Files
orx/orx-mesh/src/commonMain/kotlin/IndexedPolygon.kt
2025-01-25 13:57:46 +01:00

333 lines
12 KiB
Kotlin

package org.openrndr.extra.mesh
import org.openrndr.math.Matrix44
import org.openrndr.math.Vector2
import org.openrndr.math.Vector3
import org.openrndr.math.Vector4
import kotlin.math.*
/**
* Represents an indexed polygon in 3D space. The polygon is defined using indices referencing
* the various attributes (e.g., position, texture coordinates, normals) provided in an external vertex data.
*/
interface IIndexedPolygon {
/**
* Position indices
*/
val positions: List<Int>
/**
* Texture coordinate indices, optional
*/
val textureCoords: List<Int>
/**
* Normal indices, optional
*/
val normals: List<Int>
/**
* Color indices, optional
*/
val colors: List<Int>
/**
* Tangents, optional
*/
val tangents: List<Int>
/**
* Bitangents, optional
*/
val bitangents: List<Int>
fun base(vertexData: IVertexData): Matrix44 {
val u = (vertexData.positions[positions[1]] - vertexData.positions[positions[0]])
val v = (vertexData.positions[positions[positions.size - 1]] - vertexData.positions[positions[0]])
val normal = u.cross(v)
val bitangent = normal.cross(u)
return Matrix44.fromColumnVectors(
u.xyz0.normalized,
bitangent.xyz0.normalized,
normal.xyz0.normalized,
Vector4.UNIT_W
)
}
/**
* Checks if the polygon defined by the given vertex data is planar.
*
* @param vertexData The vertex data that contains the positions of the polygon's vertices.
* @param eps A small tolerance value used to determine planarity. Defaults to 1E-2.
* @return True if the polygon is planar, false otherwise.
*/
fun isPlanar(vertexData: IVertexData, eps: Double = 1E-2): Boolean {
fun normal(i: Int): Vector3 {
val p0 = vertexData.positions[positions[(i - 1).mod(positions.size)]]
val p1 = vertexData.positions[positions[(i).mod(positions.size)]]
val p2 = vertexData.positions[positions[(i + 1).mod(positions.size)]]
val u = (p0 - p1).normalized
val v = (p2 - p1).normalized
return u.cross(v).normalized
}
return if (positions.size <= 3) {
true
} else {
val n0 = normal(0)
(1 until positions.size - 2).all { n0.dot(normal(it)) >= 1.0 - eps }
}
}
/**
* Determines if the polygon defined by the given vertex data is convex.
*
* @param vertexData The vertex data containing the positions of the polygon's vertices.
* @return True if the polygon is convex, false otherwise.
*/
fun isConvex(vertexData: IVertexData): Boolean {
val planar = base(vertexData).inversed
fun p(v: Vector3): Vector2 {
return (planar * v.xyz1).xy
}
if (positions.size < 3) {
return false
}
var old = p(vertexData.positions[positions[positions.size - 2]])
var new = p(vertexData.positions[positions[positions.size - 1]])
var newDirection = atan2(new.y - old.y, new.x - old.x)
var angleSum = 0.0
var oldDirection: Double
var orientation = Double.POSITIVE_INFINITY
for ((ndx, newPointIndex) in positions.withIndex()) {
old = new
oldDirection = newDirection
val newPoint = p(vertexData.positions[newPointIndex])
new = newPoint
newDirection = atan2(new.y - old.y, new.x - old.x)
if (old == new) {
return false
}
var angle = newDirection - oldDirection
if (angle <= -PI)
angle += PI * 2.0
if (angle > PI) {
angle -= PI * 2.0
}
if (ndx == 0) {
if (angle == 0.0) {
return false
}
orientation = if (angle > 0.0) 1.0 else -1.0
} else {
if (orientation * angle <= 0.0) {
return false
}
}
angleSum += angle
}
return abs(round(angleSum / (2 * PI))) == 1.0
}
/**
* Computes the normal vector of the polygon based on the given vertex data.
*
* The method calculates the cross product of two edges of the polygon
* and normalizes the resulting vector to obtain the normal.
*
* @param vertexData The vertex data that contains the positions of the polygon's vertices.
* @return A normalized 3D vector representing the normal of the polygon.
*/
fun normal(vertexData: IVertexData) : Vector3 {
val u = vertexData.positions[positions[1]] - vertexData.positions[positions[0]]
val v = vertexData.positions[positions[2]] - vertexData.positions[positions[0]]
return u.cross(v).normalized
}
/**
* Converts the provided vertex data into a polygon representation.
*
* @param vertexData The vertex data containing positions, normals, texture coordinates, and other attributes of the vertices.
* @return A polygon created from the given vertex data.
*/
fun toPolygon(vertexData: IVertexData): IPolygon
}
/**
* Represents a polygon defined by indices corresponding to vertex data such as positions,
* texture coordinates, colors, normals, tangents, and bitangents. It can be used to describe
* a geometric shape for rendering or processing in 3D graphics or geometry applications.
*
* @property positions List of indices referencing the vertex positions.
* @property textureCoords List of indices referencing the texture coordinates.
* @property colors List of indices referencing vertex colors.
* @property normals List of indices referencing vertex normals.
* @property tangents List of indices referencing vertex tangents.
* @property bitangents List of indices referencing vertex bitangents.
*/
data class IndexedPolygon(
override val positions: List<Int>,
override val textureCoords: List<Int>,
override val colors: List<Int>,
override val normals: List<Int>,
override val tangents: List<Int>,
override val bitangents: List<Int>
) : IIndexedPolygon {
private fun tessellate(vertexData: IVertexData): List<IndexedPolygon> {
val points = vertexData.positions.slice(positions.toList())
val triangles = org.openrndr.shape.triangulate(listOf(points))
return triangles.windowed(3, 3).map {
IndexedPolygon(
positions.slice(it),
if (textureCoords.isNotEmpty()) textureCoords.slice(it) else listOf(),
if (colors.isNotEmpty()) colors.slice(it) else listOf(),
if (normals.isNotEmpty()) normals.slice(it) else listOf(),
if (tangents.isNotEmpty()) tangents.slice(it) else listOf(),
if (bitangents.isNotEmpty()) bitangents.slice(it) else listOf()
)
}
}
/**
* Triangulates the polygon represented by the provided vertex data.
*
* @param vertexData The vertex data that defines the positions, texture coordinates,
* colors, normals, tangents, and bitangents of the polygon vertices.
* @return A list of indexed triangles representing the triangulated polygon. Each triangle
* is defined using the vertex information from the provided vertex data.
*/
fun triangulate(vertexData: IVertexData): List<IndexedPolygon> {
return when {
positions.size == 3 -> listOf(this)
isPlanar(vertexData) && isConvex(vertexData) -> {
val triangleCount = positions.size - 2
(0 until triangleCount).map {
IndexedPolygon(
listOf(positions[0], positions[it + 1], positions[it + 2]),
listOfNotNull(
textureCoords.getOrNull(0),
textureCoords.getOrNull(it),
textureCoords.getOrNull(it + 1)
),
listOfNotNull(
colors.getOrNull(0),
colors.getOrNull(it + 1),
colors.getOrNull(it + 2)
),
listOfNotNull(
normals.getOrNull(0),
normals.getOrNull(it),
normals.getOrNull(it + 1)
),
listOfNotNull(
tangents.getOrNull(0),
tangents.getOrNull(it + 1),
tangents.getOrNull(it + 2)
),
listOfNotNull(
bitangents.getOrNull(0),
bitangents.getOrNull(it + 1),
bitangents.getOrNull(it + 2)
),
)
}
}
else -> tessellate(vertexData)
}
}
override fun toPolygon(vertexData: IVertexData): Polygon {
return Polygon(
vertexData.positions.slice(positions),
vertexData.textureCoords.slice(textureCoords),
vertexData.colors.slice(colors),
vertexData.normals.slice(normals),
vertexData.tangents.slice(tangents),
vertexData.bitangents.slice(bitangents)
)
}
/**
* Shifts the indices for position, texture coordinates, colors, normals, tangents, and bitangents
* by the specified amounts and returns a new IndexedPolygon with the updated indices.
*
* @param positions The amount to shift the position indices. Defaults to 0.
* @param textureCoords The amount to shift the texture coordinate indices. Defaults to 0.
* @param colors The amount to shift the color indices. Defaults to 0.
* @param normals The amount to shift the normal indices. Defaults to 0.
* @param tangents The amount to shift the tangent indices. Defaults to 0.
* @param bitangents The amount to shift the bitangent indices. Defaults to 0.
* @return A new IndexedPolygon with indices shifted by the provided values.
*/
fun shiftIndices(
positions: Int = 0,
textureCoords: Int = 0,
colors: Int = 0,
normals: Int = 0,
tangents: Int = 0,
bitangents: Int = 0
): IndexedPolygon {
return IndexedPolygon(
positions = this.positions.map { it + positions },
textureCoords = this.textureCoords.map { it + textureCoords },
colors = this.colors.map { it + colors },
normals = this.normals.map { it + normals },
tangents = this.tangents.map { it + tangents },
bitangents = this.bitangents.map { it + bitangents }
)
}
}
/**
* Represents a mutable 3D indexed polygon. This class allows modifications to its indices and
* provides functionality to transform vertex references into a corresponding polygon representation.
*
* The polygon is defined by indices referencing an external vertex data source, such as the
* position, texture coordinates, normals, colors, tangents, and bitangents of the vertices. These
* indices can be updated, providing flexibility for dynamic operations on the polygon.
*
* @property positions Mutable list of position indices defining the polygon's vertices.
* @property textureCoords Mutable list of texture coordinate indices defining the mapping of textures.
* @property normals Mutable list of normal indices, which specify the normals of the vertices.
* @property colors Mutable list of color indices specifying the vertex colors.
* @property tangents Mutable list of tangent indices, optional.
* @property bitangents Mutable list of bitangent indices, optional.
*/
data class MutableIndexedPolygon(
override val positions: MutableList<Int>,
override val textureCoords: MutableList<Int>,
override val normals: MutableList<Int>,
override val colors: MutableList<Int>,
override val tangents: MutableList<Int>,
override val bitangents: MutableList<Int>
) : IIndexedPolygon {
override fun toPolygon(vertexData: IVertexData): MutablePolygon {
return MutablePolygon(
vertexData.positions.slice(positions).toMutableList(),
vertexData.textureCoords.slice(textureCoords).toMutableList(),
vertexData.colors.slice(colors).toMutableList(),
vertexData.normals.slice(normals).toMutableList()
)
}
}