Files
orx/orx-noise/src/commonMain/kotlin/ShapeNoise.kt
2025-01-19 11:01:54 +01:00

149 lines
5.2 KiB
Kotlin

package org.openrndr.extra.noise
import org.openrndr.extra.hashgrid.HashGrid
import org.openrndr.extra.noise.shapes.hash
import org.openrndr.extra.noise.shapes.uniform
import org.openrndr.math.Vector2
import org.openrndr.shape.*
import kotlin.random.Random
/**
* Generates a list of uniformly distributed points within the shape provided by the ShapeProvider.
*
* @param pointCount The number of points to generate.
* @param random An optional random number generator to influence the distribution.
* @return A list of Vector2 objects representing the uniformly distributed points.
*/
fun ShapeProvider.uniform(pointCount: Int, random: Random = Random.Default): List<Vector2> {
return shape.triangulation.uniform(pointCount, random)
}
/**
* Generates a list of hashed points based on the shape's triangulation.
*
* @param pointCount The number of points to generate in the hashed result.
* @param seed The seed value used for randomization in the hashing process.
* @param x An additional parameter used in the hashing process to modify randomization.
* @return A list of vectors representing the hashed points.
*/
fun ShapeProvider.hash(pointCount: Int, seed: Int, x: Int): List<Vector2> {
return shape.triangulation.hash(pointCount, seed, x)
}
/**
* Returns a list of pairs in which the first component is a radius and the
* second component a list of [Vector2] positions of items with that radius.
*
* [multiScatter] is a variation of [scatter] not limited to items of equal radius.
*
* The [radii] argument contains a list of pairs with `placementRadius` and `objectRadius`.
*
* The algorithm iterates a maximum of [tries] times trying to find 2D points
* that maintain the separations to each other specified via [radii] while
* keeping a [distanceToEdge] distance to the contour of the shape.
*/
fun ShapeProvider.multiScatter(
radii: List<Pair<Double, Double>>,
distanceToEdge: Double = 0.0,
tries: Int = 30,
random: Random = Random.Default
) : List<Pair<Double, List<Vector2>>> {
val obstacles = mutableListOf<Pair<Double, List<Vector2>>>()
val result = mutableListOf<Pair<Double, List<Vector2>>>()
for ((placementRadius, objectRadius) in radii) {
val points = scatter(placementRadius, objectRadius, distanceToEdge, tries, obstacles, random)
obstacles.add(Pair(objectRadius, points))
result.add(Pair(objectRadius, points))
}
return result
}
/**
* Returns a list of 2D points contained in the [ShapeProvider]. The algorithm
* iterates a maximum of [tries] times trying to find points that maintain
* the separation to each other specified via [placementRadius] while
* keeping a [distanceToEdge] distance to the contour of the shape.
*
* It is possible to include [obstacles] to avoid. The optional
* list of obstacles contains pairs, each pair has a radius and a list of
* 2D locations. [objectRadius] defines a margin to keep around the obstacles.
*/
fun ShapeProvider.scatter(
placementRadius: Double,
objectRadius: Double = placementRadius,
distanceToEdge: Double = 0.0,
tries: Int = 30,
obstacles: List<Pair<Double, List<Vector2>>> = emptyList(),
random: Random = Random.Default
): List<Vector2> {
val shape = shape
if (shape.empty) {
return emptyList()
}
val bounds = shape.bounds
val obstacleHashGrids = obstacles.map { (obstacleRadius, points) ->
val hg = HashGrid(obstacleRadius + objectRadius)
for (point in points) {
hg.insert(point)
}
hg
}
fun Segment2D.randomPoints(count: Int) = sequence {
for (i in 0 until count) {
val t = random.nextDouble()
yield(position(t) - normal(t).normalized * distanceToEdge)
}
}
val initialPointHashGrid = HashGrid(placementRadius)
val initialPoints = shape.splitCompounds().flatMap { compound ->
compound.outline.segments.mapNotNull {
val point = it.randomPoints(20).firstOrNull { v ->
obstacleHashGrids.all { ohg -> ohg.isFree(v) } &&
initialPointHashGrid.isFree(v) &&
compound.contains(v) &&
compound.outline.nearest(v).position.distanceTo(v) >= distanceToEdge - 1E-1
}
if (point != null) {
initialPointHashGrid.insert(point)
}
point
}
}
require(initialPoints.isNotEmpty() || obstacles.isNotEmpty())
val candidatePoints = mutableListOf<Vector2>()
for (point in initialPoints) {
if ((candidatePoints.map { it.distanceTo(point) }.minOrNull() ?: Double.POSITIVE_INFINITY) >= placementRadius * 2.0) {
candidatePoints.add(point)
}
}
if (candidatePoints.isEmpty()) {
return emptyList()
}
return poissonDiskSampling(
bounds,
placementRadius * 2.0,
tries,
true,
random,
candidatePoints,
obstacleHashGrids = obstacleHashGrids,
) { point ->
if (distanceToEdge == 0.0) {
shape.contains(point)
} else {
shape.contains(point) && shape.contours.minOf { c ->
c.nearest(point).position.distanceTo(point)
} > distanceToEdge
}
}
}