596 lines
17 KiB
Kotlin
596 lines
17 KiB
Kotlin
package org.openrndr.extra.triangulation
|
|
|
|
import kotlin.math.*
|
|
|
|
val EPSILON: Double = 2.0.pow(-52)
|
|
|
|
/**
|
|
* A Kotlin port of Mapbox's Delaunator incredibly fast JavaScript library for Delaunay triangulation of 2D points.
|
|
*
|
|
* @description Port of Mapbox's Delaunator (JavaScript) library - https://github.com/mapbox/delaunator
|
|
* @property coords flat positions' array - [x0, y0, x1, y1..]
|
|
*
|
|
* @since f0ed80d - commit
|
|
* @author Ricardo Matias
|
|
*/
|
|
@Suppress("unused")
|
|
class Delaunator(val coords: DoubleArray) {
|
|
val EDGE_STACK = IntArray(512)
|
|
|
|
private var count = coords.size shr 1
|
|
|
|
// arrays that will store the triangulation graph
|
|
val maxTriangles = (2 * count - 5).coerceAtLeast(0)
|
|
private val _triangles = IntArray(maxTriangles * 3)
|
|
private val _halfedges = IntArray(maxTriangles * 3)
|
|
|
|
lateinit var triangles: IntArray
|
|
lateinit var halfedges: IntArray
|
|
|
|
// temporary arrays for tracking the edges of the advancing convex hull
|
|
private var hashSize = ceil(sqrt(count * 1.0)).toInt()
|
|
private var hullPrev = IntArray(count) // edge to prev edge
|
|
private var hullNext = IntArray(count) // edge to next edge
|
|
private var hullTri = IntArray(count) // edge to adjacent triangle
|
|
private var hullHash = IntArray(hashSize) // angular edge hash
|
|
private var hullStart: Int = -1
|
|
|
|
// temporary arrays for sorting points
|
|
private var ids = IntArray(count)
|
|
private var dists = DoubleArray(count)
|
|
|
|
private var cx: Double = Double.NaN
|
|
private var cy: Double = Double.NaN
|
|
|
|
private var trianglesLen: Int = -1
|
|
|
|
lateinit var hull: IntArray
|
|
|
|
init {
|
|
update()
|
|
}
|
|
|
|
fun update() {
|
|
if (coords.size <= 2) {
|
|
halfedges = IntArray(0)
|
|
triangles = IntArray(0)
|
|
hull = IntArray(0)
|
|
return
|
|
}
|
|
|
|
|
|
// populate an array of point indices calculate input data bbox
|
|
var minX = Double.POSITIVE_INFINITY
|
|
var minY = Double.POSITIVE_INFINITY
|
|
var maxX = Double.NEGATIVE_INFINITY
|
|
var maxY = Double.NEGATIVE_INFINITY
|
|
|
|
// points -> points
|
|
// minX, minY, maxX, maxY
|
|
for (i in 0 until count) {
|
|
val x = coords[2 * i]
|
|
val y = coords[2 * i + 1]
|
|
if (x < minX) minX = x
|
|
if (y < minY) minY = y
|
|
if (x > maxX) maxX = x
|
|
if (y > maxY) maxY = y
|
|
|
|
ids[i] = i
|
|
}
|
|
|
|
val cx = (minX + maxX) / 2
|
|
val cy = (minY + maxY) / 2
|
|
|
|
var minDist = Double.POSITIVE_INFINITY
|
|
|
|
var i0: Int = -1
|
|
var i1: Int = -1
|
|
var i2: Int = -1
|
|
|
|
// pick a seed point close to the center
|
|
for (i in 0 until count) {
|
|
val d = dist(cx, cy, coords[2 * i], coords[2 * i + 1])
|
|
|
|
if (d < minDist) {
|
|
i0 = i
|
|
minDist = d
|
|
}
|
|
}
|
|
|
|
val i0x = coords[2 * i0]
|
|
val i0y = coords[2 * i0 + 1]
|
|
|
|
minDist = Double.POSITIVE_INFINITY
|
|
|
|
// Find the point closest to the seed
|
|
for(i in 0 until count) {
|
|
if (i == i0) continue
|
|
|
|
val d = dist(i0x, i0y, coords[2 * i], coords[2 * i + 1])
|
|
|
|
if (d < minDist && d > 0) {
|
|
i1 = i
|
|
minDist = d
|
|
}
|
|
}
|
|
|
|
var i1x = coords[2 * i1]
|
|
var i1y = coords[2 * i1 + 1]
|
|
|
|
var minRadius = Double.POSITIVE_INFINITY
|
|
|
|
// Find the third point which forms the smallest circumcircle with the first two
|
|
for (i in 0 until count) {
|
|
if(i == i0 || i == i1) continue
|
|
|
|
val r = circumradius(i0x, i0y, i1x, i1y, coords[2 * i], coords[2 * i + 1])
|
|
|
|
if(r < minRadius) {
|
|
i2 = i
|
|
minRadius = r
|
|
}
|
|
}
|
|
|
|
if (minRadius == Double.POSITIVE_INFINITY) {
|
|
// order collinear points by dx (or dy if all x are identical)
|
|
// and return the list as a hull
|
|
for (i in 0 until count) {
|
|
val a = (coords[2 * i] - coords[0])
|
|
val b = (coords[2 * i + 1] - coords[1])
|
|
dists[i] = if (a == 0.0) b else a
|
|
}
|
|
|
|
quicksort(ids, dists, 0, count - 1)
|
|
|
|
val nhull = IntArray(count)
|
|
var j = 0
|
|
var d0 = Double.NEGATIVE_INFINITY
|
|
|
|
for (i in 0 until count) {
|
|
val id = ids[i]
|
|
if (dists[id] > d0) {
|
|
nhull[j++] = id
|
|
d0 = dists[id]
|
|
}
|
|
}
|
|
|
|
hull = nhull.copyOf(j)
|
|
triangles = IntArray(0)
|
|
halfedges = IntArray(0)
|
|
|
|
return
|
|
}
|
|
|
|
var i2x = coords[2 * i2]
|
|
var i2y = coords[2 * i2 + 1]
|
|
|
|
// swap the order of the seed points for counter-clockwise orientation
|
|
if (orient2d(i0x, i0y, i1x, i1y, i2x, i2y) < 0.0) {
|
|
val i = i1
|
|
val x = i1x
|
|
val y = i1y
|
|
i1 = i2
|
|
i1x = i2x
|
|
i1y = i2y
|
|
i2 = i
|
|
i2x = x
|
|
i2y = y
|
|
}
|
|
|
|
|
|
val center = circumcenter(i0x, i0y, i1x, i1y, i2x, i2y)
|
|
|
|
this.cx = center[0]
|
|
this.cy = center[1]
|
|
|
|
for (i in 0 until count) {
|
|
dists[i] = dist(coords[2 * i], coords[2 * i + 1], center[0], center[1])
|
|
}
|
|
|
|
// sort the points by distance from the seed triangle circumcenter
|
|
quicksort(ids, dists, 0, count - 1)
|
|
|
|
// set up the seed triangle as the starting hull
|
|
hullStart = i0
|
|
var hullSize = 3
|
|
|
|
hullNext[i0] = i1
|
|
hullNext[i1] = i2
|
|
hullNext[i2] = i0
|
|
|
|
hullPrev[i2] = i1
|
|
hullPrev[i0] = i2
|
|
hullPrev[i1] = i0
|
|
|
|
hullTri[i0] = 0
|
|
hullTri[i1] = 1
|
|
hullTri[i2] = 2
|
|
|
|
hullHash.fill(-1)
|
|
hullHash[hashKey(i0x, i0y)] = i0
|
|
hullHash[hashKey(i1x, i1y)] = i1
|
|
hullHash[hashKey(i2x, i2y)] = i2
|
|
|
|
trianglesLen = 0
|
|
addTriangle(i0, i1, i2, -1, -1, -1)
|
|
|
|
var xp = 0.0
|
|
var yp = 0.0
|
|
|
|
for (k in ids.indices) {
|
|
val i = ids[k]
|
|
val x = coords[2 * i]
|
|
val y = coords[2 * i + 1]
|
|
|
|
// skip near-duplicate points
|
|
if (k > 0 && abs(x - xp) <= EPSILON && abs(y - yp) <= EPSILON) continue
|
|
|
|
xp = x
|
|
yp = y
|
|
|
|
// skip seed triangle points
|
|
if (i == i0 || i == i1 || i == i2) continue
|
|
|
|
// find a visible edge on the convex hull using edge hash
|
|
var start = 0
|
|
val key = hashKey(x, y)
|
|
|
|
for (j in 0 until hashSize) {
|
|
start = hullHash[(key + j) % hashSize]
|
|
|
|
if (start != -1 && start != hullNext[start]) break
|
|
}
|
|
|
|
start = hullPrev[start]
|
|
|
|
var e = start
|
|
var q = hullNext[e]
|
|
|
|
while (orient2d(x, y, coords[2 * e], coords[2 * e + 1], coords[2 * q], coords[2 * q + 1]) >= 0) {
|
|
e = q
|
|
|
|
if (e == start) {
|
|
e = -1
|
|
break
|
|
}
|
|
|
|
q = hullNext[e]
|
|
}
|
|
|
|
if (e == -1) continue // likely a near-duplicate point skip it
|
|
|
|
// add the first triangle from the point
|
|
var t = addTriangle(e, i, hullNext[e], -1, -1, hullTri[e])
|
|
|
|
// recursively flip triangles from the point until they satisfy the Delaunay condition
|
|
hullTri[i] = legalize(t + 2)
|
|
hullTri[e] = t // keep track of boundary triangles on the hull
|
|
hullSize++
|
|
|
|
// walk forward through the hull, adding more triangles and flipping recursively
|
|
var next = hullNext[e]
|
|
q = hullNext[next]
|
|
|
|
while (orient2d(x, y, coords[2 * next], coords[2 * next + 1], coords[2 * q], coords[2 * q + 1]) < 0) {
|
|
t = addTriangle(next, i, q, hullTri[i], -1, hullTri[next])
|
|
hullTri[i] = legalize(t + 2)
|
|
hullNext[next] = next // mark as removed
|
|
hullSize--
|
|
|
|
next = q
|
|
q = hullNext[next]
|
|
}
|
|
|
|
// walk backward from the other side, adding more triangles and flipping
|
|
if (e == start) {
|
|
q = hullPrev[e]
|
|
|
|
while (orient2d(x, y, coords[2 * q], coords[2 * q + 1], coords[2 * e], coords[2 * e + 1]) < 0) {
|
|
t = addTriangle(q, i, e, -1, hullTri[e], hullTri[q])
|
|
legalize(t + 2)
|
|
hullTri[q] = t
|
|
hullNext[e] = e // mark as removed
|
|
hullSize--
|
|
|
|
e = q
|
|
q = hullPrev[e]
|
|
}
|
|
}
|
|
|
|
// update the hull indices
|
|
hullStart = e
|
|
hullPrev[i] = e
|
|
|
|
hullNext[e] = i
|
|
hullPrev[next] = i
|
|
hullNext[i] = next
|
|
|
|
// save the two new edges in the hash table
|
|
hullHash[hashKey(x, y)] = i
|
|
hullHash[hashKey(coords[2 * e], coords[2 * e + 1])] = e
|
|
}
|
|
|
|
hull = IntArray(hullSize)
|
|
|
|
var e = hullStart
|
|
|
|
for (i in 0 until hullSize) {
|
|
hull[i] = e
|
|
e = hullNext[e]
|
|
}
|
|
|
|
// trim typed triangle mesh arrays
|
|
triangles = _triangles.copyOf(trianglesLen)
|
|
halfedges = _halfedges.copyOf(trianglesLen)
|
|
}
|
|
|
|
private fun legalize(a: Int): Int {
|
|
var i = 0
|
|
var na = a
|
|
var ar: Int
|
|
|
|
// recursion eliminated with a fixed-size stack
|
|
while (true) {
|
|
val b = _halfedges[na]
|
|
|
|
/* if the pair of triangles doesn't satisfy the Delaunay condition
|
|
* (p1 is inside the circumcircle of [p0, pl, pr]), flip them,
|
|
* then do the same check/flip recursively for the new pair of triangles
|
|
*
|
|
* pl pl
|
|
* /||\ / \
|
|
* al/ || \bl al/ \a
|
|
* / || \ / \
|
|
* / a||b \ flip /___ar___\
|
|
* p0\ || /p1 => p0\---bl---/p1
|
|
* \ || / \ /
|
|
* ar\ || /br b\ /br
|
|
* \||/ \ /
|
|
* pr pr
|
|
*/
|
|
val a0 = na - na % 3
|
|
ar = a0 + (na + 2) % 3
|
|
|
|
if (b == -1) { // convex hull edge
|
|
if (i == 0) break
|
|
na = EDGE_STACK[--i]
|
|
continue
|
|
}
|
|
|
|
val b0 = b - b % 3
|
|
val al = a0 + (na + 1) % 3
|
|
val bl = b0 + (b + 2) % 3
|
|
|
|
val p0 = _triangles[ar]
|
|
val pr = _triangles[na]
|
|
val pl = _triangles[al]
|
|
val p1 = _triangles[bl]
|
|
|
|
val illegal = inCircleRobust(
|
|
coords[2 * p0], coords[2 * p0 + 1],
|
|
coords[2 * pr], coords[2 * pr + 1],
|
|
coords[2 * pl], coords[2 * pl + 1],
|
|
coords[2 * p1], coords[2 * p1 + 1])
|
|
|
|
if (illegal) {
|
|
_triangles[na] = p1
|
|
_triangles[b] = p0
|
|
|
|
val hbl = _halfedges[bl]
|
|
|
|
// edge swapped on the other side of the hull (rare) fix the halfedge reference
|
|
if (hbl == -1) {
|
|
var e = hullStart
|
|
do {
|
|
if (hullTri[e] == bl) {
|
|
hullTri[e] = na
|
|
break
|
|
}
|
|
e = hullPrev[e]
|
|
} while (e != hullStart)
|
|
}
|
|
link(na, hbl)
|
|
link(b, _halfedges[ar])
|
|
link(ar, bl)
|
|
|
|
val br = b0 + (b + 1) % 3
|
|
|
|
// don't worry about hitting the cap: it can only happen on extremely degenerate input
|
|
if (i < EDGE_STACK.size) {
|
|
EDGE_STACK[i++] = br
|
|
}
|
|
} else {
|
|
if (i == 0) break
|
|
na = EDGE_STACK[--i]
|
|
}
|
|
}
|
|
|
|
return ar
|
|
|
|
}
|
|
|
|
private fun link(a:Int, b:Int) {
|
|
_halfedges[a] = b
|
|
if (b != -1) _halfedges[b] = a
|
|
}
|
|
|
|
// add a new triangle given vertex indices and adjacent half-edge ids
|
|
private fun addTriangle(i0: Int, i1: Int, i2: Int, a: Int, b: Int, c: Int): Int {
|
|
val t = trianglesLen
|
|
|
|
_triangles[t] = i0
|
|
_triangles[t + 1] = i1
|
|
_triangles[t + 2] = i2
|
|
|
|
link(t, a)
|
|
link(t + 1, b)
|
|
link(t + 2, c)
|
|
|
|
trianglesLen += 3
|
|
|
|
return t
|
|
}
|
|
|
|
private fun hashKey(x: Double, y: Double): Int {
|
|
return (floor(pseudoAngle(x - cx, y - cy) * hashSize) % hashSize).toInt()
|
|
}
|
|
}
|
|
|
|
fun circumradius(ax: Double, ay: Double,
|
|
bx: Double, by: Double,
|
|
cx: Double, cy: Double): Double {
|
|
val dx = bx - ax
|
|
val dy = by - ay
|
|
val ex = cx - ax
|
|
val ey = cy - ay
|
|
|
|
val bl = dx * dx + dy * dy
|
|
val cl = ex * ex + ey * ey
|
|
val d = 0.5 / (dx * ey - dy * ex)
|
|
|
|
val x = (ey * bl - dy * cl) * d
|
|
val y = (dx * cl - ex * bl) * d
|
|
|
|
return x * x + y * y
|
|
}
|
|
|
|
fun circumcenter(ax: Double, ay: Double,
|
|
bx: Double, by: Double,
|
|
cx: Double, cy: Double): DoubleArray {
|
|
val dx = bx - ax
|
|
val dy = by - ay
|
|
val ex = cx - ax
|
|
val ey = cy - ay
|
|
|
|
val bl = dx * dx + dy * dy
|
|
val cl = ex * ex + ey * ey
|
|
val d = 0.5 / (dx * ey - dy * ex)
|
|
|
|
val x = ax + (ey * bl - dy * cl) * d
|
|
val y = ay + (dx * cl - ex * bl) * d
|
|
|
|
return doubleArrayOf(x, y)
|
|
}
|
|
|
|
fun quicksort(ids: IntArray, dists: DoubleArray, left: Int, right: Int) {
|
|
if (right - left <= 20) {
|
|
for (i in (left + 1)..right) {
|
|
val temp = ids[i]
|
|
val tempDist = dists[temp]
|
|
var j = i - 1
|
|
while (j >= left && dists[ids[j]] > tempDist) ids[j + 1] = ids[j--]
|
|
ids[j + 1] = temp
|
|
}
|
|
} else {
|
|
val median = (left + right) shr 1
|
|
var i = left + 1
|
|
var j = right
|
|
|
|
swap(ids, median, i)
|
|
|
|
if (dists[ids[left]] > dists[ids[right]]) swap(ids, left, right)
|
|
if (dists[ids[i]] > dists[ids[right]]) swap(ids, i, right)
|
|
if (dists[ids[left]] > dists[ids[i]]) swap(ids, left, i)
|
|
|
|
val temp = ids[i]
|
|
val tempDist = dists[temp]
|
|
|
|
while (true) {
|
|
do i++ while (dists[ids[i]] < tempDist)
|
|
do j-- while (dists[ids[j]] > tempDist)
|
|
if (j < i) break
|
|
swap(ids, i, j)
|
|
}
|
|
|
|
ids[left + 1] = ids[j]
|
|
ids[j] = temp
|
|
|
|
if (right - i + 1 >= j - left) {
|
|
quicksort(ids, dists, i, right)
|
|
quicksort(ids, dists, left, j - 1)
|
|
} else {
|
|
quicksort(ids, dists, left, j - 1)
|
|
quicksort(ids, dists, i, right)
|
|
}
|
|
}
|
|
}
|
|
|
|
private fun swap(arr: IntArray, i: Int, j: Int) {
|
|
val tmp = arr[i]
|
|
arr[i] = arr[j]
|
|
arr[j] = tmp
|
|
}
|
|
|
|
// monotonically increases with real angle, but doesn't need expensive trigonometry
|
|
private fun pseudoAngle(dx: Double, dy: Double): Double {
|
|
val p = dx / (abs(dx) + abs(dy))
|
|
val a = if (dy > 0.0) 3.0 - p else 1.0 + p
|
|
|
|
return a / 4.0 // [0..1]
|
|
}
|
|
|
|
private fun inCircle(ax: Double, ay: Double,
|
|
bx: Double, by: Double,
|
|
cx: Double, cy: Double,
|
|
px: Double, py: Double): Boolean {
|
|
val dx = ax - px
|
|
val dy = ay - py
|
|
val ex = bx - px
|
|
val ey = by - py
|
|
val fx = cx - px
|
|
val fy = cy - py
|
|
|
|
val ap = dx * dx + dy * dy
|
|
val bp = ex * ex + ey * ey
|
|
val cp = fx * fx + fy * fy
|
|
|
|
return dx * (ey * cp - bp * fy) -
|
|
dy * (ex * cp - bp * fx) +
|
|
ap * (ex * fy - ey * fx) < 0
|
|
}
|
|
|
|
private fun inCircleRobust(
|
|
ax: Double, ay: Double,
|
|
bx: Double, by: Double,
|
|
cx: Double, cy: Double,
|
|
px: Double, py: Double
|
|
): Boolean {
|
|
|
|
val dx = twoDiff(ax, px)
|
|
val dy = twoDiff(ay, py)
|
|
val ex = twoDiff(bx, px)
|
|
val ey = twoDiff(by, py)
|
|
val fx = twoDiff(cx, px)
|
|
val fy = twoDiff(cy, py)
|
|
|
|
val ap = ddAddDd(ddMultDd(dx, dx), ddMultDd(dy, dy))
|
|
val bp = ddAddDd(ddMultDd(ex, ex), ddMultDd(ey, ey))
|
|
val cp = ddAddDd(ddMultDd(fx, fx), ddMultDd(fy, fy))
|
|
|
|
val dd = ddAddDd(
|
|
ddDiffDd(
|
|
ddMultDd(dx, ddDiffDd(ddMultDd(ey, cp), ddMultDd(bp, fy))),
|
|
ddMultDd(dy, ddDiffDd(ddMultDd(ex, cp), ddMultDd(bp, fx)))
|
|
),
|
|
ddMultDd(ap, ddDiffDd(ddMultDd(ex, fy), ddMultDd(ey, fx)))
|
|
)
|
|
return (dd[1]) <= 0
|
|
}
|
|
|
|
|
|
private fun dist(ax: Double, ay: Double, bx: Double, by: Double): Double {
|
|
//val dx = ax - bx
|
|
//val dy = ay - by
|
|
//return dx * dx + dy * dy
|
|
|
|
// double-double implementation but I think it is overkill.
|
|
|
|
val dx = twoDiff(ax, bx)
|
|
val dy = twoDiff(ay, by)
|
|
val dx2 = ddMultDd(dx, dx)
|
|
val dy2 = ddMultDd(dy, dy)
|
|
val d2 = ddAddDd(dx2, dy2)
|
|
|
|
return d2[0] + d2[1]
|
|
|
|
} |