun distanceTo(x: Float, y: Float): Double = distanceTo(x.toDouble(), y.toDouble())
fun distanceTo(x: Int, y: Int): Double = this.distanceTo(x.toDouble(), y.toDouble())
fun distanceTo(that: Vector2D): Double = distanceTo(that.x, that.y)
infix fun cross(that: Vector2D): Double = crossProduct(this, that)
infix fun dot(that: Vector2D): Double = ((this.x * that.x) + (this.y * that.y))
fun angleTo(other: Vector2D, up: Vector2D = UP): Angle = Angle.between(this.x, this.y, other.x, other.y, up)
val angle: Angle get() = angle()
fun angle(up: Vector2D = UP): Angle = Angle.between(0.0, 0.0, this.x, this.y, up)
operator fun get(component: Int): Double = when (component) {
0 -> x; 1 -> y
else -> throw IndexOutOfBoundsException("Point doesn't have $component component")
}
val length: Double get() = hypot(x, y)
val lengthSquared: Double get() {
val x = x
val y = y
return x*x + y*y
}
val magnitude: Double get() = hypot(x, y)
val normalized: Vector2D get() = this * (1f / magnitude)
val unit: Vector2D get() = this / length
/** Normal vector. Rotates the vector/point -90 degrees (not normalizing it) */
fun toNormal(): Vector2D = Vector2D(-this.y, this.x)
val int: Vector2I get() = Vector2I(x.toInt(), y.toInt())
val intRound: Vector2I get() = Vector2I(x.roundToInt(), y.roundToInt())
fun roundDecimalPlaces(places: Int): Vector2D = Vector2D(x.roundDecimalPlaces(places), y.roundDecimalPlaces(places))
fun round(): Vector2D = Vector2D(round(x), round(y))
fun ceil(): Vector2D = Vector2D(ceil(x), ceil(y))
fun floor(): Vector2D = Vector2D(floor(x), floor(y))
//fun copy(x: Double = this.x, y: Double = this.y): Vector2 = Vector2D(x, y)
override fun isAlmostEquals(other: Vector2D, epsilon: Double): Boolean =
this.x.isAlmostEquals(other.x, epsilon) && this.y.isAlmostEquals(other.y, epsilon)
val niceStr: String get() = "(${x.niceStr}, ${y.niceStr})"
fun niceStr(decimalPlaces: Int): String = "(${x.niceStr(decimalPlaces)}, ${y.niceStr(decimalPlaces)})"
override fun toString(): String = niceStr
fun reflected(normal: Vector2D): Vector2D {
val d = this
val n = normal
return d - 2.0 * (d dot n) * n
}
/** Vector2 with inverted (1f / v) components to this */
fun inv(): Vector2D = Vector2D(1.0 / x, 1.0 / y)
fun isNaN(): Boolean = this.x.isNaN() && this.y.isNaN()
val absoluteValue: Vector2D get() = Vector2D(abs(x), abs(y))
companion object {
val ZERO = Vector2D(0.0, 0.0)
val NaN = Vector2D(Double.NaN, Double.NaN)
/** Mathematically typical LEFT, matching screen coordinates (-1, 0) */
val LEFT = Vector2D(-1.0, 0.0)
/** Mathematically typical RIGHT, matching screen coordinates (+1, 0) */
val RIGHT = Vector2D(+1.0, 0.0)
/** Mathematically typical UP (0, +1) */
val UP = Vector2D(0.0, +1.0)
/** UP using screen coordinates as reference (0, -1) */
val UP_SCREEN = Vector2D(0.0, -1.0)
/** Mathematically typical DOWN (0, -1) */
val DOWN = Vector2D(0.0, -1.0)
/** DOWN using screen coordinates as reference (0, +1) */
val DOWN_SCREEN = Vector2D(0.0, +1.0)
inline operator fun invoke(x: Number, y: Number): Vector2D = Vector2D(x.toDouble(), y.toDouble())
//inline operator fun invoke(x: Float, y: Float): Vector2D = Vector2D(x.toDouble(), y.toDouble())
//fun fromRaw(raw: Float2Pack) = Vector2D(raw)
/** Constructs a point from polar coordinates determined by an [angle] and a [length]. Angle 0 is pointing to the right, and the direction is counter-clock-wise for up=UP and clock-wise for up=UP_SCREEN */
inline fun polar(x: Float, y: Float, angle: Angle, length: Float = 1f, up: Vector2D = UP): Vector2D = Vector2D(x + angle.cosine(up) * length, y + angle.sine(up) * length)
inline fun polar(x: Double, y: Double, angle: Angle, length: Double = 1.0, up: Vector2D = UP): Vector2D = Vector2D(x + angle.cosine(up) * length, y + angle.sine(up) * length)
inline fun polar(base: Vector2D, angle: Angle, length: Double = 1.0, up: Vector2D = UP): Vector2D = polar(base.x, base.y, angle, length, up)
inline fun polar(angle: Angle, length: Double = 1.0, up: Vector2D = UP): Vector2D = polar(0.0, 0.0, angle, length, up)
inline fun middle(a: Vector2D, b: Vector2D): Vector2D = (a + b) * 0.5
fun angle(ax: Double, ay: Double, bx: Double, by: Double, up: Vector2D = UP): Angle = Angle.between(ax, ay, bx, by, up)
fun angle(x1: Double, y1: Double, x2: Double, y2: Double, x3: Double, y3: Double, up: Vector2D = UP): Angle = Angle.between(x1 - x2, y1 - y2, x1 - x3, y1 - y3, up)
fun angle(a: Vector2D, b: Vector2D, up: Vector2D = UP): Angle = Angle.between(a, b, up)
fun angle(p1: Vector2D, p2: Vector2D, p3: Vector2D, up: Vector2D = UP): Angle = Angle.between(p1 - p2, p1 - p3, up)
fun angleArc(a: Vector2D, b: Vector2D, up: Vector2D = UP): Angle = Angle.fromRadians(acos((a dot b) / (a.length * b.length))).adjustFromUp(up)
fun angleFull(a: Vector2D, b: Vector2D, up: Vector2D = UP): Angle = Angle.between(a, b, up)
fun distance(a: Double, b: Double): Double = abs(a - b)
fun distance(x1: Double, y1: Double, x2: Double, y2: Double): Double = hypot(x1 - x2, y1 - y2)
fun distance(x1: Float, y1: Float, x2: Float, y2: Float): Double = hypot(x1 - x2, y1 - y2).toDouble()
fun distance(x1: Int, y1: Int, x2: Int, y2: Int): Double = hypot(x1.toDouble() - x2.toDouble(), y1.toDouble() - y2.toDouble())
fun distance(a: Vector2D, b: Vector2D): Double = distance(a.x, a.y, b.x, b.y)
fun distance(a: Vector2I, b: Vector2I): Double = distance(a.x, a.y, b.x, b.y)
fun distanceSquared(a: Vector2D, b: Vector2D): Double = distanceSquared(a.x, a.y, b.x, b.y)
fun distanceSquared(a: Vector2I, b: Vector2I): Int = distanceSquared(a.x, a.y, b.x, b.y)
fun distanceSquared(x1: Double, y1: Double, x2: Double, y2: Double): Double = square(x1 - x2) + square(y1 - y2)
fun distanceSquared(x1: Float, y1: Float, x2: Float, y2: Float): Float = square(x1 - x2) + square(y1 - y2)
fun distanceSquared(x1: Int, y1: Int, x2: Int, y2: Int): Int = square(x1 - x2) + square(y1 - y2)
@Deprecated("Likely searching for orientation")
inline fun direction(a: Vector2D, b: Vector2D): Vector2D = b - a
fun compare(l: Vector2D, r: Vector2D): Int = compare(l.x, l.y, r.x, r.y)
fun compare(lx: Float, ly: Float, rx: Float, ry: Float): Int = ly.compareTo(ry).let { ret -> if (ret == 0) lx.compareTo(rx) else ret }
fun compare(lx: Double, ly: Double, rx: Double, ry: Double): Int = ly.compareTo(ry).let { ret -> if (ret == 0) lx.compareTo(rx) else ret }
private fun square(x: Double): Double = x * x
private fun square(x: Float): Float = x * x
private fun square(x: Int): Int = x * x
fun dot(aX: Double, aY: Double, bX: Double, bY: Double): Double = (aX * bX) + (aY * bY)
fun dot(aX: Float, aY: Float, bX: Float, bY: Float): Float = (aX * bX) + (aY * bY)
fun dot(a: Vector2D, b: Vector2D): Double = dot(a.x, a.y, b.x, b.y)
fun isCollinear(p1: Point, p2: Point, p3: Point): Boolean =
isCollinear(p1.x, p1.y, p2.x, p2.y, p3.x, p3.y)
fun isCollinear(p1x: Double, p1y: Double, p2x: Double, p2y: Double, p3x: Double, p3y: Double): Boolean {
val area2 = (p1x * (p2y - p3y) + p2x * (p3y - p1y) + p3x * (p1y - p2y)) // 2x triangle area
//println("($p1x, $p1y), ($p2x, $p2y), ($p3x, $p3y) :: area=$area2")
return area2.isAlmostZero()
//val div1 = (p2x - p1x) / (p2y - p1y)
//val div2 = (p1x - p3x) / (p1y - p3y)
//val result = (div1 - div2).absoluteValue
//println("result=$result, div1=$div1, div2=$div2, xa=$p1x, ya=$p1y, x=$p2x, y=$p2y, xb=$p3x, yb=$p3y")
//if (div1.isInfinite() != div2.isInfinite()) return false
//return result.isAlmostZero() || result.isInfinite()
}
fun isCollinear(xa: Float, ya: Float, x: Float, y: Float, xb: Float, yb: Float): Boolean = isCollinear(
xa.toDouble(), ya.toDouble(),
x.toDouble(), y.toDouble(),
xb.toDouble(), yb.toDouble(),
)
fun isCollinear(xa: Int, ya: Int, x: Int, y: Int, xb: Int, yb: Int): Boolean = isCollinear(
xa.toDouble(), ya.toDouble(),
x.toDouble(), y.toDouble(),
xb.toDouble(), yb.toDouble(),
)
// https://algorithmtutor.com/Computational-Geometry/Determining-if-two-consecutive-segments-turn-left-or-right/
/** < 0 left, > 0 right, 0 collinear */
fun orientation(p1: Vector2D, p2: Vector2D, p3: Vector2D, up: Vector2D = UP): Double = orientation(p1.x, p1.y, p2.x, p2.y, p3.x, p3.y, up)
fun orientation(ax: Float, ay: Float, bx: Float, by: Float, cx: Float, cy: Float, up: Vector2D = UP): Float {
Orientation.checkValidUpVector(up)
val res = crossProduct(cx - ax, cy - ay, bx - ax, by - ay)
return if (up.y > 0f) res else -res
}
fun orientation(ax: Double, ay: Double, bx: Double, by: Double, cx: Double, cy: Double, up: Vector2D = UP): Double {
Orientation.checkValidUpVector(up)
val res = crossProduct(cx - ax, cy - ay, bx - ax, by - ay)
return if (up.y > 0f) res else -res
}
fun crossProduct(ax: Float, ay: Float, bx: Float, by: Float): Float = (ax * by) - (bx * ay)
fun crossProduct(ax: Double, ay: Double, bx: Double, by: Double): Double = (ax * by) - (bx * ay)
fun crossProduct(p1: Vector2D, p2: Vector2D): Double = crossProduct(p1.x, p1.y, p2.x, p2.y)
fun minComponents(p1: Vector2D, p2: Vector2D): Vector2D = Vector2D(min(p1.x, p2.x), min(p1.y, p2.y))
fun minComponents(p1: Vector2D, p2: Vector2D, p3: Vector2D): Vector2D = Vector2D(
minOf(p1.x, p2.x, p3.x),
minOf(p1.y, p2.y, p3.y)
)
fun minComponents(p1: Vector2D, p2: Vector2D, p3: Vector2D, p4: Vector2D): Vector2D = Vector2D(
minOf(
p1.x,
p2.x,
p3.x,
p4.x
), minOf(p1.y, p2.y, p3.y, p4.y)
)
fun maxComponents(p1: Vector2D, p2: Vector2D): Vector2D = Vector2D(max(p1.x, p2.x), max(p1.y, p2.y))
fun maxComponents(p1: Vector2D, p2: Vector2D, p3: Vector2D): Vector2D = Vector2D(
maxOf(p1.x, p2.x, p3.x),
maxOf(p1.y, p2.y, p3.y)
)
fun maxComponents(p1: Vector2D, p2: Vector2D, p3: Vector2D, p4: Vector2D): Vector2D = Vector2D(
maxOf(
p1.x,
p2.x,
p3.x,
p4.x
), maxOf(p1.y, p2.y, p3.y, p4.y)
)
}
}
operator fun Int.times(v: Vector2D): Vector2D = v * this
operator fun Float.times(v: Vector2D): Vector2D = v * this
operator fun Double.times(v: Vector2D): Vector2D = v * this
fun Vector2D.toFloat(): Vector2F = Vector2F(x, y)
fun Vector2F.toDouble(): Vector2D = Vector2D(x, y)
fun abs(a: Vector2D): Vector2D = a.absoluteValue
fun min(a: Vector2D, b: Vector2D): Vector2D = Vector2D(min(a.x, b.x), min(a.y, b.y))
fun max(a: Vector2D, b: Vector2D): Vector2D = Vector2D(max(a.x, b.x), max(a.y, b.y))
fun Vector2D.clamp(min: Float, max: Float): Vector2D = clamp(min.toDouble(), max.toDouble())
fun Vector2D.clamp(min: Double, max: Double): Vector2D = Vector2D(x.clamp(min, max), y.clamp(min, max))
fun Vector2D.clamp(min: Vector2D, max: Vector2D): Vector2D = Vector2D(x.clamp(min.x, max.x), y.clamp(min.y, max.y))
fun Vector2D.toInt(): Vector2I = Vector2I(x.toInt(), y.toInt())
fun Vector2D.toIntCeil(): Vector2I = Vector2I(x.toIntCeil(), y.toIntCeil())
fun Vector2D.toIntRound(): Vector2I = Vector2I(x.toIntRound(), y.toIntRound())
fun Vector2D.toIntFloor(): Vector2I = Vector2I(x.toIntFloor(), y.toIntFloor())
fun Vector3D.toCylindrical(): CylindricalVector = CylindricalVector.fromCartesian(this)

View File

@@ -0,0 +1,523 @@
@file:Suppress("NOTHING_TO_INLINE")
package com.icegps.math.geometry
import com.icegps.math.*
import com.icegps.number.*
import kotlin.math.*
typealias Vector2 = Vector2F
typealias Vector3 = Vector3F
typealias Vector4 = Vector4F
fun vec(x: Float, y: Float): Vector2F = Vector2F(x, y)
fun vec2(x: Float, y: Float): Vector2F = Vector2F(x, y)
fun vec(x: Float, y: Float, z: Float): Vector3F = Vector3F(x, y, z)
fun vec3(x: Float, y: Float, z: Float): Vector3F = Vector3F(x, y, z)
fun vec(x: Float, y: Float, z: Float, w: Float): Vector4F = Vector4F(x, y, z, w)
fun vec4(x: Float, y: Float, z: Float, w: Float = 1f): Vector4F = Vector4F(x, y, z, w)
//////////////////////////////
// VALUE CLASSES
//////////////////////////////
//@Deprecated("", ReplaceWith("p", "com.icegps.math.geometry.Point")) fun Point(p: Vector2F): Vector2F = p
//@Deprecated("", ReplaceWith("p", "com.icegps.math.geometry.Vector2")) fun Vector2(p: Vector2F): Vector2F = p
data class Vector2F(val x: Float, val y: Float) {
constructor(x: Double, y: Double) : this(x.toFloat(), y.toFloat())
constructor(x: Int, y: Int) : this(x.toFloat(), y.toFloat())
constructor(x: Double, y: Int) : this(x.toFloat(), y.toFloat())
constructor(x: Int, y: Double) : this(x.toFloat(), y.toFloat())
constructor(x: Float, y: Int) : this(x.toFloat(), y.toFloat())
constructor(x: Int, y: Float) : this(x.toFloat(), y.toFloat())
//constructor(p: Vector2) : this(p.raw)
constructor() : this(0f, 0f)
//constructor(x: Int, y: Int) : this(x.toDouble(), y.toDouble())
//constructor(x: Float, y: Float) : this(x.toDouble(), y.toDouble())
fun copy(x: Double = this.x.toDouble(), y: Double = this.y.toDouble()): Vector2F = Vector2F(x, y)
inline operator fun unaryMinus(): Vector2F = Vector2F(-x, -y)
inline operator fun unaryPlus(): Vector2F = this
inline operator fun plus(that: Vector2F): Vector2F = Vector2F(x + that.x, y + that.y)
inline operator fun minus(that: Vector2F): Vector2F = Vector2F(x - that.x, y - that.y)
inline operator fun times(that: Vector2F): Vector2F = Vector2F(x * that.x, y * that.y)
inline operator fun div(that: Vector2F): Vector2F = Vector2F(x / that.x, y / that.y)
inline operator fun rem(that: Vector2F): Vector2F = Vector2F(x % that.x, y % that.y)
inline operator fun times(scale: Float): Vector2F = Vector2F(x * scale, y * scale)
inline operator fun times(scale: Double): Vector2F = this * scale.toFloat()
inline operator fun times(scale: Int): Vector2F = this * scale.toDouble()
inline operator fun div(scale: Float): Vector2F = Vector2F(x / scale, y / scale)
inline operator fun div(scale: Double): Vector2F = this / scale.toFloat()
inline operator fun div(scale: Int): Vector2F = this / scale.toDouble()
inline operator fun rem(scale: Float): Vector2F = Vector2F(x % scale, y % scale)
inline operator fun rem(scale: Double): Vector2F = this % scale.toFloat()
inline operator fun rem(scale: Int): Vector2F = this % scale.toDouble()
fun avgComponent(): Float = x * 0.5f + y * 0.5f
fun minComponent(): Float = min(x, y)
fun maxComponent(): Float = max(x, y)
fun distanceTo(x: Float, y: Float): Float = hypot(x - this.x, y - this.y)
fun distanceTo(x: Double, y: Double): Float = this.distanceTo(x.toFloat(), y.toFloat())
fun distanceTo(x: Int, y: Int): Float = this.distanceTo(x.toDouble(), y.toDouble())
fun distanceTo(that: Vector2F): Float = distanceTo(that.x, that.y)
infix fun cross(that: Vector2F): Float = crossProduct(this, that)
infix fun dot(that: Vector2F): Float = ((this.x * that.x) + (this.y * that.y))
fun angleTo(other: Vector2F, up: Vector2D = Vector2D.UP): Angle = Angle.between(this.x, this.y, other.x, other.y, up)
val angle: Angle get() = angle()
fun angle(up: Vector2D = Vector2D.UP): Angle = Angle.between(0f, 0f, this.x, this.y, up)
operator fun get(component: Int) = when (component) {
0 -> x; 1 -> y
else -> throw IndexOutOfBoundsException("Point doesn't have $component component")
}
val length: Float get() = hypot(x, y)
val lengthSquared: Float get() {
val x = x
val y = y
return x*x + y*y
}
val magnitude: Float get() = hypot(x, y)
val normalized: Vector2F get() = this * (1f / magnitude)
val unit: Vector2F get() = this / length
/** Normal vector. Rotates the vector/point -90 degrees (not normalizing it) */
fun toNormal(): Vector2F = Vector2F(-this.y, this.x)
val int: Vector2I get() = Vector2I(x.toInt(), y.toInt())
val intRound: Vector2I get() = Vector2I(x.roundToInt(), y.roundToInt())
fun roundDecimalPlaces(places: Int): Vector2F = Vector2F(x.roundDecimalPlaces(places), y.roundDecimalPlaces(places))
fun round(): Vector2F = Vector2F(round(x), round(y))
fun ceil(): Vector2F = Vector2F(ceil(x), ceil(y))
fun floor(): Vector2F = Vector2F(floor(x), floor(y))
//fun copy(x: Double = this.x, y: Double = this.y): Vector2 = Point(x, y)
fun isAlmostEquals(other: Vector2F, epsilon: Float = 0.00001f): Boolean =
this.x.isAlmostEquals(other.x, epsilon) && this.y.isAlmostEquals(other.y, epsilon)
val niceStr: String get() = "(${x.niceStr}, ${y.niceStr})"
fun niceStr(decimalPlaces: Int): String = "(${x.niceStr(decimalPlaces)}, ${y.niceStr(decimalPlaces)})"
override fun toString(): String = niceStr
fun reflected(normal: Vector2F): Vector2F {
val d = this
val n = normal
return d - 2f * (d dot n) * n
}
/** Vector2 with inverted (1f / v) components to this */
fun inv(): Vector2F = Vector2F(1f / x, 1f / y)
fun isNaN(): Boolean = this.x.isNaN() && this.y.isNaN()
val absoluteValue: Vector2F get() = Vector2F(abs(x), abs(y))
companion object {
val ZERO = Vector2F(0f, 0f)
val NaN = Vector2F(Float.NaN, Float.NaN)
/** Mathematically typical LEFT, matching screen coordinates (-1, 0) */
val LEFT = Vector2F(-1f, 0f)
/** Mathematically typical RIGHT, matching screen coordinates (+1, 0) */
val RIGHT = Vector2F(+1f, 0f)
/** Mathematically typical UP (0, +1) */
val UP = Vector2F(0f, +1f)
/** UP using 2D screen coordinates as reference (0, -1) */
val UP_SCREEN = Vector2F(0f, -1f)
/** Mathematically typical DOWN (0, -1) */
val DOWN = Vector2F(0f, -1f)
/** DOWN using 2D screen coordinates as reference (0, +1) */
val DOWN_SCREEN = Vector2F(0f, +1f)
//inline operator fun invoke(x: Int, y: Int): Vector2 = Point(x.toDouble(), y.toDouble())
//inline operator fun invoke(x: Float, y: Float): Vector2 = Point(x.toDouble(), y.toDouble())
//fun fromRaw(raw: Float2Pack) = Point(raw)
/** Constructs a point from polar coordinates determined by an [angle] and a [length]. Angle 0 is pointing to the right, and the direction is counter-clock-wise for up=UP and clock-wise for up=UP_SCREEN */
inline fun polar(x: Float, y: Float, angle: Angle, length: Float = 1f, up: Vector2D = Vector2D.UP): Vector2F = Vector2F(x + angle.cosine(up) * length, y + angle.sine(up) * length)
inline fun polar(x: Double, y: Double, angle: Angle, length: Float = 1f, up: Vector2D = Vector2D.UP): Vector2F = Vector2F(x + angle.cosine(up) * length, y + angle.sine(up) * length)
inline fun polar(base: Vector2F, angle: Angle, length: Float = 1f, up: Vector2D = Vector2D.UP): Vector2F = polar(base.x, base.y, angle, length, up)
inline fun polar(angle: Angle, length: Float = 1f, up: Vector2D = Vector2D.UP): Vector2F = polar(0.0, 0.0, angle, length, up)
inline fun middle(a: Vector2F, b: Vector2F): Vector2F = (a + b) * 0.5
fun angle(ax: Double, ay: Double, bx: Double, by: Double, up: Vector2D = Vector2D.UP): Angle = Angle.between(ax, ay, bx, by, up)
fun angle(x1: Double, y1: Double, x2: Double, y2: Double, x3: Double, y3: Double, up: Vector2D = Vector2D.UP): Angle = Angle.between(x1 - x2, y1 - y2, x1 - x3, y1 - y3, up)
fun angle(a: Vector2F, b: Vector2F, up: Vector2D = Vector2D.UP): Angle = Angle.between(a, b, up)
fun angle(p1: Vector2F, p2: Vector2F, p3: Vector2F, up: Vector2D = Vector2D.UP): Angle = Angle.between(p1 - p2, p1 - p3, up)
fun angleArc(a: Vector2F, b: Vector2F, up: Vector2D = Vector2D.UP): Angle = Angle.fromRadians(acos((a dot b) / (a.length * b.length))).adjustFromUp(up)
fun angleFull(a: Vector2F, b: Vector2F, up: Vector2D = Vector2D.UP): Angle = Angle.between(a, b, up)
fun distance(a: Double, b: Double): Double = abs(a - b)
fun distance(x1: Double, y1: Double, x2: Double, y2: Double): Double = hypot(x1 - x2, y1 - y2)
fun distance(x1: Float, y1: Float, x2: Float, y2: Float): Float = hypot(x1 - x2, y1 - y2)
fun distance(x1: Int, y1: Int, x2: Int, y2: Int): Float = distance(x1.toFloat(), y1.toFloat(), x2.toFloat(), y2.toFloat())
fun distance(a: Vector2F, b: Vector2F): Float = distance(a.x, a.y, b.x, b.y)
fun distance(a: Vector2I, b: Vector2I): Float = distance(a.x, a.y, b.x, b.y)
fun distanceSquared(a: Vector2F, b: Vector2F): Float = distanceSquared(a.x, a.y, b.x, b.y)
fun distanceSquared(a: Vector2I, b: Vector2I): Int = distanceSquared(a.x, a.y, b.x, b.y)
fun distanceSquared(x1: Double, y1: Double, x2: Double, y2: Double): Double = square(x1 - x2) + square(y1 - y2)
fun distanceSquared(x1: Float, y1: Float, x2: Float, y2: Float): Float = square(x1 - x2) + square(y1 - y2)
fun distanceSquared(x1: Int, y1: Int, x2: Int, y2: Int): Int = square(x1 - x2) + square(y1 - y2)
@Deprecated("Likely searching for orientation")
inline fun direction(a: Vector2F, b: Vector2F): Vector2F = b - a
fun compare(l: Vector2F, r: Vector2F): Int = compare(l.x, l.y, r.x, r.y)
fun compare(lx: Float, ly: Float, rx: Float, ry: Float): Int = ly.compareTo(ry).let { ret -> if (ret == 0) lx.compareTo(rx) else ret }
fun compare(lx: Double, ly: Double, rx: Double, ry: Double): Int = ly.compareTo(ry).let { ret -> if (ret == 0) lx.compareTo(rx) else ret }
private fun square(x: Double): Double = x * x
private fun square(x: Float): Float = x * x
private fun square(x: Int): Int = x * x
fun dot(aX: Double, aY: Double, bX: Double, bY: Double): Double = (aX * bX) + (aY * bY)
fun dot(aX: Float, aY: Float, bX: Float, bY: Float): Float = (aX * bX) + (aY * bY)
fun dot(a: Vector2F, b: Vector2F): Float = dot(a.x, a.y, b.x, b.y)
fun isCollinear(p1: Point, p2: Point, p3: Point): Boolean =
isCollinear(p1.x, p1.y, p2.x, p2.y, p3.x, p3.y)
fun isCollinear(p1x: Float, p1y: Float, p2x: Float, p2y: Float, p3x: Float, p3y: Float): Boolean {
val area2 = (p1x * (p2y - p3y) + p2x * (p3y - p1y) + p3x * (p1y - p2y)) // 2x triangle area
//println("($p1x, $p1y), ($p2x, $p2y), ($p3x, $p3y) :: area=$area2")
return area2.isAlmostZero()
//val div1 = (p2x - p1x) / (p2y - p1y)
//val div2 = (p1x - p3x) / (p1y - p3y)
//val result = (div1 - div2).absoluteValue
//println("result=$result, div1=$div1, div2=$div2, xa=$p1x, ya=$p1y, x=$p2x, y=$p2y, xb=$p3x, yb=$p3y")
//if (div1.isInfinite() != div2.isInfinite()) return false
//return result.isAlmostZero() || result.isInfinite()
}
fun isCollinear(xa: Double, ya: Double, x: Double, y: Double, xb: Double, yb: Double): Boolean = isCollinear(
xa.toFloat(), ya.toFloat(),
x.toFloat(), y.toFloat(),
xb.toFloat(), yb.toFloat(),
)
fun isCollinear(xa: Int, ya: Int, x: Int, y: Int, xb: Int, yb: Int): Boolean = isCollinear(
xa.toFloat(), ya.toFloat(),
x.toFloat(), y.toFloat(),
xb.toFloat(), yb.toFloat(),
)
// https://algorithmtutor.com/Computational-Geometry/Determining-if-two-consecutive-segments-turn-left-or-right/
/** < 0 left, > 0 right, 0 collinear */
fun orientation(p1: Vector2F, p2: Vector2F, p3: Vector2F, up: Vector2D = Vector2D.UP): Float = orientation(p1.x, p1.y, p2.x, p2.y, p3.x, p3.y, up)
fun orientation(ax: Float, ay: Float, bx: Float, by: Float, cx: Float, cy: Float, up: Vector2D = Vector2D.UP): Float {
Orientation.checkValidUpVector(up)
val res = crossProduct(cx - ax, cy - ay, bx - ax, by - ay)
return if (up.y > 0f) res else -res
}
fun orientation(ax: Double, ay: Double, bx: Double, by: Double, cx: Double, cy: Double, up: Vector2D = Vector2D.UP): Double {
Orientation.checkValidUpVector(up)
val res = crossProduct(cx - ax, cy - ay, bx - ax, by - ay)
return if (up.y > 0f) res else -res
}
fun crossProduct(ax: Float, ay: Float, bx: Float, by: Float): Float = (ax * by) - (bx * ay)
fun crossProduct(ax: Double, ay: Double, bx: Double, by: Double): Double = (ax * by) - (bx * ay)
fun crossProduct(p1: Vector2F, p2: Vector2F): Float = crossProduct(p1.x, p1.y, p2.x, p2.y)
fun minComponents(p1: Vector2F, p2: Vector2F): Vector2F = Vector2F(min(p1.x, p2.x), min(p1.y, p2.y))
fun minComponents(p1: Vector2F, p2: Vector2F, p3: Vector2F): Vector2F = Vector2F(
minOf(p1.x, p2.x, p3.x),
minOf(p1.y, p2.y, p3.y)
)
fun minComponents(p1: Vector2F, p2: Vector2F, p3: Vector2F, p4: Vector2F): Vector2F = Vector2F(
minOf(
p1.x,
p2.x,
p3.x,
p4.x
), minOf(p1.y, p2.y, p3.y, p4.y)
)
fun maxComponents(p1: Vector2F, p2: Vector2F): Vector2F = Vector2F(max(p1.x, p2.x), max(p1.y, p2.y))
fun maxComponents(p1: Vector2F, p2: Vector2F, p3: Vector2F): Vector2F = Vector2F(
maxOf(p1.x, p2.x, p3.x),
maxOf(p1.y, p2.y, p3.y)
)
fun maxComponents(p1: Vector2F, p2: Vector2F, p3: Vector2F, p4: Vector2F): Vector2F = Vector2F(
maxOf(
p1.x,
p2.x,
p3.x,
p4.x
), maxOf(p1.y, p2.y, p3.y, p4.y)
)
}
}
operator fun Int.times(v: Vector2F): Vector2F = v * this
operator fun Float.times(v: Vector2F): Vector2F = v * this
operator fun Double.times(v: Vector2F): Vector2F = v * this
fun abs(a: Vector2F): Vector2F = a.absoluteValue
fun min(a: Vector2F, b: Vector2F): Vector2F = Vector2F(min(a.x, b.x), min(a.y, b.y))
fun max(a: Vector2F, b: Vector2F): Vector2F = Vector2F(max(a.x, b.x), max(a.y, b.y))
fun Vector2F.clamp(min: Float, max: Float): Vector2F = Vector2F(x.clamp(min, max), y.clamp(min, max))
fun Vector2F.clamp(min: Double, max: Double): Vector2F = clamp(min.toFloat(), max.toFloat())
fun Vector2F.clamp(min: Vector2F, max: Vector2F): Vector2F = Vector2F(x.clamp(min.x, max.x), y.clamp(min.y, max.y))
fun Vector2F.toInt(): Vector2I = Vector2I(x.toInt(), y.toInt())
fun Vector2F.toIntCeil(): Vector2I = Vector2I(x.toIntCeil(), y.toIntCeil())
fun Vector2F.toIntRound(): Vector2I = Vector2I(x.toIntRound(), y.toIntRound())
fun Vector2F.toIntFloor(): Vector2I = Vector2I(x.toIntFloor(), y.toIntFloor())
data class Vector3F(val x: Float, val y: Float, val z: Float) : IsAlmostEqualsF<Vector3F> {
companion object {
val NaN = Vector3F(Float.NaN, Float.NaN, Float.NaN)
val ZERO = Vector3F(0f, 0f, 0f)
val ONE = Vector3F(1f, 1f, 1f)
val FORWARD = Vector3F(0f, 0f, 1f)
val BACK = Vector3F(0f, 0f, -1f)
val LEFT = Vector3F(-1f, 0f, 0f)
val RIGHT = Vector3F(1f, 0f, 0f)
val UP = Vector3F(0f, 1f, 0f)
val DOWN = Vector3F(0f, -1f, 0f)
operator fun invoke(): Vector3F = ZERO
fun cross(a: Vector3F, b: Vector3F): Vector3F = Vector3F(
((a.y * b.z) - (a.z * b.y)),
((a.z * b.x) - (a.x * b.z)),
((a.x * b.y) - (a.y * b.x)),
)
fun length(x: Float, y: Float, z: Float): Float = sqrt(lengthSq(x, y, z))
fun lengthSq(x: Float, y: Float, z: Float): Float = x * x + y * y + z * z
fun fromArray(array: FloatArray, offset: Int): Vector3F =
Vector3F(array[offset + 0], array[offset + 1], array[offset + 2])
inline fun func(func: (index: Int) -> Float): Vector3F = Vector3F(func(0), func(1), func(2))
}
//constructor(x: Float, y: Float, z: Float) : this(float4PackOf(x, y, z, 0f))
constructor(x: Int, y: Int, z: Int) : this(x.toFloat(), y.toFloat(), z.toFloat())
constructor(x: Double, y: Double, z: Double) : this(x.toFloat(), y.toFloat(), z.toFloat())
fun distanceTo(other: Vector3F): Float {
val dx = this.x - other.x
val dy = this.y - other.y
val dz = this.z - other.z
return sqrt(dx * dx + dy * dy + dz * dz)
}
val lengthSquared: Float get() = (x * x) + (y * y) + (z * z)
val length: Float get() = sqrt(lengthSquared)
fun normalized(): Vector3F {
val length = this.length
//if (length.isAlmostZero()) return Vector3.ZERO
if (length == 0f) return Vector3F.ZERO
return this / length
}
// https://math.stackexchange.com/questions/13261/how-to-get-a-reflection-vector
// 𝑟=𝑑2(𝑑⋅𝑛)𝑛
fun reflected(surfaceNormal: Vector3F): Vector3F {
val d = this
val n = surfaceNormal
return d - 2f * (d dot n) * n
}
operator fun get(index: Int): Float = when (index) {
0 -> x
1 -> y
2 -> z
else -> throw IndexOutOfBoundsException()
}
operator fun unaryPlus(): Vector3F = this
operator fun unaryMinus(): Vector3F = Vector3F(-this.x, -this.y, -this.z)
operator fun plus(v: Vector3F): Vector3F = Vector3F(this.x + v.x, this.y + v.y, this.z + v.z)
operator fun minus(v: Vector3F): Vector3F = Vector3F(this.x - v.x, this.y - v.y, this.z - v.z)
operator fun times(v: Vector3F): Vector3F = Vector3F(this.x * v.x, this.y * v.y, this.z * v.z)
operator fun div(v: Vector3F): Vector3F = Vector3F(this.x / v.x, this.y / v.y, this.z / v.z)
operator fun rem(v: Vector3F): Vector3F = Vector3F(this.x % v.x, this.y % v.y, this.z % v.z)
operator fun times(v: Float): Vector3F = Vector3F(this.x * v, this.y * v, this.z * v)
operator fun div(v: Float): Vector3F = Vector3F(this.x / v, this.y / v, this.z / v)
operator fun rem(v: Float): Vector3F = Vector3F(this.x % v, this.y % v, this.z % v)
operator fun times(v: Int): Vector3F = this * v.toFloat()
operator fun div(v: Int): Vector3F = this / v.toFloat()
operator fun rem(v: Int): Vector3F = this % v.toFloat()
operator fun times(v: Double): Vector3F = this * v.toFloat()
operator fun div(v: Double): Vector3F = this / v.toFloat()
operator fun rem(v: Double): Vector3F = this % v.toFloat()
infix fun dot(v: Vector3F): Float = (x * v.x) + (y * v.y) + (z * v.z)
infix fun cross(v: Vector3F): Vector3F = cross(this, v)
/** Vector3 with inverted (1f / v) components to this */
fun inv(): Vector3F = Vector3F(1f / x, 1f / y, 1f / z)
fun isNaN(): Boolean = this.x.isNaN() && this.y.isNaN() && this.z.isNaN()
val absoluteValue: Vector3F get() = Vector3F(abs(x), abs(y), abs(z))
override fun toString(): String = "Vector3(${x.niceStr}, ${y.niceStr}, ${z.niceStr})"
fun toVector4(w: Float = 1f): Vector4F = Vector4F(x, y, z, w)
override fun isAlmostEquals(other: Vector3F, epsilon: Float): Boolean =
this.x.isAlmostEquals(other.x, epsilon) &&
this.y.isAlmostEquals(other.y, epsilon) &&
this.z.isAlmostEquals(other.z, epsilon)
}
operator fun Int.times(v: Vector3F): Vector3F = v * this
operator fun Float.times(v: Vector3F): Vector3F = v * this
operator fun Double.times(v: Vector3F): Vector3F = v * this
fun abs(a: Vector3F): Vector3F = a.absoluteValue
fun min(a: Vector3F, b: Vector3F): Vector3F = Vector3F(min(a.x, b.x), min(a.y, b.y), min(a.z, b.z))
fun max(a: Vector3F, b: Vector3F): Vector3F = Vector3F(max(a.x, b.x), max(a.y, b.y), max(a.z, b.z))
fun Vector3F.clamp(min: Float, max: Float): Vector3F = Vector3F(x.clamp(min, max), y.clamp(min, max), z.clamp(min, max))
fun Vector3F.clamp(min: Double, max: Double): Vector3F = clamp(min.toFloat(), max.toFloat())
fun Vector3F.clamp(min: Vector3F, max: Vector3F): Vector3F = Vector3F(x.clamp(min.x, max.x), y.clamp(min.y, max.y), z.clamp(min.z, max.z))
data class Vector4F(val x: Float, val y: Float, val z: Float, val w: Float) {
companion object {
val ZERO = Vector4F(0f, 0f, 0f, 0f)
val ONE = Vector4F(1f, 1f, 1f, 1f)
operator fun invoke(): Vector4F = Vector4F.ZERO
fun fromArray(array: FloatArray, offset: Int = 0): Vector4F = Vector4F(array[offset + 0], array[offset + 1], array[offset + 2], array[offset + 3])
fun length(x: Float, y: Float, z: Float, w: Float): Float = sqrt(lengthSq(x, y, z, w))
fun lengthSq(x: Float, y: Float, z: Float, w: Float): Float = x * x + y * y + z * z + w * w
inline fun func(func: (index: Int) -> Float): Vector4F = Vector4F(func(0), func(1), func(2), func(3))
}
constructor(xyz: Vector3F, w: Float) : this(xyz.x, xyz.y, xyz.z, w)
//constructor(x: Float, y: Float, z: Float, w: Float) : this(float4PackOf(x, y, z, w))
constructor(x: Int, y: Int, z: Int, w: Int) : this(x.toFloat(), y.toFloat(), z.toFloat(), w.toFloat())
constructor(x: Double, y: Double, z: Double, w: Double) : this(x.toFloat(), y.toFloat(), z.toFloat(), w.toFloat())
val xyz: Vector3F get() = Vector3F(x, y, z)
val length3Squared: Float get() = (x * x) + (y * y) + (z * z)
/** Only taking into accoount x, y, z */
val length3: Float get() = sqrt(length3Squared)
val lengthSquared: Float get() = (x * x) + (y * y) + (z * z) + (w * w)
val length: Float get() = sqrt(lengthSquared)
fun normalized(): Vector4F {
val length = this.length
if (length == 0f) return Vector4F.ZERO
return this / length
}
operator fun get(index: Int): Float = when (index) {
0 -> x
1 -> y
2 -> z
3 -> w
else -> throw IndexOutOfBoundsException()
}
operator fun unaryPlus(): Vector4F = this
operator fun unaryMinus(): Vector4F = Vector4F(-x, -y, -z, -w)
operator fun plus(v: Vector4F): Vector4F = Vector4F(x + v.x, y + v.y, z + v.z, w + v.w)
operator fun minus(v: Vector4F): Vector4F = Vector4F(x - v.x, y - v.y, z - v.z, w - v.w)
operator fun times(v: Vector4F): Vector4F = Vector4F(x * v.x, y * v.y, z * v.z, w * v.w)
operator fun div(v: Vector4F): Vector4F = Vector4F(x / v.x, y / v.y, z / v.z, w / v.w)
operator fun rem(v: Vector4F): Vector4F = Vector4F(x % v.x, y % v.y, z % v.z, w % v.w)
operator fun times(v: Float): Vector4F = Vector4F(x * v, y * v, z * v, w * v)
operator fun div(v: Float): Vector4F = Vector4F(x / v, y / v, z / v, w / v)
operator fun rem(v: Float): Vector4F = Vector4F(x % v, y % v, z % v, w % v)
infix fun dot(v: Vector4F): Float = (x * v.x) + (y * v.y) + (z * v.z) + (w * v.w)
//infix fun cross(v: Vector4): Vector4 = cross(this, v)
fun copyTo(out: FloatArray, offset: Int = 0): FloatArray {
out[offset + 0] = x
out[offset + 1] = y
out[offset + 2] = z
out[offset + 3] = w
return out
}
/** Vector4 with inverted (1f / v) components to this */
fun inv(): Vector4F = Vector4F(1f / x, 1f / y, 1f / z, 1f / w)
fun isNaN(): Boolean = this.x.isNaN() && this.y.isNaN() && this.z.isNaN() && this.w.isNaN()
val absoluteValue: Vector4F get() = Vector4F(abs(x), abs(y), abs(z), abs(w))
override fun toString(): String = "Vector4(${x.niceStr}, ${y.niceStr}, ${z.niceStr}, ${w.niceStr})"
// @TODO: Should we scale Vector3 by w?
fun toVector3(): Vector3F = Vector3F(x, y, z)
fun isAlmostEquals(other: Vector4F, epsilon: Float = 0.00001f): Boolean =
this.x.isAlmostEquals(other.x, epsilon) && this.y.isAlmostEquals(other.y, epsilon) && this.z.isAlmostEquals(other.z, epsilon) && this.w.isAlmostEquals(other.w, epsilon)
}
fun abs(a: Vector4F): Vector4F = a.absoluteValue
fun min(a: Vector4F, b: Vector4F): Vector4F = Vector4F(min(a.x, b.x), min(a.y, b.y), min(a.z, b.z), min(a.w, b.w))
fun max(a: Vector4F, b: Vector4F): Vector4F = Vector4F(max(a.x, b.x), max(a.y, b.y), max(a.z, b.z), max(a.w, b.w))
fun Vector4F.clamp(min: Float, max: Float): Vector4F = Vector4F(x.clamp(min, max), y.clamp(min, max), z.clamp(min, max), w.clamp(min, max))
fun Vector4F.clamp(min: Double, max: Double): Vector4F = clamp(min.toFloat(), max.toFloat())
fun Vector4F.clamp(min: Vector4F, max: Vector4F): Vector4F = Vector4F(x.clamp(min.x, max.x), y.clamp(min.y, max.y), z.clamp(min.z, max.z), w.clamp(min.w, max.w))
data class CylindricalVector(
val radius: Double = 1.0,
val angle: Angle = Angle.ZERO,
val y: Double = 0.0,
) {
fun toVector3(): Vector3F = toCartesian(this).toFloat()
companion object {
fun fromCartesian(v: Vector3F): CylindricalVector = fromCartesian(v.x, v.y, v.z)
fun fromCartesian(v: Vector3D): CylindricalVector = fromCartesian(v.x, v.y, v.z)
inline fun fromCartesian(x: Number, y: Number, z: Number): CylindricalVector = fromCartesian(x.toDouble(), y.toDouble(), z.toDouble())
fun fromCartesian(x: Double, y: Double, z: Double): CylindricalVector = CylindricalVector(
radius = sqrt(x * x + z * z),
angle = Angle.atan2(x, z),
y = y,
)
fun toCartesian(c: CylindricalVector): Vector3D = toCartesian(c.radius, c.angle, c.y)
fun toCartesian(radius: Double, angle: Angle, y: Double): Vector3D = Vector3D(
x = radius * sin(angle),
y = y,
z = radius * cos(angle),
)
}
}
fun Vector3F.toCylindrical(): CylindricalVector = CylindricalVector.fromCartesian(this)

View File

@@ -0,0 +1,41 @@
package com.icegps.math.geometry
typealias PointInt = Vector2I
data class Vector3I(val x: Int, val y: Int, val z: Int)
data class Vector4I(val x: Int, val y: Int, val z: Int, val w: Int)
//@KormaValueApi
data class Vector2I(val x: Int, val y: Int) {
//operator fun component1(): Int = x
//operator fun component2(): Int = y
//fun copy(x: Int = this.x, y: Int = this.y): Vector2Int = Vector2Int(x, y)
//inline class Vector2Int(internal val raw: Int2Pack) {
companion object {
val ZERO = Vector2I(0, 0)
fun compare(lx: Int, ly: Int, rx: Int, ry: Int): Int {
val ret = ly.compareTo(ry)
return if (ret == 0) lx.compareTo(rx) else ret
}
}
//val x: Int get() = raw.i0
//val y: Int get() = raw.i1
constructor() : this(0, 0)
//constructor(x: Int, y: Int) : this(int2PackOf(x, y))
operator fun plus(that: Vector2I): Vector2I = Vector2I(this.x + that.x, this.y + that.y)
operator fun minus(that: Vector2I): Vector2I = Vector2I(this.x - that.x, this.y - that.y)
operator fun times(that: Vector2I): Vector2I = Vector2I(this.x * that.x, this.y * that.y)
operator fun div(that: Vector2I): Vector2I = Vector2I(this.x / that.x, this.y / that.y)
operator fun rem(that: Vector2I): Vector2I = Vector2I(this.x % that.x, this.y % that.y)
override fun toString(): String = "($x, $y)"
}
fun Vector2I.toFloat(): Vector2F = Vector2F(x, y)
fun Vector2I.toDouble(): Vector2D = Vector2D(x, y)

View File

@@ -0,0 +1,15 @@
package com.icegps.math.geometry.shape
import com.icegps.math.geometry.*
interface SimpleShape2D {
val closed: Boolean
val area: Double
val perimeter: Double
val center: Point
fun distance(p: Point): Double = projectedPoint(p).distanceTo(p)
fun normalVectorAt(p: Point): Vector2D = (p - projectedPoint(p)).normalized
fun projectedPoint(p: Point): Point
fun containsPoint(p: Point): Boolean
fun getBounds(): Rectangle
}

View File

@@ -0,0 +1,8 @@
package com.icegps.math.geometry.shape
import com.icegps.math.geometry.*
interface SimpleShape3D {
val center: Vector3F
val volume: Float
}

View File

@@ -0,0 +1,44 @@
package com.icegps.math.interpolation
@Suppress("unused")
fun interface Easing {
operator fun invoke(it: Float): Float
operator fun invoke(it: Double): Double = invoke(it.toFloat()).toDouble()
operator fun invoke(it: Ratio): Ratio = Ratio(invoke(it.toFloat()).toDouble())
companion object {
operator fun invoke(name: () -> String, block: (Float) -> Float): Easing {
return object : Easing {
override fun invoke(it: Float): Float = block(it)
override fun toString(): String = name()
}
}
fun steps(steps: Int, easing: Easing): Easing = Easing({ "steps($steps, $easing)" }) {
easing((it * steps).toInt().toFloat() / steps)
}
fun cubic(f: (t: Float, b: Float, c: Float, d: Float) -> Float): Easing = Easing { f(it, 0f, 1f, 1f) }
fun combine(start: Easing, end: Easing): Easing = Easing { combine(it, start, end) }
inline fun combine(it: Float, start: Easing, end: Easing): Float =
if (it < .5f) .5f * start(it * 2f) else .5f * end((it - .5f) * 2f) + .5f
val LINEAR = Easing { it }
val SMOOTH = Easing { it * it * (3 - 2 * it) }
}
}
interface Interpolable<T> {
fun interpolateWith(ratio: Ratio, other: T): T
}
interface MutableInterpolable<T> {
fun setToInterpolated(ratio: Ratio, l: T, r: T): T
}
fun Ratio.interpolate(l: Float, r: Float): Float = (l + (r - l) * this.toFloat())
fun Ratio.interpolate(l: Double, r: Double): Double = (l + (r - l) * this.toDouble())
fun Ratio.interpolate(l: Ratio, r: Ratio): Ratio = (l + (r - l) * this)
fun Ratio.interpolate(l: Int, r: Int): Int = (l + (r - l) * this.toDouble()).toInt()
fun Ratio.interpolate(l: Long, r: Long): Long = (l + (r - l) * this.toDouble()).toLong()
fun <T : Interpolable<T>> Ratio.interpolate(l: T, r: T): T = l.interpolateWith(this, r)

View File

@@ -0,0 +1,8 @@
package com.icegps.math.interpolation
import com.icegps.math.geometry.Vector2D
import com.icegps.math.geometry.Vector2F
fun Ratio.interpolate(l: Vector2D, r: Vector2D): Vector2D = Vector2D(interpolate(l.x, r.x), interpolate(l.y, r.y))
fun Ratio.interpolate(l: Vector2F, r: Vector2F): Vector2F = Vector2F(interpolate(l.x, r.x), interpolate(l.y, r.y))

View File

@@ -0,0 +1,109 @@
package com.icegps.math.interpolation
import com.icegps.math.*
import kotlin.math.*
//inline class Ratio(val valueD: Double) : Comparable<Ratio> {
// constructor(ratio: Float) : this(ratio.toDouble())
// val value: Double get() = valueD
// val valueF: Float get() = value.toFloat()
inline class Ratio(val value: Double) : Comparable<Ratio> {
constructor(ratio: Float) : this(ratio.toDouble())
fun toFloat(): Float = value.toFloat()
fun toDouble(): Double = value.toDouble()
constructor(value: Int, maximum: Int) : this(value.toFloat() / maximum.toFloat())
constructor(value: Float, maximum: Float) : this(value / maximum)
constructor(value: Double, maximum: Double) : this(value / maximum)
operator fun unaryPlus(): Ratio = Ratio(+this.value)
operator fun unaryMinus(): Ratio = Ratio(-this.value)
operator fun plus(that: Ratio): Ratio = Ratio(this.value + that.value)
operator fun minus(that: Ratio): Ratio = Ratio(this.value - that.value)
operator fun times(that: Ratio): Ratio = Ratio(this.value * that.value)
operator fun div(that: Ratio): Ratio = Ratio(this.value / that.value)
operator fun times(that: Double): Double = (this.value * that)
operator fun div(that: Double): Double = (this.value / that)
val absoluteValue: Ratio get() = Ratio(value.absoluteValue)
val clamped: Ratio get() = Ratio(value.clamp01())
fun convertToRange(min: Float, max: Float): Float = this.toFloat().convertRange(0f, 1f, min, max)
fun convertToRange(min: Double, max: Double): Double = this.toDouble().convertRange(0.0, 1.0, min, max)
fun convertToRange(min: Ratio, max: Ratio): Ratio = Ratio(this.toDouble().convertRange(0.0, 1.0, min.toDouble(), max.toDouble()))
override fun compareTo(other: Ratio): Int = value.compareTo(other.value)
fun isNaN(): Boolean = value.isNaN()
override fun toString(): String = "$value"
companion object {
val ZERO = Ratio(0.0)
val QUARTER = Ratio(.25)
val HALF = Ratio(.5)
val ONE = Ratio(1.0)
val NaN = Ratio(Float.NaN)
inline fun fromValueInRange(value: Number, min: Number, max: Number): Ratio =
value.toDouble().convertRange(min.toDouble(), max.toDouble(), 0.0, 1.0).toRatio()
inline fun fromValueInRangeClamped(value: Number, min: Number, max: Number): Ratio =
value.toDouble().convertRangeClamped(min.toDouble(), max.toDouble(), 0.0, 1.0).toRatio()
inline fun forEachRatio(steps: Int, include0: Boolean = true, include1: Boolean = true, block: (ratio: Ratio) -> Unit) {
val NS = steps - 1
val NSd = NS.toDouble()
val start = if (include0) 0 else 1
val end = if (include1) NS else NS - 1
for (n in start..end) {
val ratio = n.toFloat() / NSd
block(ratio.toRatio())
}
}
}
}
inline operator fun Float.times(ratio: Ratio): Float = (this * ratio.value).toFloat()
inline operator fun Double.times(ratio: Ratio): Double = this * ratio.value
inline operator fun Int.times(ratio: Ratio): Double = this.toDouble() * ratio.value
inline operator fun Float.div(ratio: Ratio): Float = (this / ratio.value).toFloat()
inline operator fun Double.div(ratio: Ratio): Double = this / ratio.value
inline operator fun Int.div(ratio: Ratio): Double = this.toDouble() / ratio.value
inline operator fun Ratio.times(value: Ratio): Ratio = Ratio(this.value * value.value)
inline operator fun Ratio.times(value: Float): Float = (this.value * value).toFloat()
inline operator fun Ratio.times(value: Double): Double = this.value * value
inline operator fun Ratio.div(value: Float): Float = (this.value / value).toFloat()
inline operator fun Ratio.div(value: Double): Double = this.value / value
@Deprecated("", ReplaceWith("this")) fun Ratio.toRatio(): Ratio = this
inline fun Number.toRatio(): Ratio = Ratio(this.toDouble())
fun Float.toRatio(): Ratio = Ratio(this)
fun Double.toRatio(): Ratio = Ratio(this)
inline fun Number.toRatio(max: Number): Ratio = Ratio(this.toDouble(), max.toDouble())
fun Float.toRatio(max: Float): Ratio = Ratio(this, max)
fun Double.toRatio(max: Double): Ratio = Ratio(this, max)
fun Number.toRatioClamped(): Ratio = Ratio(this.toDouble().clamp01())
fun Float.toRatioClamped(): Ratio = Ratio(this.clamp01())
fun Double.toRatioClamped(): Ratio = Ratio(this.clamp01())
fun Ratio.convertRange(srcMin: Ratio, srcMax: Ratio, dstMin: Ratio, dstMax: Ratio): Ratio = Ratio(this.toDouble().convertRange(srcMin.toDouble(), srcMax.toDouble(), dstMin.toDouble(), dstMax.toDouble()))
fun Ratio.isAlmostEquals(that: Ratio, epsilon: Ratio = Ratio(0.000001)): Boolean = this.toDouble().isAlmostEquals(that.toDouble(), epsilon.toDouble())
fun Ratio.isAlmostZero(epsilon: Ratio = Ratio(0.000001)): Boolean = this.isAlmostEquals(Ratio.ZERO, epsilon)
fun Ratio.roundDecimalPlaces(places: Int): Ratio = Ratio(value.roundDecimalPlaces(places))
fun abs(a: Ratio): Ratio = Ratio(a.value.absoluteValue)
fun min(a: Ratio, b: Ratio): Ratio = Ratio(kotlin.math.min(a.value, b.value))
fun max(a: Ratio, b: Ratio): Ratio = Ratio(kotlin.math.max(a.value, b.value))
fun Ratio.clamp(min: Ratio, max: Ratio): Ratio = when {
this < min -> min
this > max -> max
else -> this
}

View File

@@ -0,0 +1,8 @@
package com.icegps.math.range
class OpenRange<T : Comparable<T>>(val start: T, val endExclusive: T)
// @TODO: Would cause conflicts with Int until Int for example
//infix fun <T : Comparable<T>> T.until(other: T) = OpenRange(this, other)
operator fun <T : Comparable<T>> OpenRange<T>.contains(item: T) = item >= this.start && item < this.endExclusive

View File

@@ -0,0 +1,21 @@
@file:Suppress("PackageDirectoryMismatch")
package com.icegps.math.range
data class DoubleRangeExclusive(val start: Double, val endExclusive: Double) {
val length: Double get() = endExclusive - start
operator fun contains(value: Double): Boolean = value >= start && value < endExclusive
override fun toString(): String = "${start.toString().removeSuffix(".0")} until ${endExclusive.toString().removeSuffix(".0")}"
}
inline infix fun Double.until(endExclusive: Double): DoubleRangeExclusive = DoubleRangeExclusive(this, endExclusive)
data class FloatInRange(val value: Float, val min: Float, val max: Float, val inclusive: Boolean = true)
data class FloatRangeExclusive(val start: Float, val endExclusive: Float) {
val length: Float get() = endExclusive - start
operator fun contains(value: Double): Boolean = value >= start && value < endExclusive
override fun toString(): String = "${start.toString().removeSuffix(".0")} until ${endExclusive.toString().removeSuffix(".0")}"
}
inline infix fun Float.until(endExclusive: Float): FloatRangeExclusive = FloatRangeExclusive(this, endExclusive)

View File

@@ -0,0 +1,349 @@
package com.icegps.memory
import com.icegps.math.*
import kotlin.rotateLeft as rotateLeftKotlin
import kotlin.rotateRight as rotateRightKotlin
/** Returns the bits in memory of [this] float */
public inline fun Float.reinterpretAsInt(): Int = this.toRawBits()
/** Returns the bits in memory of [this] float */
public inline fun Double.reinterpretAsLong(): Long = this.toRawBits()
/** Returns the float representation of [this] memory bits */
public inline fun Int.reinterpretAsFloat(): Float = Float.fromBits(this)
/** Returns the float representation of [this] memory bits */
public inline fun Long.reinterpretAsDouble(): Double = Double.fromBits(this)
/** Rotates [this] [bits] bits to the left */
public fun UInt.rotateLeft(bits: Int): UInt = this.rotateLeftKotlin(bits)
/** Rotates [this] [bits] bits to the left */
public fun Int.rotateLeft(bits: Int): Int = this.rotateLeftKotlin(bits)
/** Rotates [this] [bits] bits to the left */
public fun Long.rotateLeft(bits: Int): Long = this.rotateLeftKotlin(bits)
/** Rotates [this] [bits] bits to the right */
public fun UInt.rotateRight(bits: Int): UInt = this.rotateRightKotlin(bits)
/** Rotates [this] [bits] bits to the right */
public fun Int.rotateRight(bits: Int): Int = this.rotateRightKotlin(bits)
/** Rotates [this] [bits] bits to the right */
public fun Long.rotateRight(bits: Int): Long = this.rotateRightKotlin(bits)
/** Reverses the bytes of [this] [Short]: AABB -> BBAA */
public fun Short.reverseBytes(): Short {
val low = ((this.toInt() ushr 0) and 0xFF)
val high = ((this.toInt() ushr 8) and 0xFF)
return ((high and 0xFF) or (low shl 8)).toShort()
}
/** Reverses the bytes of [this] [Char]: AABB -> BBAA */
public fun Char.reverseBytes(): Char = this.code.toShort().reverseBytes().toInt().toChar()
/** Reverses the bytes of [this] [Int]: AABBCCDD -> DDCCBBAA */
public fun Int.reverseBytes(): Int {
val v0 = ((this ushr 0) and 0xFF)
val v1 = ((this ushr 8) and 0xFF)
val v2 = ((this ushr 16) and 0xFF)
val v3 = ((this ushr 24) and 0xFF)
return (v0 shl 24) or (v1 shl 16) or (v2 shl 8) or (v3 shl 0)
}
/** Reverses the bytes of [this] [Long]: AABBCCDDEEFFGGHH -> HHGGFFEEDDCCBBAA */
public fun Long.reverseBytes(): Long {
val v0 = (this ushr 0).toInt().reverseBytes().toLong() and 0xFFFFFFFFL
val v1 = (this ushr 32).toInt().reverseBytes().toLong() and 0xFFFFFFFFL
return (v0 shl 32) or (v1 shl 0)
}
/** Reverse the bits of [this] Int: abcdef...z -> z...fedcba */
public fun Int.reverseBits(): Int {
var v = this
v = ((v ushr 1) and 0x55555555) or ((v and 0x55555555) shl 1) // swap odd and even bits
v = ((v ushr 2) and 0x33333333) or ((v and 0x33333333) shl 2) // swap consecutive pairs
v = ((v ushr 4) and 0x0F0F0F0F) or ((v and 0x0F0F0F0F) shl 4) // swap nibbles ...
v = ((v ushr 8) and 0x00FF00FF) or ((v and 0x00FF00FF) shl 8) // swap bytes
v = ((v ushr 16) and 0x0000FFFF) or ((v and 0x0000FFFF) shl 16) // swap 2-byte long pairs
return v
}
/** Returns the number of leading zeros of the bits of [this] integer */
public inline fun Int.countLeadingZeros(): Int = this.countLeadingZeroBits()
/** Returns the number of trailing zeros of the bits of [this] integer */
public fun Int.countTrailingZeros(): Int = this.countTrailingZeroBits()
/** Returns the number of leading ones of the bits of [this] integer */
public fun Int.countLeadingOnes(): Int = this.inv().countLeadingZeros()
/** Returns the number of trailing ones of the bits of [this] integer */
public fun Int.countTrailingOnes(): Int = this.inv().countTrailingZeros()
/** Takes n[bits] of [this] [Int], and extends the last bit, creating a plain [Int] in one's complement */
public fun Int.signExtend(bits: Int): Int = (this shl (32 - bits)) shr (32 - bits) // Int.SIZE_BITS
/** Takes n[bits] of [this] [Long], and extends the last bit, creating a plain [Long] in one's complement */
public fun Long.signExtend(bits: Int): Long = (this shl (64 - bits)) shr (64 - bits) // Long.SIZE_BITS
/** Creates an [Int] with [this] bits set to 1 */
public fun Int.mask(): Int = (1 shl this) - 1
/** Creates a [Long] with [this] bits set to 1 */
public fun Long.mask(): Long = (1L shl this.toInt()) - 1L
/** Creates an [Int] with [this] bits set to 1, displaced [offset] bits */
public fun Int.mask(offset: Int): Int = mask() shl offset
/** Creates a [Long] with [this] bits set to 1, displaced [offset] bits */
public fun Long.mask(offset: Int): Long = mask() shl offset
inline class IntMaskRange private constructor(val raw: Int) {
val offset: Int get() = raw.extract8(0)
val size: Int get() = raw.extract8(8)
fun toMask(): Int = size.mask(offset)
override fun toString(): String = "IntMaskRange(offset=$offset, size=$size)"
fun extract(value: Int): Int = value.extract(offset, size)
fun extractSigned(value: Int, signed: Boolean = true): Int = value.extractSigned(offset, size, signed)
companion object {
fun fromRange(offset: Int, size: Int): IntMaskRange = IntMaskRange(0.insert8(offset, 0).insert8(size, 8))
fun fromMask(mask: Int): IntMaskRange {
if (mask == 0) return IntMaskRange(0)
val offset = mask.countTrailingZeroBits()
val size = (32 - mask.countLeadingZeroBits()) - offset
return fromRange(offset, size)
}
}
operator fun component1(): Int = offset
operator fun component2(): Int = size
}
fun Int.extractMaskRange(): IntMaskRange = IntMaskRange.fromMask(this)
//fun Int.getBit(offset: Int): Boolean = ((this ushr offset) and 1) != 0
//fun Int.getBits(offset: Int, count: Int): Int = (this ushr offset) and count.mask()
/** Extracts [count] bits at [offset] from [this] [Int] */
public fun Int.extract(offset: Int, count: Int): Int = (this ushr offset) and count.mask()
/** Extracts a bits at [offset] from [this] [Int] (returning a [Boolean]) */
inline fun Int.extract(offset: Int): Boolean = extract1(offset) != 0
/** Extracts a bits at [offset] from [this] [Int] (returning a [Boolean]) */
inline fun Int.extractBool(offset: Int): Boolean = extract1(offset) != 0
/** Extracts 1 bit at [offset] from [this] [Int] */
inline fun Int.extract1(offset: Int): Int = (this ushr offset) and 0b1
/** Extracts 2 bits at [offset] from [this] [Int] */
inline fun Int.extract2(offset: Int): Int = (this ushr offset) and 0b11
/** Extracts 3 bits at [offset] from [this] [Int] */
inline fun Int.extract3(offset: Int): Int = (this ushr offset) and 0b111
/** Extracts 4 bits at [offset] from [this] [Int] */
inline fun Int.extract4(offset: Int): Int = (this ushr offset) and 0b1111
/** Extracts 5 bits at [offset] from [this] [Int] */
inline fun Int.extract5(offset: Int): Int = (this ushr offset) and 0b11111
/** Extracts 6 bits at [offset] from [this] [Int] */
inline fun Int.extract6(offset: Int): Int = (this ushr offset) and 0b111111
/** Extracts 7 bits at [offset] from [this] [Int] */
inline fun Int.extract7(offset: Int): Int = (this ushr offset) and 0b1111111
/** Extracts 8 bits at [offset] from [this] [Int] */
inline fun Int.extract8(offset: Int): Int = (this ushr offset) and 0b11111111
/** Extracts 9 bits at [offset] from [this] [Int] */
inline fun Int.extract9(offset: Int): Int = (this ushr offset) and 0b111111111
/** Extracts 10 bits at [offset] from [this] [Int] */
inline fun Int.extract10(offset: Int): Int = (this ushr offset) and 0b1111111111
/** Extracts 11 bits at [offset] from [this] [Int] */
inline fun Int.extract11(offset: Int): Int = (this ushr offset) and 0b11111111111
/** Extracts 12 bits at [offset] from [this] [Int] */
inline fun Int.extract12(offset: Int): Int = (this ushr offset) and 0b111111111111
/** Extracts 13 bits at [offset] from [this] [Int] */
inline fun Int.extract13(offset: Int): Int = (this ushr offset) and 0b1111111111111
/** Extracts 14 bits at [offset] from [this] [Int] */
inline fun Int.extract14(offset: Int): Int = (this ushr offset) and 0b11111111111111
/** Extracts 15 bits at [offset] from [this] [Int] */
inline fun Int.extract15(offset: Int): Int = (this ushr offset) and 0b111111111111111
/** Extracts 16 bits at [offset] from [this] [Int] */
inline fun Int.extract16(offset: Int): Int = (this ushr offset) and 0b1111111111111111
/** Extracts 17 bits at [offset] from [this] [Int] */
inline fun Int.extract17(offset: Int): Int = (this ushr offset) and 0b11111111111111111
/** Extracts 18 bits at [offset] from [this] [Int] */
inline fun Int.extract18(offset: Int): Int = (this ushr offset) and 0b111111111111111111
/** Extracts 19 bits at [offset] from [this] [Int] */
inline fun Int.extract19(offset: Int): Int = (this ushr offset) and 0b1111111111111111111
/** Extracts 20 bits at [offset] from [this] [Int] */
inline fun Int.extract20(offset: Int): Int = (this ushr offset) and 0b11111111111111111111
/** Extracts 21 bits at [offset] from [this] [Int] */
inline fun Int.extract21(offset: Int): Int = (this ushr offset) and 0b111111111111111111111
/** Extracts 22 bits at [offset] from [this] [Int] */
inline fun Int.extract22(offset: Int): Int = (this ushr offset) and 0b1111111111111111111111
/** Extracts 23 bits at [offset] from [this] [Int] */
inline fun Int.extract23(offset: Int): Int = (this ushr offset) and 0b11111111111111111111111
/** Extracts 24 bits at [offset] from [this] [Int] */
inline fun Int.extract24(offset: Int): Int = (this ushr offset) and 0xFFFFFF
/** Extracts 25 bits at [offset] from [this] [Int] */
inline fun Int.extract25(offset: Int): Int = (this ushr offset) and 0b1111111111111111111111111
/** Extracts 26 bits at [offset] from [this] [Int] */
inline fun Int.extract26(offset: Int): Int = (this ushr offset) and 0b11111111111111111111111111
/** Extracts 27 bits at [offset] from [this] [Int] */
inline fun Int.extract27(offset: Int): Int = (this ushr offset) and 0b111111111111111111111111111
/** Extracts 28 bits at [offset] from [this] [Int] */
inline fun Int.extract28(offset: Int): Int = (this ushr offset) and 0b1111111111111111111111111111
/** Extracts 29 bits at [offset] from [this] [Int] */
inline fun Int.extract29(offset: Int): Int = (this ushr offset) and 0b11111111111111111111111111111
/** Extracts 30 bits at [offset] from [this] [Int] */
inline fun Int.extract30(offset: Int): Int = (this ushr offset) and 0b111111111111111111111111111111
/** Extracts 31 bits at [offset] from [this] [Int] */
inline fun Int.extract31(offset: Int): Int = (this ushr offset) and 0b1111111111111111111111111111111
/** Extracts 32 bits at [offset] from [this] [Int] */
inline fun Int.extract32(offset: Int): Int = (this ushr offset) and -1
/** Extracts [count] bits at [offset] from [this] [Int] sign-extending its result if [signed] is set to true */
public fun Int.extractSigned(offset: Int, count: Int, signed: Boolean): Int = if (signed) extractSigned(offset, count) else extract(offset, count)
/** Extracts [count] bits at [offset] from [this] [Int] sign-extending its result */
public fun Int.extractSigned(offset: Int, count: Int): Int = ((this ushr offset) and count.mask()).signExtend(count)
/** Extracts 8 bits at [offset] from [this] [Int] sign-extending its result */
public fun Int.extract8Signed(offset: Int): Int = (this ushr offset).toByte().toInt()
/** Extracts 16 bits at [offset] from [this] [Int] sign-extending its result */
public fun Int.extract16Signed(offset: Int): Int = (this ushr offset).toShort().toInt()
/** Extracts 8 bits at [offset] from [this] [Int] as [Byte] */
public fun Int.extractByte(offset: Int): Byte = (this ushr offset).toByte()
/** Extracts 16 bits at [offset] from [this] [Int] as [Short] */
public fun Int.extractShort(offset: Int): Short = (this ushr offset).toShort()
/** Extracts [count] at [offset] from [this] [Int] and convert the possible values into the range 0x00..[scale] */
public fun Int.extractScaled(offset: Int, count: Int, scale: Int): Int = (extract(offset, count) * scale) / count.mask()
/** Extracts [count] at [offset] from [this] [Int] and convert the possible values into the range 0.0..1.0 */
public fun Int.extractScaledf01(offset: Int, count: Int): Float = extract(offset, count).toFloat() / count.mask().toFloat()
/** Extracts [count] at [offset] from [this] [Int] and convert the possible values into the range 0x00..0xFF */
public fun Int.extractScaledFF(offset: Int, count: Int): Int = extractScaled(offset, count, 0xFF)
/** Extracts [count] at [offset] from [this] [Int] and convert the possible values into the range 0x00..0xFF (if there are 0 bits, returns [default]) */
public fun Int.extractScaledFFDefault(offset: Int, count: Int, default: Int): Int =
if (count == 0) default else extractScaled(offset, count, 0xFF)
/** Replaces [this] bits from [offset] to [offset]+[count] with [value] and returns the result of doing such replacement */
public fun Int.insert(value: Int, offset: Int, count: Int): Int {
val mask = count.mask() shl offset
val ovalue = (value shl offset) and mask
return (this and mask.inv()) or ovalue
}
public fun Int.insertNoClear(value: Int, offset: Int, count: Int): Int {
return this or ((value and count.mask()) shl offset)
}
public fun Int.clear(offset: Int, count: Int): Int {
return (this and (count.mask() shl offset).inv())
}
public fun Int.insert1(value: Int, offset: Int): Int = insertMask(value, offset, 0b1)
public fun Int.insert2(value: Int, offset: Int): Int = insertMask(value, offset, 0b11)
public fun Int.insert3(value: Int, offset: Int): Int = insertMask(value, offset, 0b111)
public fun Int.insert4(value: Int, offset: Int): Int = insertMask(value, offset, 0b1111)
public fun Int.insert5(value: Int, offset: Int): Int = insertMask(value, offset, 0b11111)
public fun Int.insert6(value: Int, offset: Int): Int = insertMask(value, offset, 0b111111)
public fun Int.insert7(value: Int, offset: Int): Int = insertMask(value, offset, 0b1111111)
public fun Int.insert8(value: Int, offset: Int): Int = insertMask(value, offset, 0b11111111)
public fun Int.insert9(value: Int, offset: Int): Int = insertMask(value, offset, 0b111111111)
public fun Int.insert10(value: Int, offset: Int): Int = insertMask(value, offset, 0b1111111111)
public fun Int.insert11(value: Int, offset: Int): Int = insertMask(value, offset, 0b11111111111)
public fun Int.insert12(value: Int, offset: Int): Int = insertMask(value, offset, 0b111111111111)
public fun Int.insert13(value: Int, offset: Int): Int = insertMask(value, offset, 0b1111111111111)
public fun Int.insert14(value: Int, offset: Int): Int = insertMask(value, offset, 0b11111111111111)
public fun Int.insert15(value: Int, offset: Int): Int = insertMask(value, offset, 0b111111111111111)
public fun Int.insert16(value: Int, offset: Int): Int = insertMask(value, offset, 0b1111111111111111)
public fun Int.insert17(value: Int, offset: Int): Int = insertMask(value, offset, 0b11111111111111111)
public fun Int.insert18(value: Int, offset: Int): Int = insertMask(value, offset, 0b111111111111111111)
public fun Int.insert19(value: Int, offset: Int): Int = insertMask(value, offset, 0b1111111111111111111)
public fun Int.insert20(value: Int, offset: Int): Int = insertMask(value, offset, 0b11111111111111111111)
public fun Int.insert21(value: Int, offset: Int): Int = insertMask(value, offset, 0b111111111111111111111)
public fun Int.insert22(value: Int, offset: Int): Int = insertMask(value, offset, 0b1111111111111111111111)
public fun Int.insert23(value: Int, offset: Int): Int = insertMask(value, offset, 0b11111111111111111111111)
public fun Int.insert24(value: Int, offset: Int): Int = insertMask(value, offset, 0b111111111111111111111111)
public fun Int.insert25(value: Int, offset: Int): Int = insertMask(value, offset, 0b1111111111111111111111111)
public fun Int.insert26(value: Int, offset: Int): Int = insertMask(value, offset, 0b11111111111111111111111111)
public fun Int.insert27(value: Int, offset: Int): Int = insertMask(value, offset, 0b111111111111111111111111111)
public fun Int.insert28(value: Int, offset: Int): Int = insertMask(value, offset, 0b1111111111111111111111111111)
public fun Int.insert29(value: Int, offset: Int): Int = insertMask(value, offset, 0b11111111111111111111111111111)
public fun Int.insert30(value: Int, offset: Int): Int = insertMask(value, offset, 0b111111111111111111111111111111)
public fun Int.insert31(value: Int, offset: Int): Int = insertMask(value, offset, 0b1111111111111111111111111111111)
public fun Int.insert32(value: Int, offset: Int): Int = insertMask(value, offset, -1)
/** Fast Insert: do not clear bits, assume affecting bits are 0 */
public fun Int.finsert(value: Int, offset: Int): Int = this or (value shl offset)
public fun Int.finsert24(value: Int, offset: Int): Int = this or ((value and 0xFFFFFF) shl offset)
public fun Int.finsert16(value: Int, offset: Int): Int = this or ((value and 0xFFFF) shl offset)
public fun Int.finsert12(value: Int, offset: Int): Int = this or ((value and 0xFFF) shl offset)
public fun Int.finsert8(value: Int, offset: Int): Int = this or ((value and 0xFF) shl offset)
public fun Int.finsert7(value: Int, offset: Int): Int = this or ((value and 0b1111111) shl offset)
public fun Int.finsert6(value: Int, offset: Int): Int = this or ((value and 0b111111) shl offset)
public fun Int.finsert5(value: Int, offset: Int): Int = this or ((value and 0b11111) shl offset)
public fun Int.finsert4(value: Int, offset: Int): Int = this or ((value and 0b1111) shl offset)
public fun Int.finsert3(value: Int, offset: Int): Int = this or ((value and 0b111) shl offset)
public fun Int.finsert2(value: Int, offset: Int): Int = this or ((value and 0b11) shl offset)
public fun Int.finsert1(value: Int, offset: Int): Int = this or ((value and 0b1) shl offset)
public fun Int.finsert(value: Boolean, offset: Int): Int = finsert(value.toInt(), offset)
inline fun Int.insertMask(value: Int, offset: Int, mask: Int): Int {
return (this and (mask shl offset).inv()) or ((value and mask) shl offset)
}
/** Replaces 1 bit at [offset] with [value] and returns the result of doing such replacement */
public fun Int.insert(value: Boolean, offset: Int): Int {
val bits = (1 shl offset)
return if (value) this or bits else this and bits.inv()
}
public fun Int.insertScaled(value: Int, offset: Int, count: Int, scale: Int): Int = insert((value * count.mask()) / scale, offset, count)
public fun Int.insertScaledFF(value: Int, offset: Int, count: Int): Int = if (count == 0) this else this.insertScaled(value, offset, count, 0xFF)
/** Extracts [count] at [offset] from [this] [Int] and convert the possible values into the range 0.0..1.0 */
public fun Int.insertScaledf01(value: Float, offset: Int, count: Int): Int = this.insert((value.coerceIn(0f, 1f) * offset.mask()).toInt(), offset, count)
/** Check if [this] has all the bits set in [bits] set */
public infix fun Int.hasFlags(bits: Int): Boolean = (this and bits) == bits
public infix fun Int.hasBits(bits: Int): Boolean = (this and bits) == bits
/** Check if a specific bit at [index] is set */
public infix fun Int.hasBitSet(index: Int): Boolean = ((this ushr index) and 1) != 0
public infix fun Long.hasFlags(bits: Long): Boolean = (this and bits) == bits
public infix fun Long.hasBits(bits: Long): Boolean = (this and bits) == bits
/** Creates an integer with only bit [bit] set */
public fun bit(bit: Int): Int = 1 shl bit
/** Returns the integer [this] without the [bits] set */
public fun Int.unsetBits(bits: Int): Int = this and bits.inv()
/** Returns the integer [this] with the [bits] set */
public fun Int.setBits(bits: Int): Int = this or bits
/** Returns the integer [this] with the [bits] set or unset depending on the [set] parameter */
public fun Int.setBits(bits: Int, set: Boolean): Int = if (set) setBits(bits) else unsetBits(bits)
public fun Int.without(bits: Int): Int = this and bits.inv()
public fun Int.with(bits: Int): Int = this or bits
public fun Long.without(bits: Long): Long = this and bits.inv()
public fun Long.with(bits: Long): Long = this or bits
/** Get high 32-bits of this Long */
val Long.high: Int get() = (this ushr 32).toInt()
/** Get low 32-bits of this Long */
val Long.low: Int get() = this.toInt()
/** Get high 32-bits of this Long */
val Long._high: Int get() = (this ushr 32).toInt()
/** Get low 32-bits of this Long */
val Long._low: Int get() = this.toInt()
inline fun Long.Companion.fromLowHigh(low: Int, high: Int): Long = (low.toLong() and 0xFFFFFFFFL) or (high.toLong() shl 32)
inline fun Int.fastForEachOneBits(block: (Int) -> Unit) {
var value = this
var index = 0
while (value != 0) {
val shift = value.countTrailingZeroBits()
index += shift
if (index < 32) block(index)
value = value ushr (shift + 1)
index++
}
}

View File

@@ -0,0 +1,47 @@
package com.icegps.memory
// S | EEEEEEEEEEE | FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF
// S=1
// E=11
// F=52
fun Double.toStringInfo() = buildString(128) {
append(this@toStringInfo)
append(" = Double.fromParts(")
append("sign=")
append(this@toStringInfo.bitsSign)
append(", exponent=0b")
append(this@toStringInfo.bitsExponent.toString(2).padStart(11, '0'))
append(", mantissa=0b")
//append(this@toStringInfo.bitsMantissaLong.toString(2).padStart(52, '0'))
append(this@toStringInfo.bitsMantissaHigh.toString(2).padStart(20, '0'))
append(this@toStringInfo.bitsMantissaLow.toString(2).padStart(32, '0'))
append(")")
}
private const val TWO_POW_32_DOUBLE = 4294967296.0
val Double.Companion.TWO_POW_32 get() = TWO_POW_32_DOUBLE
fun Double.Companion.fromParts(sign: Int, exponent: Int, mantissa: Double): Double = fromParts(sign, exponent, (mantissa % TWO_POW_32_DOUBLE).toInt(), (mantissa / TWO_POW_32_DOUBLE).toInt())
fun Double.Companion.fromParts(sign: Int, exponent: Int, mantissa: Long): Double = fromParts(sign, exponent, mantissa.low, mantissa.high)
fun Double.Companion.fromParts(sign: Int, exponent: Int, mantissaLow: Int, mantissaHigh: Int): Double = fromLowHigh(mantissaLow, mantissaHigh.insert12(exponent, 20).insert1(sign, 31))
fun Double.Companion.fromLowHigh(low: Int, high: Int): Double = fromLowHighBitsSlow(low, high)
inline fun <T> Double.getLowHighBits(block: (low: Int, high: Int) -> T): T = getLowHighBitsSlow<T>(block)
/** Bit-wise equals without considering NaNs */
fun Double.equalsRaw(other: Double): Boolean = equalsRawSlow(other)
val Double.lowBits: Int get() = lowSlow
val Double.highBits: Int get() = highSlow
val Double.bitsSign: Int get() = highBits.extract1(31)
val Double.bitsExponent: Int get() = highBits.extract11(20)
val Double.bitsMantissaHigh: Int get() = highBits.extract20(0)
val Double.bitsMantissaLow: Int get() = lowBits
val Double.bitsMantissaDouble: Double get() = bitsMantissaLow.toDouble() + bitsMantissaHigh.toDouble() * TWO_POW_32_DOUBLE
val Double.bitsMantissaLong: Long get() = Long.fromLowHigh(bitsMantissaLow, bitsMantissaHigh)
@PublishedApi internal fun Double.Companion.fromLowHighBitsSlow(low: Int, high: Int): Double = Double.fromBits(Long.fromLowHigh(low, high))
@PublishedApi internal inline fun <T> Double.getLowHighBitsSlow(block: (low: Int, high: Int) -> T): T = block(lowSlow, highSlow)
@PublishedApi internal inline fun Double.equalsRawSlow(other: Double): Boolean = this.reinterpretAsLong().equals(other.reinterpretAsLong())
@PublishedApi internal val Double.lowSlow: Int get() = this.reinterpretAsLong().low
@PublishedApi internal val Double.highSlow: Int get() = this.reinterpretAsLong().high

View File

@@ -0,0 +1,194 @@
package com.icegps.memory
import kotlin.contracts.*
inline class Int64Array(val raw: DoubleArray) : Iterable<Int64> {
inline val indices: IntRange get() = raw.indices
constructor(size: Int, value: Int64 = Int64.ZERO) : this(DoubleArray(size) { value.raw })
companion object {
inline operator fun invoke(size: Int, gen: (Int) -> Int64): Int64Array = Int64Array(DoubleArray(size) { gen(it).raw })
}
inline val size: Int get() = raw.size
inline operator fun get(index: Int): Int64 = Int64.fromRaw(raw[index])
inline operator fun set(index: Int, value: Int64) { raw[index] = value.raw }
override fun iterator(): Iterator<Int64> = object : Iterator<Int64> {
var index = 0
override fun hasNext(): Boolean = index < raw.size
override fun next(): Int64 = this@Int64Array[index].also { index++ }
}
override fun toString(): String = "IntArray64($size)"
}
inline fun <T : Int64> int64ArrayOf(vararg values: T): Int64Array = Int64Array(values.size) { values[it] }
inline fun int64ArrayOf(vararg values: Int): Int64Array = Int64Array(values.size) { values[it].toInt64() }
inline fun int64ArrayOf(vararg values: Long): Int64Array = Int64Array(values.size) { values[it].toInt64() }
fun Int64Array.copyOf(newSize: Int = this.size): Int64Array = Int64Array(raw.copyOf(newSize))
fun Int64Array.copyOfRange(fromIndex: Int, toIndex: Int): Int64Array = Int64Array(raw.copyOfRange(fromIndex, toIndex))
public fun Int64Array.getOrNull(index: Int): Int64? = if (index in indices) get(index) else null
//@kotlin.internal.InlineOnly
@OptIn(ExperimentalContracts::class)
public inline fun Int64Array.getOrElse(index: Int, defaultValue: (Int) -> Int64): Int64 {
contract { callsInPlace(defaultValue, InvocationKind.AT_MOST_ONCE) }
return if (index in indices) get(index) else defaultValue(index)
}
infix fun Int64Array?.contentEquals(other: Int64Array?): Boolean = this?.raw.contentEquals(other?.raw)
fun Int64Array?.contentHashCode(): Int = this?.raw.contentHashCode()
fun Int64Array?.contentToString(): String = if (this == null) "null" else "[" + this.raw.joinToString(", ") { it.toString() } + "]"
/**
* Allocation-less Long implementation that uses a Double with reinterpreted values
*
* IMPORTANT:
*
* Due to Kotlin not supporting [equals] in inline classes,
* Equality fails in some cases where Int64 represents a NaN or an Infinity.
* For comparing Int64, use [Int64.equalsSafe] instead.
*/
inline class Int64(val raw: Double) : Comparable<Int64> {
companion object {
val ZERO = Int64(0, 0)
fun equals(a: Int64, b: Int64): Boolean = a.raw.equalsRaw(b.raw)
inline operator fun invoke(value: Long): Int64 = Int64(value.reinterpretAsDouble())
inline operator fun invoke(low: Int, high: Int): Int64 = Int64(Double.fromLowHigh(low, high))
inline operator fun invoke(value: Int64): Int64 = Int64(value.raw)
inline operator fun invoke(value: UInt): Int64 = Int64(Double.fromLowHigh(value.toInt(), 0))
inline operator fun invoke(value: Int): Int64 = when {
value < 0 -> Int64(Double.fromLowHigh(value and (1 shl 31), 1 shl 31))
else -> Int64(Double.fromLowHigh(value, 0))
}
inline fun fromRaw(value: Double) = Int64(value)
inline fun fromInt52(values: Double) = Int64(Double.fromParts(0, 0, values))
fun add(low1: UInt, high1: Int, low2: UInt, high2: Int): Int64 {
val low = low1 + low2
val carry = if (low < low1) 1 else 0
val high = high1 + high2 + carry
return Int64(low.toInt(), high)
}
fun sub(low1: UInt, high1: Int, low2: UInt, high2: Int): Int64 {
val lowDiff = low1 - low2
val borrow = if (low1 < low2) 1 else 0
val highDiff = high1 - high2 - borrow
return Int64(lowDiff.toInt(), highDiff)
}
// @TODO: Fix this
fun imul(low1: UInt, high1: Int, low2: UInt, high2: Int): Int64 {
if (low1 == 0u && high1 == 0) return Int64.ZERO
if (low2 == 0u && high2 == 0) return Int64.ZERO
/*
if (equalsLong(_this__u8e3s4, get_MIN_VALUE())) {
return if (isOdd(other)) get_MIN_VALUE() else get_ZERO()
} else if (equalsLong(other, get_MIN_VALUE())) {
return if (isOdd(_this__u8e3s4)) get_MIN_VALUE() else get_ZERO()
}
if (isNegative(_this__u8e3s4)) {
val tmp: Unit
if (isNegative(other)) {
tmp = multiply(negate(_this__u8e3s4), negate(other))
} else {
tmp = negate(multiply(negate(_this__u8e3s4), other))
}
return tmp
} else if (isNegative(other)) {
return negate(multiply(_this__u8e3s4, negate(other)))
}
if (lessThan(_this__u8e3s4, get_TWO_PWR_24_()) && lessThan(other, get_TWO_PWR_24_())) {
return fromNumber(toNumber(_this__u8e3s4) * toNumber(other))
}
val a48: Unit = _this__u8e3s4.high_1 ushr 16 or 0
val a32: Unit = _this__u8e3s4.high_1 and 65535
val a16: Unit = _this__u8e3s4.low_1 ushr 16 or 0
val a00: Unit = _this__u8e3s4.low_1 and 65535
val b48: Unit = other.high_1 ushr 16 or 0
val b32: Unit = other.high_1 and 65535
val b16: Unit = other.low_1 ushr 16 or 0
val b00: Unit = other.low_1 and 65535
var c48 = 0
var c32 = 0
var c16 = 0
var c00 = 0
c00 = c00 + imul(a00, b00) or 0
c16 = c16 + (c00 ushr 16 or 0) or 0
c00 = c00 and 65535
c16 = c16 + imul(a16, b00) or 0
c32 = c32 + (c16 ushr 16 or 0) or 0
c16 = c16 and 65535
c16 = c16 + imul(a00, b16) or 0
c32 = c32 + (c16 ushr 16 or 0) or 0
c16 = c16 and 65535
c32 = c32 + imul(a32, b00) or 0
c48 = c48 + (c32 ushr 16 or 0) or 0
c32 = c32 and 65535
c32 = c32 + imul(a16, b16) or 0
c48 = c48 + (c32 ushr 16 or 0) or 0
c32 = c32 and 65535
c32 = c32 + imul(a00, b32) or 0
c48 = c48 + (c32 ushr 16 or 0) or 0
c32 = c32 and 65535
c48 = c48 + (((imul(a48, b00) + imul(a32, b16) or 0) + imul(a16, b32) or 0) + imul(a00, b48) or 0) or 0
c48 = c48 and 65535
return Long(c16 shl 16 or c00, c48 shl 16 or c32)
*/
TODO()
}
}
inline val isNegative get() = high.extract1(31) != 0
inline val isPositive get() = !isNegative
inline val isZero get() = low == 0 && high == 0
operator fun unaryPlus(): Int64 = this
operator fun unaryMinus(): Int64 = Int64(low, -high)
fun inv(): Int64 = Int64(low.inv(), high.inv())
operator fun plus(other: Int64): Int64 = add(ulow, high, other.ulow, other.high)
operator fun minus(other: Int64): Int64 = sub(ulow, high, other.ulow, other.high)
infix fun xor(other: Int64): Int64 = Int64(low xor other.low, high xor other.high)
infix fun and(other: Int64): Int64 = Int64(low and other.low, high and other.high)
infix fun or(other: Int64): Int64 = Int64(low or other.low, high or other.high)
//infix fun shl(other: Int): Int64 = Int64(low shl other, high shl other) // @TODO: Fix this
//infix fun shr(other: Int): Int64 = Int64(low shr other, high shr other) // @TODO: Fix this
//infix fun ushr(other: Int): Int64 = Int64(low ushr other, high ushr other) // @TODO: Fix this
// @TODO: SLOW (USE INTERMEDIARY LONGS)
infix fun shl(other: Int): Int64 = Int64(toLong() shl other)
infix fun shr(other: Int): Int64 = Int64(toLong() shr other)
infix fun ushr(other: Int): Int64 = Int64(toLong() ushr other)
operator fun times(other: Int64): Int64 {
if (this.isZero || other.isZero) return Int64.ZERO
return Int64(toLong() * other.toLong())
}
//operator fun times(other: Int64): Int64 = imul(ulow, high, other.ulow, other.high) // @TODO: Fix this
operator fun div(other: Int64): Int64 = Int64(toLong() / other.toLong())
operator fun rem(other: Int64): Int64 = Int64(toLong() % other.toLong())
override fun compareTo(other: Int64): Int = this.toLong().compareTo(other.toLong())
// @TODO /END SLOW (USE INTERMEDIARY LONGS)
//val int52: Double get() = raw.bitsMantissaDouble
inline val ulow: UInt get() = raw.lowBits.toUInt()
inline val low: Int get() = raw.lowBits
inline val high: Int get() = raw.highBits
fun equalsSafe(other: Int64): Boolean = equals(this, other)
fun toInt(): Int = if (isPositive) low and 0x7FFFFFFF else -(low and 0x7FFFFFFF)
inline fun toLong(): Long = raw.reinterpretAsLong()
override fun toString(): String = "${toLong()}"
}
fun Byte.toInt64(): Int64 = Int64(this.toInt())
fun Int.toInt64(): Int64 = Int64(this)
fun Long.toInt64(): Int64 = Int64(this)
fun Double.toInt64(): Int64 = Int64.fromInt52(this)
fun Number.toInt64(): Int64 = Int64(this.toLong())

View File

@@ -0,0 +1,71 @@
package com.icegps.number
import com.icegps.math.*
import kotlin.math.*
val Double.niceStr: String get() = niceStr(-1, zeroSuffix = false)
fun Double.niceStr(decimalPlaces: Int, zeroSuffix: Boolean = false): String = buildString { appendNice(this@niceStr.roundDecimalPlaces(decimalPlaces), zeroSuffix = zeroSuffix && decimalPlaces > 0) }
val Float.niceStr: String get() = niceStr(-1, zeroSuffix = false)
fun Float.niceStr(decimalPlaces: Int, zeroSuffix: Boolean = false): String = buildString { appendNice(this@niceStr.roundDecimalPlaces(decimalPlaces), zeroSuffix = zeroSuffix && decimalPlaces > 0) }
fun StringBuilder.appendNice(value: Double, zeroSuffix: Boolean = false): Unit {
when {
round(value).isAlmostEquals(value) -> when {
value >= Int.MIN_VALUE.toDouble() && value <= Int.MAX_VALUE.toDouble() -> append(round(value).toInt())
else -> append(round(value).toLong())
}
else -> {
append(value)
return
}
}
if (zeroSuffix) append(".0")
}
fun StringBuilder.appendNice(value: Float, zeroSuffix: Boolean = false): Unit {
when {
round(value).isAlmostEquals(value) -> when {
value >= Int.MIN_VALUE.toFloat() && value <= Int.MAX_VALUE.toFloat() -> append(value.toInt())
else -> append(value.toLong())
}
else -> {
append(value)
return
}
}
if (zeroSuffix) append(".0")
}
fun StringBuilder.appendGenericArray(size: Int, appendElement: StringBuilder.(Int) -> Unit) {
append("[")
for (n in 0 until size) {
if (n != 0) append(", ")
appendElement(n)
}
append("]")
}
//val Float.niceStr: String get() = buildString { appendNice(this@niceStr) }
//fun Float.niceStr(decimalPlaces: Int): String = roundDecimalPlaces(decimalPlaces).niceStr
//val Float.niceStr: String get() = buildString { appendNice(this@niceStr) }
//fun Float.niceStr(decimalPlaces: Int): String = roundDecimalPlaces(decimalPlaces).niceStr
/*
internal fun StringBuilder.appendNice(value: Double) {
when {
round(value).isAlmostEquals(value) -> when {
value >= Int.MIN_VALUE.toDouble() && value <= Int.MAX_VALUE.toDouble() -> append(value.toInt())
else -> append(value.toLong())
}
else -> append(value)
}
}
internal fun StringBuilder.appendNice(value: Float) {
when {
round(value).isAlmostEquals(value) -> when {
value >= Int.MIN_VALUE.toFloat() && value <= Int.MAX_VALUE.toFloat() -> append(value.toInt())
else -> append(value.toLong())
}
else -> append(value)
}
}
*/

View File

@@ -0,0 +1,22 @@
package com.icegps.math.geometry
import kotlin.test.Test
/**
* @author tabidachinokaze
* @date 2025/10/28
*/
class AngleTest {
@Test
fun testAngle() {
val angle = 90.degrees
println(angle)
println(angle.degrees)
val angle1 = 1.9.radians
println(angle1)
println(angle1.radians)
println(angle1.degrees)
}
}

View File

@@ -0,0 +1,15 @@
package com.icegps.math.geometry
import kotlin.test.Test
/**
* @author tabidachinokaze
* @date 2025/10/19
*/
class EulerRotationTest {
@Test
fun testEulerRotation() {
val eulerRotation = EulerRotation(12.degrees, 12.degrees, 12.degrees)
println(eulerRotation)
}
}

View File

@@ -0,0 +1,15 @@
package com.icegps.number
import com.icegps.math.geometry.degrees
import kotlin.test.Test
/**
* @author tabidachinokaze
* @date 2025/10/19
*/
class NiceStrTest {
@Test
fun testNiceStr() {
println((12.0 / 12.1).degrees.degrees.niceStr(2))
}
}