40 lines
1.3 KiB
Kotlin
40 lines
1.3 KiB
Kotlin
//import org.openrndr.application
|
|
//import org.openrndr.color.ColorRGBa
|
|
//import org.openrndr.draw.ColorBuffer
|
|
//import org.openrndr.draw.isolatedWithTarget
|
|
//import org.openrndr.draw.loadImage
|
|
//import org.openrndr.draw.renderTarget
|
|
//import org.openrndr.extra.runway.*
|
|
//
|
|
///**
|
|
// * This demonstrates the body estimation model of DensePose
|
|
// * This example requires a `runway/DensePose` model active in Runway.
|
|
// */
|
|
//fun main() = application {
|
|
// configure {
|
|
// width = 512
|
|
// height = 512
|
|
// }
|
|
//
|
|
// program {
|
|
// val rt = renderTarget(512, 512) {
|
|
// colorBuffer()
|
|
// }
|
|
// val startImage = loadImage("demo-data/images/peopleCity01.jpg")
|
|
//
|
|
// drawer.isolatedWithTarget(rt) {
|
|
// drawer.ortho(rt)
|
|
// drawer.clear(ColorRGBa.BLACK)
|
|
// drawer.image(startImage, (rt.width - startImage.width) / 2.0, (rt.height - startImage.height) / 2.0)
|
|
// }
|
|
//
|
|
// extend {
|
|
// val result: DensePoseResult =
|
|
// runwayQuery("http://localhost:8000/query", DensePoseQuery(rt.colorBuffer(0).toData()))
|
|
// val image = ColorBuffer.fromData(result.output)
|
|
//
|
|
// drawer.image(image, 0.0, 0.0, 512.0, 512.0)
|
|
// image.destroy()
|
|
// }
|
|
// }
|
|
//} |