package org.openrndr.extra.triangulation import org.openrndr.math.Vector2 import org.openrndr.shape.Rectangle import org.openrndr.shape.Triangle import org.openrndr.shape.contour import org.openrndr.shape.contours import com.github.ricardomatias.Delaunator import kotlin.math.pow /* ISC License Copyright 2021 Ricardo Matias. Permission to use, copy, modify, and/or distribute this software for any purpose with or without fee is hereby granted, provided that the above copyright notice and this permission notice appear in all copies. THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ /** * Use [from] static method to use the delaunay triangulation * * @description Port of d3-delaunay (JavaScript) library - https://github.com/d3/d3-delaunay * @property points flat positions' array - [x0, y0, x1, y1..] * * @since 9258fa3 - commit * @author Ricardo Matias */ @Suppress("unused") class Delaunay(val points: DoubleArray) { companion object { /** * Entry point for the delaunay triangulation * * @property points a list of 2D points */ fun from(points: List): Delaunay { val n = points.size val coords = DoubleArray(n * 2) for (i in points.indices) { val p = points[i] coords[2 * i] = p.x coords[2 * i + 1] = p.y } return Delaunay(coords) } } private var delaunator = Delaunator(points) val inedges = IntArray(points.size / 2) private val hullIndex = IntArray(points.size / 2) var halfedges = delaunator.halfedges var hull = delaunator.hull var triangles = delaunator.triangles init { init() } fun update() { delaunator.update() init() } fun init() { halfedges = delaunator.halfedges hull = delaunator.hull triangles = delaunator.triangles inedges.fill(-1) hullIndex.fill(-1) // Compute an index from each point to an (arbitrary) incoming halfedge // Used to give the first neighbor of each point for this reason, // on the hull we give priority to exterior halfedges for (e in halfedges.indices) { val p = triangles[nextHalfedge(e)] if (halfedges[e] == -1 || inedges[p] == -1) inedges[p] = e } for (i in hull.indices) { hullIndex[hull[i]] = i } // degenerate case: 1 or 2 (distinct) points if (hull.size in 1..2) { triangles = IntArray(3) { -1 } halfedges = IntArray(3) { -1 } triangles[0] = hull[0] triangles[1] = hull[1] triangles[2] = hull[1] inedges[hull[0]] = 1 if (hull.size == 2) inedges[hull[1]] = 0 } } fun triangles(): List { val list = mutableListOf() for (i in triangles.indices step 3 ) { val t0 = triangles[i] * 2 val t1 = triangles[i + 1] * 2 val t2 = triangles[i + 2] * 2 val p1 = Vector2(points[t0], points[t0 + 1]) val p2 = Vector2(points[t1], points[t1 + 1]) val p3 = Vector2(points[t2], points[t2 + 1]) // originally they are defined *counterclockwise* list.add(Triangle(p3, p2, p1)) } return list } // Inner edges of the delaunay triangulation (without hull) fun halfedges() = contours { for (i in halfedges.indices) { val j = halfedges[i] if (j < i) continue val ti = triangles[i] * 2 val tj = triangles[j] * 2 moveTo(points[ti], points[ti + 1]) lineTo(points[tj], points[tj + 1]) } } fun hull() = contour { for (h in hull) { moveOrLineTo(points[2 * h], points[2 * h + 1]) } close() } fun find(x: Double, y: Double, i: Int = 0): Int { var i1 = i var c = step(i, x, y) while (c >= 0 && c != i && c != i1) { i1 = c c = step(i1, x, y) } return c } fun nextHalfedge(e: Int) = if (e % 3 == 2) e - 2 else e + 1 fun prevHalfedge(e: Int) = if (e % 3 == 0) e + 2 else e - 1 fun step(i: Int, x: Double, y: Double): Int { if (inedges[i] == -1 || points.isEmpty()) return (i + 1) % (points.size shr 1) var c = i var dc = (x - points[i * 2]).pow(2) + (y - points[i * 2 + 1]).pow(2) val e0 = inedges[i] var e = e0 do { val t = triangles[e] val dt = (x - points[t * 2]).pow(2) + (y - points[t * 2 + 1]).pow(2) if (dt < dc) { dc = dt c = t } e = nextHalfedge(e) if (triangles[e] != i) break // bad triangulation e = halfedges[e] if (e == -1) { e = hull[(hullIndex[i] + 1) % hull.size] if (e != t) { if ((x - points[e * 2]).pow(2) + (y - points[e * 2 + 1]).pow(2) < dc) return e } break } } while (e != e0) return c } fun voronoi(bounds: Rectangle): Voronoi = Voronoi(this, bounds) }