package org.openrndr.extra.noise import org.openrndr.math.Vector2 import org.openrndr.math.Vector3 import org.openrndr.math.Vector4 import kotlin.math.ln import kotlin.math.sqrt import kotlin.random.Random /** * Generates a random number following a Gaussian (normal) distribution. * * @param mean The mean of the Gaussian distribution. Defaults to 0.0. * @param deviation The standard deviation of the Gaussian distribution. Defaults to 1.0. * @param random The random number generator to use. Defaults to Random.Default. * @return A random number sampled from the specified Gaussian distribution. */ fun gaussian(mean: Double = 0.0, deviation: Double = 1.0, random: Random = Random.Default): Double { var v1: Double var v2: Double var s: Double do { v1 = 2 * random.nextDouble() - 1 v2 = 2 * random.nextDouble() - 1 s = v1 * v1 + v2 * v2 } while (s >= 1 || s == 0.0) val multiplier = sqrt(-2 * ln(s) / s) return v1 * multiplier * deviation + mean } /** * Generates a random number following a Gaussian (normal) distribution. * * @param mean The mean of the Gaussian distribution. Defaults to 0.0. * @param deviation The standard deviation of the Gaussian distribution. Defaults to 1.0. * @param random The random number generator to use. Defaults to Random.Default. * @return A random number sampled from the specified Gaussian distribution. */ fun Double.Companion.gaussian( mean: Double = 0.0, deviation: Double = 1.0, random: Random = Random.Default ): Double = org.openrndr.extra.noise.gaussian(mean, deviation, random) /** * Generates a random 2D vector with components sampled from independent Gaussian (normal) distributions. * * @param mean The mean vector of the Gaussian distributions for the x and y components. Defaults to Vector2.ZERO. * @param deviation The standard deviation vector of the Gaussian distributions for the x and y components. Defaults to Vector2.ONE. * @param random The random number generator to use. Defaults to Random.Default. * @return A 2D vector with components sampled from their respective Gaussian distributions. */ fun Vector2.Companion.gaussian(mean: Vector2 = Vector2.ZERO, deviation: Vector2 = Vector2.ONE, random: Random = Random.Default): Vector2 { return Vector2(gaussian(mean.x, deviation.x, random), gaussian(mean.y, deviation.y, random)) } /** * Generates a random Vector3 following a Gaussian (normal) distribution. * * @param mean The mean vector for the Gaussian distribution. Defaults to Vector3.ZERO. * @param deviation The standard deviation vector for the Gaussian distribution. Defaults to Vector3.ONE. * @param random The random number generator to use. Defaults to Random.Default. * @return A random Vector3 sampled from the specified Gaussian distribution. */ fun Vector3.Companion.gaussian(mean: Vector3 = Vector3.ZERO, deviation: Vector3 = Vector3.ONE, random: Random = Random.Default): Vector3 { return Vector3(gaussian(mean.x, deviation.x, random), gaussian(mean.y, deviation.y, random), gaussian(mean.z, deviation.z, random)) } /** * Generates a random `Vector4` where each component is sampled independently from a Gaussian (normal) distribution. * * @param mean A `Vector4` representing the mean of the distribution for each component. Defaults to `Vector4.ZERO`. * @param deviation A `Vector4` representing the standard deviation of the distribution for each component. Defaults to `Vector4.ONE`. * @param random The random number generator to use. Defaults to `Random.Default`. * @return A `Vector4` where each component is a random number sampled from the specified Gaussian distribution. */ fun Vector4.Companion.gaussian(mean: Vector4 = Vector4.ZERO, deviation: Vector4 = Vector4.ONE, random: Random = Random.Default): Vector4 { return Vector4(gaussian(mean.x, deviation.x, random), gaussian(mean.y, deviation.y, random), gaussian(mean.z, deviation.z, random), gaussian(mean.w, deviation.w, random)) }