package org.openrndr.extra.meshgenerators import org.openrndr.draw.VertexBuffer import org.openrndr.math.Matrix44 import org.openrndr.math.Vector2 import org.openrndr.math.Vector3 import org.openrndr.math.YPolarity import org.openrndr.math.transforms.rotateY /** * A shape created by rotating an envelope around a vertical axis. * * @param sides the angular resolution of the cap * @param radius the radius of the cap * @param envelope a list of points defining the profile of the cap. The default envelope is a horizontal line which produces a flat round disk. By providing a more complex envelope one can create curved shapes like a bowl. * @return A vertex buffer containing the triangles to render the 3D shape */ fun capMesh( sides: Int, radius: Double, envelope: List = listOf( Vector2(0.0, 0.0), Vector2(1.0, 0.0) ) ): VertexBuffer { val vb = meshVertexBuffer(6 * sides * (envelope.size - 1)) vb.put { generateCap(sides, radius, envelope, bufferWriter(this)) } return vb } /** * Generate a shape by rotating an envelope around a vertical axis. * * @param sides the angular resolution of the cap * @param radius the radius of the cap * @param envelope a list of points defining the profile of the cap. The default envelope is a horizontal line which produces a flat round disk. By providing a more complex envelope one can create curved shapes like a bowl. * @param writer the vertex writer function */ fun generateCap( sides: Int, radius: Double, envelope: List = listOf( Vector2(0.0, 0.0), Vector2(1.0, 0.0) ), writer: VertexWriter ) { val maxX = envelope.maxByOrNull { it.x } ?: Vector2(1.0, 0.0) val a = maxX.x val cleanEnvelope = envelope.map { Vector2((it.x / a) * radius, it.y) } val normals2D = envelope.zipWithNext().map { val d = it.second - it.first d.normalized.perpendicular(YPolarity.CCW_POSITIVE_Y) } val basePositions = cleanEnvelope.map { Vector3(it.x, it.y, 0.0) } val baseNormals = normals2D.map { Vector3(it.x, it.y, 0.0) } for (side in 0 until sides) { val r0 = Matrix44.rotateY(360.0 / sides * side) val r1 = Matrix44.rotateY(360.0 / sides * (side + 1)) val v0 = basePositions.map { (r0 * it.xyz0).xyz } val v1 = basePositions.map { (r1 * it.xyz0).xyz } val n0 = baseNormals.map { (r0 * it.xyz0).xyz } val n1 = baseNormals.map { (r1 * it.xyz0).xyz } for (segment in 0 until basePositions.size - 1) { val p00 = v0[segment] val p01 = v0[segment + 1] val p10 = v1[segment] val p11 = v1[segment + 1] val nn0 = n0[segment] val nn1 = n1[segment] writer(p00, nn0, Vector2.ZERO) writer(p01, nn0, Vector2.ZERO) writer(p11, nn1, Vector2.ZERO) writer(p11, nn1, Vector2.ZERO) writer(p10, nn1, Vector2.ZERO) writer(p00, nn0, Vector2.ZERO) } } } /** * A shape created by rotating an envelope around a vertical axis. * * @param sides the angular resolution of the cap * @param length the length of the shape. A multiplier for the y component of the envelope * @param envelope a list of points defining the profile of the shape. The default envelope is a vertical line which produces a hollow cylinder. * @return A vertex buffer containing the triangles to render the 3D shape */ fun revolveMesh( sides: Int, length: Double, envelope: List = listOf( Vector2(1.0, 0.0), Vector2(1.0, 1.0) ) ): VertexBuffer { val vb = meshVertexBuffer(6 * sides * (envelope.size - 1)) vb.put { generateRevolve(sides, length, envelope, bufferWriter(this)) } return vb } /** * Generate a shape by rotating an envelope around a vertical axis. * * @param sides the angular resolution of the cap * @param length the length of the shape. A multiplier for the y component of the envelope * @param envelope a list of points defining the profile of the shape. The default envelope is a vertical line which produces a hollow cylinder. * @param writer the vertex writer function */ fun generateRevolve( sides: Int, length: Double, envelope: List = listOf( Vector2(1.0, 0.0), Vector2(1.0, 1.0) ), writer: VertexWriter ) { val maxY = envelope.maxByOrNull { it.y } ?: Vector2(0.0, 1.0) val a = maxY.y val cleanEnvelope = envelope.map { Vector2((it.x), (it.y / a - 0.5) * length) } val normals2D = envelope.zipWithNext().map { val d = it.second - it.first d.normalized.perpendicular() * Vector2(1.0, -1.0) } val basePositions = cleanEnvelope.map { Vector3(it.x, it.y, 0.0) } val baseNormals = normals2D.map { Vector3(it.x, it.y, 0.0) } for (side in 0 until sides) { val r0 = Matrix44.rotateY(360.0 / sides * side) val r1 = Matrix44.rotateY(360.0 / sides * (side + 1)) val v0 = basePositions.map { (r0 * it.xyz0).xyz } val v1 = basePositions.map { (r1 * it.xyz0).xyz } val n0 = baseNormals.map { (r0 * it.xyz0).xyz } val n1 = baseNormals.map { (r1 * it.xyz0).xyz } for (segment in 0 until basePositions.size - 1) { val p00 = v0[segment] val p01 = v0[segment + 1] val p10 = v1[segment] val p11 = v1[segment + 1] val nn0 = n0[segment] val nn1 = n1[segment] writer(p00, nn0, Vector2.ZERO) writer(p10, nn1, Vector2.ZERO) writer(p11, nn1, Vector2.ZERO) writer(p11, nn1, Vector2.ZERO) writer(p01, nn0, Vector2.ZERO) writer(p00, nn0, Vector2.ZERO) } } }