[orx-triangulation] Improve triangulation, add kotlin/js support

This commit is contained in:
Edwin Jakobs
2022-10-21 10:33:24 +02:00
parent ed6cda8cca
commit 1f16aa6a31
21 changed files with 1608 additions and 251 deletions

View File

@@ -26,7 +26,8 @@ def multiplatformModules = [
"orx-shapes",
"orx-quadtree",
"orx-hash-grid",
"orx-depth-camera"
"orx-depth-camera",
"orx-triangulation"
]
def doNotPublish = ["openrndr-demos"]

View File

@@ -1,10 +0,0 @@
plugins {
org.openrndr.extra.convention.`kotlin-jvm`
}
dependencies {
api(project(":orx-noise"))
implementation(libs.openrndr.shape)
implementation(libs.openrndr.math)
implementation(libs.delaunator)
}

View File

@@ -38,7 +38,7 @@ kotlin {
@Suppress("UNUSED_VARIABLE")
val jvmMain by getting {
dependencies {
implementation(project(":orx-jvm:orx-triangulation"))
implementation(project(":orx-triangulation"))
}
}
@@ -58,7 +58,7 @@ kotlin {
dependencies {
implementation(project(":orx-camera"))
implementation(project(":orx-color"))
implementation(project(":orx-jvm:orx-triangulation"))
implementation(project(":orx-triangulation"))
}
}
}

View File

@@ -9,17 +9,17 @@ The functionality comes from a Javascript port of the following libraries:
## Usage
### Delaunay
### DelaunayTriangulation
The entry point is the `Delaunay` class.
The entry point is the `DelaunayTriangulation` class.
```kotlin
val points: List<Vector2>
val delaunay = Delaunay.from(points)
val delaunay = DelaunayTriangulation(points)
// or
val flatPoints: DoubleArray // (x0, y0, x1, x1, x2, y2)
val delaunay = Delaunay(flatPoints)
val delaunay = points.delaunayTriangulation()
```
This is how you retrieve the triangulation results:
@@ -29,21 +29,19 @@ val triangles: List<Triangle> = delaunay.triangles()
val halfedges: List<ShapeContour> = delaunay.halfedges()
val hull: ShapeContour = delaunay.hull()
// Updates the triangulation after the points have been modified in-place.
delaunay.update()
```
### Voronoi
The bounds specifices where the Voronoi diagram will be clipped.
The bounds specify where the Voronoi diagram will be clipped.
```kotlin
val bounds: Rectangle
val delaunay = Delaunay.from(points)
val voronoi = delaunay.voronoi(bounds)
val delaunay = points.delaunayTriangulation()
val voronoi = delaunay.voronoiDiagram(bounds)
// or
val voronoi = Voronoi(Delaunay.from(points), bounds)
val voronoi = points.voronoiDiagram(bounds)
```
See [To Infinity and Back Again](https://observablehq.com/@mbostock/to-infinity-and-back-again) for an interactive explanation of Voronoi cell clipping.
@@ -51,22 +49,19 @@ See [To Infinity and Back Again](https://observablehq.com/@mbostock/to-infinity-
This is how you retrieve th results:
```kotlin
val cells: List<ShapeContour> = voronoi.cellsPolygons()
val cells: List<ShapeContour> = voronoi.cellPolygons()
val cell: ShapeContour = voronoi.cellPolygon(int) // index
val circumcenters: List<Vector2> = voronoi.circumcenters()
val circumcenters: List<Vector2> = voronoi.circumcenters
// Returns true if the cell with the specified index i contains the specified vector
val contaisVector = voronoi.contains(int, Vector2)
// Updates the Voronoi diagram and underlying triangulation
// after the points have been modified in-place
voronoi.update()
val containsVector = voronoi.contains(int, Vector2)
```
### Author
### Authors
Ricardo Matias / [@ricardomatias](https://github.com/ricardomatias)
Edwin Jakobs / [@edwinRNDR](https://github.com/edwinRNDR)
<!-- __demos__ -->
## Demos
### DemoDelaunay01

View File

@@ -0,0 +1,72 @@
import ScreenshotsHelper.collectScreenshots
plugins {
org.openrndr.extra.convention.`kotlin-multiplatform`
}
kotlin {
jvm {
@Suppress("UNUSED_VARIABLE")
val demo by compilations.getting {
// TODO: Move demos to /jvmDemo
defaultSourceSet {
kotlin.srcDir("src/demo/kotlin")
}
collectScreenshots { }
}
compilations.all {
kotlinOptions.jvmTarget = libs.versions.jvmTarget.get()
kotlinOptions.apiVersion = libs.versions.kotlinApi.get()
}
testRuns["test"].executionTask.configure {
useJUnitPlatform()
}
}
js(IR) {
browser()
nodejs()
}
sourceSets {
@Suppress("UNUSED_VARIABLE")
val commonMain by getting {
dependencies {
api(libs.openrndr.math)
api(libs.openrndr.shape)
}
}
@Suppress("UNUSED_VARIABLE")
val jvmMain by getting {
}
@Suppress("UNUSED_VARIABLE")
val jvmDemo by getting {
dependencies {
implementation(project(":orx-shapes"))
implementation(project(":orx-triangulation"))
implementation(project(":orx-noise"))
}
}
@Suppress("UNUSED_VARIABLE")
val jvmTest by getting {
dependencies {
implementation(kotlin("test-common"))
implementation(kotlin("test-annotations-common"))
implementation(kotlin("test-junit5"))
implementation(libs.kotlin.serialization.json)
runtimeOnly(libs.bundles.jupiter)
implementation(libs.spek.dsl)
implementation(libs.kluent)
}
}
@Suppress("UNUSED_VARIABLE")
val jsTest by getting {
dependencies {
implementation(kotlin("test-js"))
}
}
}
}

View File

@@ -0,0 +1,597 @@
package org.openrndr.extra.triangulation
import kotlin.math.*
private val EPSILON: Double = 2.0.pow(-52)
/**
* A Kotlin port of Mapbox's Delaunator incredibly fast JavaScript library for Delaunay triangulation of 2D points.
*
* @description Port of Mapbox's Delaunator (JavaScript) library - https://github.com/mapbox/delaunator
* @property coords flat positions' array - [x0, y0, x1, y1..]
*
* @since f0ed80d - commit
* @author Ricardo Matias
*/
@Suppress("unused")
internal class Delaunator(val coords: DoubleArray) {
private val EDGE_STACK = IntArray(512)
private var count = coords.size shr 1
// arrays that will store the triangulation graph
val maxTriangles = (2 * count - 5).coerceAtLeast(0)
private val _triangles = IntArray(maxTriangles * 3)
private val _halfedges = IntArray(maxTriangles * 3)
lateinit var triangles: IntArray
lateinit var halfedges: IntArray
// temporary arrays for tracking the edges of the advancing convex hull
private var hashSize = ceil(sqrt(count * 1.0)).toInt()
private var hullPrev = IntArray(count) // edge to prev edge
private var hullNext = IntArray(count) // edge to next edge
private var hullTri = IntArray(count) // edge to adjacent triangle
private var hullHash = IntArray(hashSize) // angular edge hash
private var hullStart: Int = -1
// temporary arrays for sorting points
private var ids = IntArray(count)
private var dists = DoubleArray(count)
private var cx: Double = Double.NaN
private var cy: Double = Double.NaN
private var trianglesLen: Int = -1
lateinit var hull: IntArray
init {
update()
}
fun update() {
if (coords.size <= 2) {
halfedges = IntArray(0)
triangles = IntArray(0)
hull = IntArray(0)
return
}
// populate an array of point indices calculate input data bbox
var minX = Double.POSITIVE_INFINITY
var minY = Double.POSITIVE_INFINITY
var maxX = Double.NEGATIVE_INFINITY
var maxY = Double.NEGATIVE_INFINITY
// points -> points
// minX, minY, maxX, maxY
for (i in 0 until count) {
val x = coords[2 * i]
val y = coords[2 * i + 1]
if (x < minX) minX = x
if (y < minY) minY = y
if (x > maxX) maxX = x
if (y > maxY) maxY = y
ids[i] = i
}
val cx = (minX + maxX) / 2
val cy = (minY + maxY) / 2
var minDist = Double.POSITIVE_INFINITY
var i0: Int = -1
var i1: Int = -1
var i2: Int = -1
// pick a seed point close to the center
for (i in 0 until count) {
val d = dist(cx, cy, coords[2 * i], coords[2 * i + 1])
if (d < minDist) {
i0 = i
minDist = d
}
}
val i0x = coords[2 * i0]
val i0y = coords[2 * i0 + 1]
minDist = Double.POSITIVE_INFINITY
// Find the point closest to the seed
for(i in 0 until count) {
if (i == i0) continue
val d = dist(i0x, i0y, coords[2 * i], coords[2 * i + 1])
if (d < minDist && d > 0) {
i1 = i
minDist = d
}
}
var i1x = coords[2 * i1]
var i1y = coords[2 * i1 + 1]
var minRadius = Double.POSITIVE_INFINITY
// Find the third point which forms the smallest circumcircle with the first two
for (i in 0 until count) {
if(i == i0 || i == i1) continue
val r = circumradius(i0x, i0y, i1x, i1y, coords[2 * i], coords[2 * i + 1])
if(r < minRadius) {
i2 = i
minRadius = r
}
}
if (minRadius == Double.POSITIVE_INFINITY) {
// order collinear points by dx (or dy if all x are identical)
// and return the list as a hull
for (i in 0 until count) {
val a = (coords[2 * i] - coords[0])
val b = (coords[2 * i + 1] - coords[1])
dists[i] = if (a == 0.0) b else a
}
quicksort(ids, dists, 0, count - 1)
val nhull = IntArray(count)
var j = 0
var d0 = Double.NEGATIVE_INFINITY
for (i in 0 until count) {
val id = ids[i]
if (dists[id] > d0) {
nhull[j++] = id
d0 = dists[id]
}
}
hull = nhull.copyOf(j)
triangles = IntArray(0)
halfedges = IntArray(0)
return
}
var i2x = coords[2 * i2]
var i2y = coords[2 * i2 + 1]
// swap the order of the seed points for counter-clockwise orientation
if (orient2d(i0x, i0y, i1x, i1y, i2x, i2y) < 0.0) {
val i = i1
val x = i1x
val y = i1y
i1 = i2
i1x = i2x
i1y = i2y
i2 = i
i2x = x
i2y = y
}
val center = circumcenter(i0x, i0y, i1x, i1y, i2x, i2y)
this.cx = center[0]
this.cy = center[1]
for (i in 0 until count) {
dists[i] = dist(coords[2 * i], coords[2 * i + 1], center[0], center[1])
}
// sort the points by distance from the seed triangle circumcenter
quicksort(ids, dists, 0, count - 1)
// set up the seed triangle as the starting hull
hullStart = i0
var hullSize = 3
hullNext[i0] = i1
hullNext[i1] = i2
hullNext[i2] = i0
hullPrev[i2] = i1
hullPrev[i0] = i2
hullPrev[i1] = i0
hullTri[i0] = 0
hullTri[i1] = 1
hullTri[i2] = 2
hullHash.fill(-1)
hullHash[hashKey(i0x, i0y)] = i0
hullHash[hashKey(i1x, i1y)] = i1
hullHash[hashKey(i2x, i2y)] = i2
trianglesLen = 0
addTriangle(i0, i1, i2, -1, -1, -1)
var xp = 0.0
var yp = 0.0
for (k in ids.indices) {
val i = ids[k]
val x = coords[2 * i]
val y = coords[2 * i + 1]
// skip near-duplicate points
if (k > 0 && abs(x - xp) <= EPSILON && abs(y - yp) <= EPSILON) continue
xp = x
yp = y
// skip seed triangle points
if (i == i0 || i == i1 || i == i2) continue
// find a visible edge on the convex hull using edge hash
var start = 0
val key = hashKey(x, y)
for (j in 0 until hashSize) {
start = hullHash[(key + j) % hashSize]
if (start != -1 && start != hullNext[start]) break
}
start = hullPrev[start]
var e = start
var q = hullNext[e]
while (orient2d(x, y, coords[2 * e], coords[2 * e + 1], coords[2 * q], coords[2 * q + 1]) >= 0) {
e = q
if (e == start) {
e = -1
break
}
q = hullNext[e]
}
if (e == -1) continue // likely a near-duplicate point skip it
// add the first triangle from the point
var t = addTriangle(e, i, hullNext[e], -1, -1, hullTri[e])
// recursively flip triangles from the point until they satisfy the Delaunay condition
hullTri[i] = legalize(t + 2)
hullTri[e] = t // keep track of boundary triangles on the hull
hullSize++
// walk forward through the hull, adding more triangles and flipping recursively
var next = hullNext[e]
q = hullNext[next]
while (orient2d(x, y, coords[2 * next], coords[2 * next + 1], coords[2 * q], coords[2 * q + 1]) < 0) {
t = addTriangle(next, i, q, hullTri[i], -1, hullTri[next])
hullTri[i] = legalize(t + 2)
hullNext[next] = next // mark as removed
hullSize--
next = q
q = hullNext[next]
}
// walk backward from the other side, adding more triangles and flipping
if (e == start) {
q = hullPrev[e]
while (orient2d(x, y, coords[2 * q], coords[2 * q + 1], coords[2 * e], coords[2 * e + 1]) < 0) {
t = addTriangle(q, i, e, -1, hullTri[e], hullTri[q])
legalize(t + 2)
hullTri[q] = t
hullNext[e] = e // mark as removed
hullSize--
e = q
q = hullPrev[e]
}
}
// update the hull indices
hullStart = e
hullPrev[i] = e
hullNext[e] = i
hullPrev[next] = i
hullNext[i] = next
// save the two new edges in the hash table
hullHash[hashKey(x, y)] = i
hullHash[hashKey(coords[2 * e], coords[2 * e + 1])] = e
}
hull = IntArray(hullSize)
var e = hullStart
for (i in 0 until hullSize) {
hull[i] = e
e = hullNext[e]
}
// trim typed triangle mesh arrays
triangles = _triangles.copyOf(trianglesLen)
halfedges = _halfedges.copyOf(trianglesLen)
}
private fun legalize(a: Int): Int {
var i = 0
var na = a
var ar: Int
// recursion eliminated with a fixed-size stack
while (true) {
val b = _halfedges[na]
/* if the pair of triangles doesn't satisfy the Delaunay condition
* (p1 is inside the circumcircle of [p0, pl, pr]), flip them,
* then do the same check/flip recursively for the new pair of triangles
*
* pl pl
* /||\ / \
* al/ || \bl al/ \a
* / || \ / \
* / a||b \ flip /___ar___\
* p0\ || /p1 => p0\---bl---/p1
* \ || / \ /
* ar\ || /br b\ /br
* \||/ \ /
* pr pr
*/
val a0 = na - na % 3
ar = a0 + (na + 2) % 3
if (b == -1) { // convex hull edge
if (i == 0) break
na = EDGE_STACK[--i]
continue
}
val b0 = b - b % 3
val al = a0 + (na + 1) % 3
val bl = b0 + (b + 2) % 3
val p0 = _triangles[ar]
val pr = _triangles[na]
val pl = _triangles[al]
val p1 = _triangles[bl]
val illegal = inCircle(
coords[2 * p0], coords[2 * p0 + 1],
coords[2 * pr], coords[2 * pr + 1],
coords[2 * pl], coords[2 * pl + 1],
coords[2 * p1], coords[2 * p1 + 1])
if (illegal) {
_triangles[na] = p1
_triangles[b] = p0
val hbl = _halfedges[bl]
// edge swapped on the other side of the hull (rare) fix the halfedge reference
if (hbl == -1) {
var e = hullStart
do {
if (hullTri[e] == bl) {
hullTri[e] = na
break
}
e = hullPrev[e]
} while (e != hullStart)
}
link(na, hbl)
link(b, _halfedges[ar])
link(ar, bl)
val br = b0 + (b + 1) % 3
// don't worry about hitting the cap: it can only happen on extremely degenerate input
if (i < EDGE_STACK.size) {
EDGE_STACK[i++] = br
}
} else {
if (i == 0) break
na = EDGE_STACK[--i]
}
}
return ar
}
private fun link(a:Int, b:Int) {
_halfedges[a] = b
if (b != -1) _halfedges[b] = a
}
// add a new triangle given vertex indices and adjacent half-edge ids
private fun addTriangle(i0: Int, i1: Int, i2: Int, a: Int, b: Int, c: Int): Int {
val t = trianglesLen
_triangles[t] = i0
_triangles[t + 1] = i1
_triangles[t + 2] = i2
link(t, a)
link(t + 1, b)
link(t + 2, c)
trianglesLen += 3
return t
}
private fun hashKey(x: Double, y: Double): Int {
return (floor(pseudoAngle(x - cx, y - cy) * hashSize) % hashSize).toInt()
}
}
fun circumradius(ax: Double, ay: Double,
bx: Double, by: Double,
cx: Double, cy: Double): Double {
val dx = bx - ax
val dy = by - ay
val ex = cx - ax
val ey = cy - ay
val bl = dx * dx + dy * dy
val cl = ex * ex + ey * ey
val d = 0.5 / (dx * ey - dy * ex)
val x = (ey * bl - dy * cl) * d
val y = (dx * cl - ex * bl) * d
return x * x + y * y
}
fun circumcenter(ax: Double, ay: Double,
bx: Double, by: Double,
cx: Double, cy: Double): DoubleArray {
val dx = bx - ax
val dy = by - ay
val ex = cx - ax
val ey = cy - ay
val bl = dx * dx + dy * dy
val cl = ex * ex + ey * ey
val d = 0.5 / (dx * ey - dy * ex)
val x = ax + (ey * bl - dy * cl) * d
val y = ay + (dx * cl - ex * bl) * d
return doubleArrayOf(x, y)
}
fun quicksort(ids: IntArray, dists: DoubleArray, left: Int, right: Int) {
if (right - left <= 20) {
for (i in (left + 1)..right) {
val temp = ids[i]
val tempDist = dists[temp]
var j = i - 1
while (j >= left && dists[ids[j]] > tempDist) ids[j + 1] = ids[j--]
ids[j + 1] = temp
}
} else {
val median = (left + right) shr 1
var i = left + 1
var j = right
swap(ids, median, i)
if (dists[ids[left]] > dists[ids[right]]) swap(ids, left, right)
if (dists[ids[i]] > dists[ids[right]]) swap(ids, i, right)
if (dists[ids[left]] > dists[ids[i]]) swap(ids, left, i)
val temp = ids[i]
val tempDist = dists[temp]
while (true) {
do i++ while (dists[ids[i]] < tempDist)
do j-- while (dists[ids[j]] > tempDist)
if (j < i) break
swap(ids, i, j)
}
ids[left + 1] = ids[j]
ids[j] = temp
if (right - i + 1 >= j - left) {
quicksort(ids, dists, i, right)
quicksort(ids, dists, left, j - 1)
} else {
quicksort(ids, dists, left, j - 1)
quicksort(ids, dists, i, right)
}
}
}
private fun swap(arr: IntArray, i: Int, j: Int) {
val tmp = arr[i]
arr[i] = arr[j]
arr[j] = tmp
}
// monotonically increases with real angle, but doesn't need expensive trigonometry
private fun pseudoAngle(dx: Double, dy: Double): Double {
val p = dx / (abs(dx) + abs(dy))
val a = if (dy > 0.0) 3.0 - p else 1.0 + p
return a / 4.0 // [0..1]
}
/*
private fun inCircle(ax: Double, ay: Double,
bx: Double, by: Double,
cx: Double, cy: Double,
px: Double, py: Double): Boolean {
val dx = ax - px
val dy = ay - py
val ex = bx - px
val ey = by - py
val fx = cx - px
val fy = cy - py
val ap = dx * dx + dy * dy
val bp = ex * ex + ey * ey
val cp = fx * fx + fy * fy
return dx * (ey * cp - bp * fy) -
dy * (ex * cp - bp * fx) +
ap * (ex * fy - ey * fx) < 0
}*/
private fun inCircle(
ax: Double, ay: Double,
bx: Double, by: Double,
cx: Double, cy: Double,
px: Double, py: Double
): Boolean {
val dx = twoDiff(ax, px)
val dy = twoDiff(ay, py)
val ex = twoDiff(bx, px)
val ey = twoDiff(by, py)
val fx = twoDiff(cx, px)
val fy = twoDiff(cy, py)
val ap = ddAddDd(ddMultDd(dx, dx), ddMultDd(dy, dy))
val bp = ddAddDd(ddMultDd(ex, ex), ddMultDd(ey, ey))
val cp = ddAddDd(ddMultDd(fx, fx), ddMultDd(fy, fy))
val dd = ddAddDd(
ddDiffDd(
ddMultDd(dx, ddDiffDd(ddMultDd(ey, cp), ddMultDd(bp, fy))),
ddMultDd(dy, ddDiffDd(ddMultDd(ex, cp), ddMultDd(bp, fx)))
),
ddMultDd(ap, ddDiffDd(ddMultDd(ex, fy), ddMultDd(ey, fx)))
)
// add a small bias here, it seems to help
return (dd[1]) <= 1E-8
}
private fun dist(ax: Double, ay: Double, bx: Double, by: Double): Double {
//val dx = ax - bx
//val dy = ay - by
//return dx * dx + dy * dy
// double-double implementation but I think it is overkill.
val dx = twoDiff(ax, bx)
val dy = twoDiff(ay, by)
val dx2 = ddMultDd(dx, dx)
val dy2 = ddMultDd(dy, dy)
val d2 = ddAddDd(dx2, dy2)
return d2[0] + d2[1]
}

View File

@@ -5,8 +5,10 @@ import org.openrndr.shape.Rectangle
import org.openrndr.shape.Triangle
import org.openrndr.shape.contour
import org.openrndr.shape.contours
import com.github.ricardomatias.Delaunator
import kotlin.js.JsName
import kotlin.math.cos
import kotlin.math.pow
import kotlin.math.sin
/*
ISC License
@@ -57,14 +59,14 @@ class Delaunay(val points: DoubleArray) {
}
}
private var delaunator = Delaunator(points)
private var delaunator: Delaunator = Delaunator(points)
val inedges = IntArray(points.size / 2)
private val hullIndex = IntArray(points.size / 2)
var halfedges = delaunator.halfedges
var hull = delaunator.hull
var triangles = delaunator.triangles
var halfedges: IntArray = delaunator.halfedges
var hull: IntArray = delaunator.hull
var triangles: IntArray = delaunator.triangles
init {
init()
@@ -75,10 +77,69 @@ class Delaunay(val points: DoubleArray) {
init()
}
fun neighbors(i:Int) = sequence<Int> {
val e0 = inedges.getOrNull(i) ?: return@sequence
if (e0 != -1) {
var e = e0
var p0 = -1
loop@do {
p0 = triangles[e]
yield(p0)
e = if (e % 3 == 2) e - 2 else e + 1
if (e == -1) {
break@loop
}
if (triangles[e] != i) {
break@loop
//error("bad triangulation")
}
e = halfedges[e]
if (e == -1) {
val p = hull[(hullIndex[i] + 1) % hull.size]
if (p != p0) {
yield(p)
}
break@loop
}
} while (e != e0)
}
}
fun collinear(): Boolean {
for (i in 0 until triangles.size step 3) {
val a = 2 * triangles[i]
val b = 2 * triangles[i + 1]
val c = 2 * triangles[i + 2]
val coords = points
val cross = (coords[c] - coords[a]) * (coords[b + 1] - coords[a + 1])
- (coords[b] - coords[a]) * (coords[c + 1] - coords[a + 1])
if (cross > 1e-10) return false;
}
return true
}
private fun jitter(x:Double, y:Double, r:Double): DoubleArray {
return doubleArrayOf(x + sin(x+y) * r, y + cos(x-y)*r)
}
fun init() {
halfedges = delaunator.halfedges
hull = delaunator.hull
triangles = delaunator.triangles
if (hull.size > 2 && collinear()) {
println("warning: triangulation is collinear")
val r = 1E-8
for (i in 0 until points.size step 2) {
val p = jitter(points[i], points[i+1], r)
points[i] = p[0]
points[i+1] = p[1]
}
delaunator = Delaunator(points)
halfedges = delaunator.halfedges
hull = delaunator.hull
triangles = delaunator.triangles
}
inedges.fill(-1)
hullIndex.fill(-1)
@@ -101,52 +162,15 @@ class Delaunay(val points: DoubleArray) {
triangles = IntArray(3) { -1 }
halfedges = IntArray(3) { -1 }
triangles[0] = hull[0]
triangles[1] = hull[1]
triangles[2] = hull[1]
inedges[hull[0]] = 1
if (hull.size == 2) inedges[hull[1]] = 0
if (hull.size == 2) {
inedges[hull[1]] = 0
triangles[1] = hull[1]
triangles[2] = hull[1]
}
}
}
fun triangles(): List<Triangle> {
val list = mutableListOf<Triangle>()
for (i in triangles.indices step 3 ) {
val t0 = triangles[i] * 2
val t1 = triangles[i + 1] * 2
val t2 = triangles[i + 2] * 2
val p1 = Vector2(points[t0], points[t0 + 1])
val p2 = Vector2(points[t1], points[t1 + 1])
val p3 = Vector2(points[t2], points[t2 + 1])
// originally they are defined *counterclockwise*
list.add(Triangle(p3, p2, p1))
}
return list
}
// Inner edges of the delaunay triangulation (without hull)
fun halfedges() = contours {
for (i in halfedges.indices) {
val j = halfedges[i]
if (j < i) continue
val ti = triangles[i] * 2
val tj = triangles[j] * 2
moveTo(points[ti], points[ti + 1])
lineTo(points[tj], points[tj + 1])
}
}
fun hull() = contour {
for (h in hull) {
moveOrLineTo(points[2 * h], points[2 * h + 1])
}
close()
}
fun find(x: Double, y: Double, i: Int = 0): Int {
var i1 = i
@@ -178,9 +202,12 @@ class Delaunay(val points: DoubleArray) {
c = t
}
e = nextHalfedge(e)
e = if (e % 3 == 2) e - 2 else e + 1
if (triangles[e] != i) break // bad triangulation
if (triangles[e] != i) {
//error("bad triangulation")
break
} // bad triangulation
e = halfedges[e]
@@ -197,4 +224,5 @@ class Delaunay(val points: DoubleArray) {
}
fun voronoi(bounds: Rectangle): Voronoi = Voronoi(this, bounds)
}
}

View File

@@ -0,0 +1,71 @@
package org.openrndr.extra.triangulation
import org.openrndr.math.Vector2
import org.openrndr.shape.Rectangle
import org.openrndr.shape.Triangle
import org.openrndr.shape.contour
import org.openrndr.shape.contours
/**
* Kotlin/OPENRNDR idiomatic interface to `Delaunay`
*/
class DelaunayTriangulation(val points: List<Vector2>) {
internal val delaunay: Delaunay = Delaunay.from(points)
fun voronoiDiagram(bounds: Rectangle) = VoronoiDiagram(this, bounds)
fun neighbors(pointIndex: Int) : Sequence<Int> {
return delaunay.neighbors(pointIndex)
}
fun neighborPoints(pointIndex: Int) : List<Vector2> {
return neighbors(pointIndex).map { points[it] }.toList()
}
fun triangles(): List<Triangle> {
val list = mutableListOf<Triangle>()
for (i in delaunay.triangles.indices step 3 ) {
val t0 = delaunay.triangles[i]
val t1 = delaunay.triangles[i + 1]
val t2 = delaunay.triangles[i + 2]
val p1 = points[t0]
val p2 = points[t1]
val p3 = points[t2]
// originally they are defined *counterclockwise*
list.add(Triangle(p3, p2, p1))
}
return list
}
// Inner edges of the delaunay triangulation (without hull)
fun halfedges() = contours {
for (i in delaunay.halfedges.indices) {
val j = delaunay.halfedges[i]
if (j < i) continue
val ti = delaunay.triangles[i]
val tj = delaunay.triangles[j]
moveTo(points[ti])
lineTo(points[tj])
}
}
fun hull() = contour {
for (h in delaunay.hull) {
moveOrLineTo(points[2 * h])
}
close()
}
fun nearest(query: Vector2) : Int = delaunay.find(query.x, query.y)
fun nearestPoint(query: Vector2) : Vector2 = points[nearest(query)]
}
fun List<Vector2>.delaunayTriangulation() : DelaunayTriangulation {
return DelaunayTriangulation(this)
}

View File

@@ -0,0 +1,320 @@
package org.openrndr.extra.triangulation
import kotlin.math.pow
// original code: https://github.com/FlorisSteenkamp/double-double/
/**
* Returns the difference and exact error of subtracting two floating point
* numbers.
* Uses an EFT (error-free transformation), i.e. `a-b === x+y` exactly.
* The returned result is a non-overlapping expansion (smallest value first!).
*
* * **precondition:** `abs(a) >= abs(b)` - A fast test that can be used is
* `(a > b) === (a > -b)`
*
* See https://people.eecs.berkeley.edu/~jrs/papers/robustr.pdf
*/
internal fun fastTwoDiff(a: Double, b: Double): DoubleArray {
val x = a - b;
val y = (a - x) - b;
return doubleArrayOf(y, x)
}
/**
* Returns the sum and exact error of adding two floating point numbers.
* Uses an EFT (error-free transformation), i.e. a+b === x+y exactly.
* The returned sum is a non-overlapping expansion (smallest value first!).
*
* Precondition: abs(a) >= abs(b) - A fast test that can be used is
* (a > b) === (a > -b)
*
* See https://people.eecs.berkeley.edu/~jrs/papers/robustr.pdf
*/
internal fun fastTwoSum(a: Double, b: Double): DoubleArray {
val x = a + b;
return doubleArrayOf(b - (x - a), x)
}
/**
* Truncates a floating point value's significand and returns the result.
* Similar to split, but with the ability to specify the number of bits to keep.
*
* **Theorem 17 (Veltkamp-Dekker)**: Let a be a p-bit floating-point number, where
* p >= 3. Choose a splitting point s such that p/2 <= s <= p-1. Then the
* following algorithm will produce a (p-s)-bit value a_hi and a
* nonoverlapping (s-1)-bit value a_lo such that abs(a_hi) >= abs(a_lo) and
* a = a_hi + a_lo.
*
* * see [Shewchuk](https://people.eecs.berkeley.edu/~jrs/papers/robustr.pdf)
*
* @param a a double
* @param bits the number of significand bits to leave intact
*/
internal fun reduceSignificand(
a: Double,
bits: Int
): Double {
val s = 53 - bits;
val f = 2.0.pow(s) + 1;
val c = f * a;
val r = c - (c - a);
return r;
}
/**
* === 2^Math.ceil(p/2) + 1 where p is the # of significand bits in a double === 53.
* @internal
*/
private const val f = 134217729; // 2**27 + 1;
/**
* Returns the result of splitting a double into 2 26-bit doubles.
*
* Theorem 17 (Veltkamp-Dekker): Let a be a p-bit floating-point number, where
* p >= 3. Choose a splitting point s such that p/2 <= s <= p-1. Then the
* following algorithm will produce a (p-s)-bit value a_hi and a
* nonoverlapping (s-1)-bit value a_lo such that abs(a_hi) >= abs(a_lo) and
* a = a_hi + a_lo.
*
* see e.g. [Shewchuk](https://people.eecs.berkeley.edu/~jrs/papers/robustr.pdf)
* @param a A double floating point number
*/
private fun split(a: Double): DoubleArray {
val c = f * a;
val a_h = c - (c - a);
val a_l = a - a_h;
return doubleArrayOf(a_h, a_l)
}
/**
* Returns the exact result of subtracting b from a.
*
* @param a minuend - a double-double precision floating point number
* @param b subtrahend - a double-double precision floating point number
*/
internal fun twoDiff(a: Double, b: Double): DoubleArray {
val x = a - b;
val bvirt = a - x;
val y = (a - (x + bvirt)) + (bvirt - b);
return doubleArrayOf(y, x)
}
/**
* Returns the exact result of multiplying two doubles.
*
* * the resulting array is the reverse of the standard twoSum in the literature.
*
* Theorem 18 (Shewchuk): Let a and b be p-bit floating-point numbers, where
* p >= 6. Then the following algorithm will produce a nonoverlapping expansion
* x + y such that ab = x + y, where x is an approximation to ab and y
* represents the roundoff error in the calculation of x. Furthermore, if
* round-to-even tiebreaking is used, x and y are non-adjacent.
*
* See https://people.eecs.berkeley.edu/~jrs/papers/robustr.pdf
* @param a A double
* @param b Another double
*/
internal fun twoProduct(a: Double, b: Double): DoubleArray {
val x = a * b;
//const [ah, al] = split(a);
val c = f * a;
val ah = c - (c - a);
val al = a - ah;
//const [bh, bl] = split(b);
val d = f * b;
val bh = d - (d - b);
val bl = b - bh;
val y = (al * bl) - ((x - (ah * bh)) - (al * bh) - (ah * bl));
//const err1 = x - (ah * bh);
//const err2 = err1 - (al * bh);
//const err3 = err2 - (ah * bl);
//const y = (al * bl) - err3;
return doubleArrayOf(y, x)
}
internal fun twoSquare(a: Double): DoubleArray {
val x = a * a;
//const [ah, al] = split(a);
val c = f * a;
val ah = c - (c - a);
val al = a - ah;
val y = (al * al) - ((x - (ah * ah)) - 2 * (ah * al));
return doubleArrayOf(y, x)
}
/**
* Returns the exact result of adding two doubles.
*
* * the resulting array is the reverse of the standard twoSum in the literature.
*
* Theorem 7 (Knuth): Let a and b be p-bit floating-point numbers. Then the
* following algorithm will produce a nonoverlapping expansion x + y such that
* a + b = x + y, where x is an approximation to a + b and y is the roundoff
* error in the calculation of x.
*
* See https://people.eecs.berkeley.edu/~jrs/papers/robustr.pdf
*/
internal fun twoSum(a: Double, b: Double): DoubleArray {
val x = a + b;
val bv = x - a;
return doubleArrayOf((a - (x - bv)) + (b - bv), x)
}
/**
* Returns the result of subtracting the second given double-double-precision
* floating point number from the first.
*
* * relative error bound: 3u^2 + 13u^3, i.e. fl(a-b) = (a-b)(1+ϵ),
* where ϵ <= 3u^2 + 13u^3, u = 0.5 * Number.EPSILON
* * the error bound is not sharp - the worst case that could be found by the
* authors were 2.25u^2
*
* ALGORITHM 6 of https://hal.archives-ouvertes.fr/hal-01351529v3/document
* @param x a double-double precision floating point number
* @param y another double-double precision floating point number
*/
internal fun ddDiffDd(x: DoubleArray, y: DoubleArray): DoubleArray {
val xl = x[0];
val xh = x[1];
val yl = y[0];
val yh = y[1];
//const [sl,sh] = twoSum(xh,yh);
val sh = xh - yh; val _1 = sh - xh; val sl = (xh - (sh - _1)) + (-yh - _1);
//const [tl,th] = twoSum(xl,yl);
val th = xl - yl; val _2 = th - xl; val tl = (xl - (th - _2)) + (-yl - _2);
val c = sl + th;
//const [vl,vh] = fastTwoSum(sh,c)
val vh = sh + c; val vl = c - (vh - sh);
val w = tl + vl
//const [zl,zh] = fastTwoSum(vh,w)
val zh = vh + w; val zl = w - (zh - vh);
return doubleArrayOf(zl, zh)
}
/**
* Returns the product of two double-double-precision floating point numbers.
*
* * relative error bound: 7u^2, i.e. fl(a+b) = (a+b)(1+ϵ),
* where ϵ <= 7u^2, u = 0.5 * Number.EPSILON
* the error bound is not sharp - the worst case that could be found by the
* authors were 5u^2
*
* * ALGORITHM 10 of https://hal.archives-ouvertes.fr/hal-01351529v3/document
* @param x a double-double precision floating point number
* @param y another double-double precision floating point number
*/
internal fun ddMultDd(x: DoubleArray, y: DoubleArray): DoubleArray {
//const xl = x[0];
val xh = x[1];
//const yl = y[0];
val yh = y[1];
//const [cl1,ch] = twoProduct(xh,yh);
val ch = xh*yh;
val c = f * xh; val ah = c - (c - xh); val al = xh - ah;
val d = f * yh; val bh = d - (d - yh); val bl = yh - bh;
val cl1 = (al*bl) - ((ch - (ah*bh)) - (al*bh) - (ah*bl));
//return fastTwoSum(ch,cl1 + (xh*yl + xl*yh));
val b = cl1 + (xh*y[0] + x[0]*yh);
val xx = ch + b;
return doubleArrayOf(b - (xx - ch), xx)
}
/**
* Returns the result of adding two double-double-precision floating point
* numbers.
*
* * relative error bound: 3u^2 + 13u^3, i.e. fl(a+b) = (a+b)(1+ϵ),
* where ϵ <= 3u^2 + 13u^3, u = 0.5 * Number.EPSILON
* * the error bound is not sharp - the worst case that could be found by the
* authors were 2.25u^2
*
* ALGORITHM 6 of https://hal.archives-ouvertes.fr/hal-01351529v3/document
* @param x a double-double precision floating point number
* @param y another double-double precision floating point number
*/
internal fun ddAddDd(x: DoubleArray, y: DoubleArray): DoubleArray {
val xl = x[0];
val xh = x[1];
val yl = y[0];
val yh = y[1];
//const [sl,sh] = twoSum(xh,yh);
val sh = xh + yh; val _1 = sh - xh; val sl = (xh - (sh - _1)) + (yh - _1);
//val [tl,th] = twoSum(xl,yl);
val th = xl + yl; val _2 = th - xl; val tl = (xl - (th - _2)) + (yl - _2);
val c = sl + th;
//val [vl,vh] = fastTwoSum(sh,c)
val vh = sh + c; val vl = c - (vh - sh);
val w = tl + vl
//val [zl,zh] = fastTwoSum(vh,w)
val zh = vh + w; val zl = w - (zh - vh);
return doubleArrayOf(zl, zh)
}
/**
* Returns the product of a double-double-precision floating point number and a
* double.
*
* * slower than ALGORITHM 8 (one call to fastTwoSum more) but about 2x more
* accurate
* * relative error bound: 1.5u^2 + 4u^3, i.e. fl(a+b) = (a+b)(1+ϵ),
* where ϵ <= 1.5u^2 + 4u^3, u = 0.5 * Number.EPSILON
* * the bound is very sharp
* * probably prefer `ddMultDouble2` due to extra speed
*
* * ALGORITHM 7 of https://hal.archives-ouvertes.fr/hal-01351529v3/document
* @param y a double
* @param x a double-double precision floating point number
*/
internal fun ddMultDouble1(y: Double, x: DoubleArray): DoubleArray {
val xl = x[0];
val xh = x[1];
//val [cl1,ch] = twoProduct(xh,y);
val ch = xh*y;
val c = f * xh; val ah = c - (c - xh); val al = xh - ah;
val d = f * y; val bh = d - (d - y); val bl = y - bh;
val cl1 = (al*bl) - ((ch - (ah*bh)) - (al*bh) - (ah*bl));
val cl2 = xl*y;
//val [tl1,th] = fastTwoSum(ch,cl2);
val th = ch + cl2;
val tl1 = cl2 - (th - ch);
val tl2 = tl1 + cl1;
//val [zl,zh] = fastTwoSum(th,tl2);
val zh = th + tl2;
val zl = tl2 - (zh - th);
return doubleArrayOf(zl,zh);
}

View File

@@ -0,0 +1,19 @@
package org.openrndr.extra.triangulation
internal fun orient2d(bx: Double, by: Double, ax: Double, ay: Double, cx: Double, cy: Double): Double {
// (ax,ay) (bx,by) are swapped such that the sign of the determinant is flipped. which is what Delaunator.kt expects.
/*
| a b | = | ax - cx ay - cy |
| c d | | bx - cx by - cy |
*/
val a = ax - cx
val b = ay - cy
val c = bx - cx
val d = by - cy
val determinant = ddDiffDd(twoProduct(a, d), twoProduct(b, c))
return determinant[1]
}

View File

@@ -2,8 +2,13 @@ package org.openrndr.extra.triangulation
import org.openrndr.math.Vector2
import org.openrndr.shape.Rectangle
import org.openrndr.shape.Shape
import org.openrndr.shape.ShapeContour
import org.openrndr.shape.bounds
import kotlin.js.JsName
import kotlin.math.abs
import kotlin.math.floor
import kotlin.math.sign
/*
ISC License
@@ -38,7 +43,7 @@ THIS SOFTWARE.
class Voronoi(val delaunay: Delaunay, val bounds: Rectangle) {
private val _circumcenters = DoubleArray(delaunay.points.size * 2)
lateinit var circumcenters: DoubleArray
private set
private set
val vectors = DoubleArray(delaunay.points.size * 2)
@@ -53,9 +58,21 @@ class Voronoi(val delaunay: Delaunay, val bounds: Rectangle) {
fun init() {
val points = delaunay.points
if (delaunay.points.isEmpty()) {
return
}
val triangles = delaunay.triangles
val hull = delaunay.hull
if (points.size == 2) {
_circumcenters[0] = points[0]
_circumcenters[1] = points[1]
circumcenters = _circumcenters
return
}
circumcenters = _circumcenters.copyOf(delaunay.triangles.size / 3 * 2)
// Compute circumcenters
@@ -80,26 +97,20 @@ class Voronoi(val delaunay: Delaunay, val bounds: Rectangle) {
val dy = y2 - y1
val ex = x3 - x1
val ey = y3 - y1
val bl = dx * dx + dy * dy
val cl = ex * ex + ey * ey
val ab = (dx * ey - dy * ex) * 2
when {
ab == 0.0 -> {
// degenerate case (collinear diagram)
x = (x1 + x3) / 2 - 1e8 * ey
y = (y1 + y3) / 2 + 1e8 * ex
}
abs(ab) < 1e-8 -> {
// almost equal points (degenerate triangle)
x = (x1 + x3) / 2
y = (y1 + y3) / 2
}
else -> {
val d = 1 / ab
x = x1 + (ey * bl - dy * cl) * d
y = y1 + (dx * cl - ex * bl) * d
}
if (abs(ab) < 1e-9) {
var a = 1e9
val r = triangles[0] * 2
a *= sign((points[r] - x1) * ey - (points[r + 1] - y1) * ex)
x = (x1 + x3) / 2 - a * ey
y = (y1 + y3) / 2 + a * ex
} else {
val d = 1 / ab
val bl = dx * dx + dy * dy
val cl = ex * ex + ey * ey
x = x1 + (ey * bl - dy * cl) * d
y = y1 + (dx * cl - ex * bl) * d
}
circumcenters[j] = x
@@ -142,47 +153,12 @@ class Voronoi(val delaunay: Delaunay, val bounds: Rectangle) {
}
fun cellsPolygons(): List<ShapeContour> {
val points = delaunay.points
val cells = mutableListOf<ShapeContour>()
for (i in 0 until (points.size / 2)) {
cellPolygon(i)?.let {
cells.add(it)
}
}
return cells
}
fun cellPolygon(i: Int): ShapeContour? {
val points = clip(i)
if (points == null || points.isEmpty()) return null
val polygon = mutableListOf(Vector2(points[0], points[1]))
var n = points.size
while (n > 1 && points[0] == points[n - 2] && points[1] == points[n - 1]) n -= 2
for (idx in 2 until n step 2) {
if (points[idx] != points[idx - 2] || points[idx + 1] != points[idx - 1]) {
polygon.add(Vector2(points[idx], points[idx + 1]))
}
}
return ShapeContour.fromPoints(polygon, true)
}
fun circumcenters() = circumcenters.toList().windowed(2, 2).map {
Vector2(it[0], it[1])
}
fun contains(i: Int, v: Vector2): Boolean {
return contains(i, v.x, v.y)
}
private fun cell(i: Int): MutableList<Double>? {
val inedges = delaunay.inedges
val halfedges = delaunay.halfedges
val triangles = delaunay.triangles
@@ -196,7 +172,7 @@ class Voronoi(val delaunay: Delaunay, val bounds: Rectangle) {
var e = e0
do {
val t = Math.floorDiv(e, 3) // triangle of edge
val t = floor(e / 3.0).toInt()
points.add(circumcenters[t * 2])
points.add(circumcenters[t * 2 + 1])
@@ -211,10 +187,44 @@ class Voronoi(val delaunay: Delaunay, val bounds: Rectangle) {
return points
}
private fun clip(i: Int): List<Double>? {
fun neighbors(i: Int) = sequence {
val ci = clip(i)
if (ci != null) {
for (j in delaunay.neighbors(i)) {
val cj = clip(j)
if (cj != null) {
val li = ci.size
val lj = cj.size
loop@ for (ai in 0 until ci.size step 2) {
for (aj in 0 until cj.size step 2) {
if (ci[ai] == cj[aj]
&& ci[ai + 1] == cj[aj + 1]
&& ci[(ai + 2) % li] == cj[(aj + lj - 2) % lj]
&& ci[(ai + 3) % li] == cj[(aj + lj - 1) % lj]
) {
yield(j)
break@loop
}
}
}
}
}
}
}
internal fun clip(i: Int): List<Double>? {
// degenerate case (1 valid point: return the box)
if (i == 0 && delaunay.hull.size == 1) {
return listOf(bounds.xmax, bounds.ymin, bounds.xmax, bounds.ymax, bounds.xmin, bounds.ymax, bounds.xmin, bounds.ymin)
if (i == 0 && delaunay.points.size == 2) {
return listOf(
bounds.xmax,
bounds.ymin,
bounds.xmax,
bounds.ymax,
bounds.xmin,
bounds.ymax,
bounds.xmin,
bounds.ymin
)
}
val points = cell(i) ?: return null
@@ -226,7 +236,7 @@ class Voronoi(val delaunay: Delaunay, val bounds: Rectangle) {
val b = !clipVectors[v + 1].isFalsy()
return if (a || b) {
this.clipInfinite(i, points, clipVectors[v], clipVectors[v +1], clipVectors[v + 2], clipVectors[v + 3])
this.clipInfinite(i, points, clipVectors[v], clipVectors[v + 1], clipVectors[v + 2], clipVectors[v + 3])
} else {
this.clipFinite(i, points)
}
@@ -240,40 +250,41 @@ class Voronoi(val delaunay: Delaunay, val bounds: Rectangle) {
vxn: Double,
vyn: Double
): List<Double>? {
var P: MutableList<Double>? = points.mutableCopyOf().also { list ->
// SHAKY
this.project(list[0], list[1], vx0, vy0)?.also {
list.addAll(0, listOf(it.x, it.y))
}
var P: MutableList<Double>? = points.mutableCopyOf()
this.project(list[list.size - 2], list[list.size - 1], vxn, vyn)?.also {
list.addAll(0, listOf(it.x, it.y))
}
}
P = clipFinite(i, P!!)
P!!
project(P[0], P[1], vx0, vy0)?.let { p -> P!!.add(0, p[1]); P!!.add(0, p[0]) }
project(P[P.size - 2], P[P.size - 1], vxn, vyn)?.let { p -> P!!.add(p[0]); P!!.add(p[1]) }
P = this.clipFinite(i, P!!)
var n = 0
if (P != null) {
var n = P.size
var c0: Int?
n = P!!.size
var c0 = -1
var c1 = edgeCode(P[n - 2], P[n - 1])
var j = 0
var n = P.size
while (j < n) {
c0 = c1
c1 = edgeCode(P[j], P[j + 1])
if ((c0 and c1) != 0) {
if (c0 != 0 && c1 != 0) {
j = edge(i, c0, c1, P, j)
n = P.size
}
j += 2
}
} else if (contains(i, (bounds.xmin + bounds.xmax) / 2, (bounds.ymin + bounds.ymax) / 2)) {
P = mutableListOf(bounds.xmin, bounds.ymin, bounds.xmax, bounds.ymin, bounds.xmax, bounds.ymax, bounds.xmin, bounds.ymax)
} else if (this.contains(i, (bounds.xmin + bounds.xmax) / 2.0, (bounds.ymin + bounds.ymax) / 2.0)) {
P = mutableListOf(
bounds.xmin,
bounds.ymin,
bounds.xmax,
bounds.ymin,
bounds.xmax,
bounds.ymax,
bounds.xmin,
bounds.ymax
)
}
return P
}
@@ -283,12 +294,12 @@ class Voronoi(val delaunay: Delaunay, val bounds: Rectangle) {
val P = mutableListOf<Double>()
var x0: Double
var y0: Double
var x1= points[n - 2]
var y1= points[n - 1]
var x1 = points[n - 2]
var y1 = points[n - 1]
var c0: Int
var c1: Int = regionCode(x1, y1)
var e0: Int? = null
var e1: Int? = null
var e1: Int? = 0
for (j in 0 until n step 2) {
x0 = x1
@@ -314,8 +325,8 @@ class Voronoi(val delaunay: Delaunay, val bounds: Rectangle) {
if (c0 == 0) {
S = clipSegment(x0, y0, x1, y1, c0, c1)
if (S == null) continue
// sx0 = S[0]
// sy0 = S[1]
sx0 = S[0]
sy0 = S[1]
sx1 = S[2]
sy1 = S[3]
} else {
@@ -329,7 +340,7 @@ class Voronoi(val delaunay: Delaunay, val bounds: Rectangle) {
e0 = e1
e1 = this.edgeCode(sx0, sy0)
if (e0.isTruthy() && e1.isTruthy()) this.edge(i, e0!!, e1, P, P.size)
if (e0 != 0 && e1 != 0) this.edge(i, e0!!, e1, P, P.size)
P.add(sx0)
P.add(sy0)
@@ -351,11 +362,19 @@ class Voronoi(val delaunay: Delaunay, val bounds: Rectangle) {
if (e0.isTruthy() && e1.isTruthy()) this.edge(i, e0!!, e1!!, P, P.size);
} else if (this.contains(i, (bounds.xmin + bounds.xmax) / 2, (bounds.ymin + bounds.ymax) / 2)) {
return mutableListOf(bounds.xmax, bounds.ymin, bounds.xmax, bounds.ymax, bounds.xmin, bounds.ymax, bounds.xmin, bounds.ymin)
return mutableListOf(
bounds.xmax,
bounds.ymin,
bounds.xmax,
bounds.ymax,
bounds.xmin,
bounds.ymax,
bounds.xmin,
bounds.ymin
)
} else {
return null
}
return P
}
@@ -367,7 +386,7 @@ class Voronoi(val delaunay: Delaunay, val bounds: Rectangle) {
var nc0: Int = c0
var nc1: Int = c1
while(true) {
while (true) {
if (nc0 == 0 && nc1 == 0) return doubleArrayOf(nx0, ny0, nx1, ny1)
// SHAKY STUFF
if ((nc0 and nc1) != 0) return null
@@ -408,96 +427,102 @@ class Voronoi(val delaunay: Delaunay, val bounds: Rectangle) {
}
private fun regionCode(x: Double, y: Double): Int {
val code = when {
val xcode = when {
x < bounds.xmin -> 0b0001
x > bounds.xmax -> 0b0010
else -> 0b0000
}
return code or when {
val ycode = when {
y < bounds.ymin -> 0b0100
y > bounds.ymax -> 0b1000
else -> 0b0000
}
return xcode or ycode
}
private fun contains(i: Int, x: Double, y: Double): Boolean {
// if ((x = +x, x !== x) || (y = +y, y !== y)) return false;
if (x.isNaN() || y.isNaN()) return false
return this.delaunay.step(i, x, y) == i;
}
private fun edge(i: Int, e0: Int, e1: Int, p: MutableList<Double>, j: Int): Int {
var j = j
var e = e0
while(e != e1) {
loop@ while (e != e1) {
var x: Double = Double.NaN
var y: Double = Double.NaN
when(e) {
when (e) {
0b0101 -> { // top-left
e = 0b0100
continue
continue@loop
}
0b0100 -> { // top
e = 0b0110
x = bounds.xmax
y = bounds.ymin
break
}
0b0110 -> { // top-right
e = 0b0010
continue
continue@loop
}
0b0010 -> { // right
e = 0b1010
x = bounds.xmax
y = bounds.ymax
break
}
0b1010 -> { // bottom-right
e = 0b1000
continue
continue@loop
}
0b1000 -> { // bottom
e = 0b0001
e = 0b1001
x = bounds.xmin
y = bounds.ymax
break
}
0b1001 -> { // bottom-left
e = 0b0001
continue
continue@loop
}
0b0001 -> { // left
e = 0b0101
x = bounds.xmin
y = bounds.ymin
break
}
}
if ((p[j] != x || p[j + 1] != y) && contains(i, x, y)) {
if (((j < p.size && (p[j] != x)) || ((j + 1) < p.size && p[j + 1] != y)) && contains(i, x, y)) {
require(!x.isNaN())
require(!y.isNaN())
p.add(j, y)
p.add(j, x)
j += 2
} else if (j >= p.size && contains(i, x, y)) {
require(!x.isNaN())
require(!y.isNaN())
p.add(x)
p.add(y)
j += 2
}
}
if (p.size > 4) {
var idx = 0
while (idx < p.size) {
var n = p.size
while (idx < n) {
val j = (idx + 2) % p.size
val k = (idx + 4) % p.size
if (p[idx] == p[j] && p[j] == p[k]
|| p[idx + 1] == p[j + 1] && p[j + 1] == p[k + 1]) {
if ((p[idx] == p[j] && p[j] == p[k])
|| (p[idx + 1] == p[j + 1] && p[j + 1] == p[k + 1])
) {
// SHAKY
p.removeAt(j)
p.removeAt(j)
idx -= 2
n -= 2
}
idx += 2
}
}
@@ -511,27 +536,25 @@ class Voronoi(val delaunay: Delaunay, val bounds: Rectangle) {
var y = Double.NaN
// top
if(vy < 0) {
if (vy < 0) {
if (y0 <= bounds.ymin) return null
c = (bounds.ymin - y0) / vy
if(c < t) {
if (c < t) {
t = c
y = bounds.ymin
x = x0 + c * vx
x = x0 + t * vx
}
}
// bottom
else if (vy > 0) {
} else if (vy > 0) { // bottom
if (y0 >= bounds.ymax) return null
c = (bounds.ymax - y0) / vy
if( c < t) {
if (c < t) {
t = c
y = bounds.ymax
x = x0 + c * vx
x = x0 + t * vx
}
}
// right
@@ -545,8 +568,7 @@ class Voronoi(val delaunay: Delaunay, val bounds: Rectangle) {
x = bounds.xmax
y = y0 + t * vy
}
// left
} else if (vx < 0) {
} else if (vx < 0) { // left
if (x0 <= bounds.xmin) return null
c = (bounds.xmin - x0) / vx
@@ -558,23 +580,23 @@ class Voronoi(val delaunay: Delaunay, val bounds: Rectangle) {
}
}
if(x.isNaN() || y.isNaN()) return null
if (x.isNaN() || y.isNaN()) return null
return Vector2(x, y)
}
private fun edgeCode(x: Double, y: Double): Int {
val code = when (x) {
val xcode = when (x) {
bounds.xmin -> 0b0001
bounds.xmax -> 0b0010
else -> 0b0000
}
return code or when (y) {
val ycode = when (y) {
bounds.ymin -> 0b0100
bounds.ymax -> 0b1000
else -> 0b0000
}
return xcode or ycode
}
}
@@ -592,7 +614,7 @@ private val Rectangle.xmin: Double
get() = this.corner.x
private val Rectangle.xmax: Double
get() = this.corner.x + width
get() = this.corner.x + width
private val Rectangle.ymin: Double
get() = this.corner.y
@@ -600,4 +622,6 @@ private val Rectangle.ymin: Double
private val Rectangle.ymax: Double
get() = this.corner.y + height
private fun Double?.isFalsy() = this == null || this == -0.0 || this == 0.0 || isNaN()
private fun Double?.isFalsy() = this == null || this == -0.0 || this == 0.0 || isNaN()

View File

@@ -0,0 +1,56 @@
package org.openrndr.extra.triangulation
import org.openrndr.math.Vector2
import org.openrndr.shape.Rectangle
import org.openrndr.shape.ShapeContour
import org.openrndr.shape.bounds
class VoronoiDiagram(val delaunayTriangulation: DelaunayTriangulation, val bounds: Rectangle) {
private val voronoi = Voronoi(delaunayTriangulation.delaunay, bounds)
val vectors by lazy {
voronoi.vectors.toList().windowed(2, 2).map {
Vector2(it[0], it[1])
}
}
val circumcenters by lazy {
voronoi.circumcenters.toList().windowed(2, 2).map {
Vector2(it[0], it[1])
}
}
fun cellPolygon(i: Int): ShapeContour {
val points = voronoi.clip(i)
if (points == null || points.isEmpty()) return ShapeContour.EMPTY
val polygon = mutableListOf(Vector2(points[0], points[1]))
var n = points.size
while (n > 1 && points[0] == points[n - 2] && points[1] == points[n - 1]) n -= 2
for (idx in 2 until n step 2) {
if (points[idx] != points[idx - 2] || points[idx + 1] != points[idx - 1]) {
polygon.add(Vector2(points[idx], points[idx + 1]))
}
}
return ShapeContour.fromPoints(polygon, true)
}
fun cellPolygons(): List<ShapeContour> {
val points = delaunayTriangulation.points
return (points.indices).map {
cellPolygon(it)
}
}
fun neighbors(cellIndex: Int): Sequence<Int> {
return voronoi.neighbors(cellIndex)
}
}
fun List<Vector2>.voronoiDiagram(bounds: Rectangle = this.bounds): VoronoiDiagram {
val d = this.delaunayTriangulation()
return d.voronoiDiagram(bounds)
}

View File

@@ -0,0 +1,68 @@
import org.openrndr.extra.triangulation.Delaunay
import org.openrndr.math.Vector2
import org.openrndr.shape.Circle
import kotlin.test.Test
import kotlin.test.assertEquals
import kotlin.test.assertTrue
class TestDelaunay {
/**
* Test if an empty triangulation can be made
*/
@Test
fun testEmpty() {
val points = listOf<Vector2>()
val d = Delaunay.from(points)
assertEquals(0, d.triangles.size)
assertEquals(0, d.halfedges.size)
assertEquals(0, d.hull.size)
assertEquals(0, (d.neighbors(0).toList().size))
}
/**
* Test if a one point triangulation can be made
*/
@Test
fun testOnePoint() {
val points = listOf(Vector2(100.0, 100.0))
val d = Delaunay.from(points)
assertEquals(0, (d.neighbors(0).toList().size))
}
/**
* Test if a two point triangulation can be made
*/
@Test
fun testTwoPoints() {
val points = listOf(Vector2(100.0, 100.0), Vector2(300.0, 100.0))
val d = Delaunay.from(points)
println(d.triangles.size)
println("${d.triangles[0]}, ${d.triangles[1]}, ${d.triangles[2]}")
// this will be one degenerate triangle since we only have 2 points
assertEquals(3, d.triangles.size)
assertEquals(2, d.hull.size)
assertEquals(1, (d.neighbors(0).toList().size))
assertEquals(1, (d.neighbors(0).toList().first()))
assertEquals(1, (d.neighbors(1).toList().size))
assertEquals(0, (d.neighbors(1).toList().first()))
}
@Test
fun testThreePointsCollinear() {
val points = listOf(Vector2(100.0, 100.0), Vector2(200.0, 100.0), Vector2(300.0, 100.0))
val d = Delaunay.from(points)
assertEquals(3, d.triangles.size)
}
@Test
fun testNeighbors() {
val c = Circle(200.0, 200.0, 150.0).contour.equidistantPositions(20).take(20)
val d = Delaunay.from(c)
for (j in c.indices) {
assertTrue(d.neighbors(j).toList().isNotEmpty())
}
}
}

View File

@@ -0,0 +1,17 @@
import org.openrndr.extra.triangulation.Delaunay
import org.openrndr.shape.Circle
import org.openrndr.shape.Rectangle
import kotlin.test.Test
import kotlin.test.assertTrue
class TestVoronoi {
@Test
fun testNeighbors() {
val c = Circle(200.0, 200.0, 150.0).contour.equidistantPositions(20).take(20)
val d = Delaunay.from(c)
val v = d.voronoi(Rectangle(0.0, 0.0, 400.0, 400.0))
for (j in c.indices) {
assertTrue(v.neighbors(j).toList().isNotEmpty())
}
}
}

View File

@@ -0,0 +1,53 @@
import org.openrndr.extra.triangulation.Delaunay
import org.openrndr.extra.triangulation.delaunayTriangulation
import org.openrndr.math.Vector2
import org.openrndr.shape.Circle
import org.openrndr.shape.Rectangle
import kotlin.test.Test
import kotlin.test.assertEquals
import kotlin.test.assertTrue
class TestVoronoiDiagram {
@Test
fun testNeighbors() {
val c = Circle(200.0, 200.0, 150.0).contour.equidistantPositions(20).take(20)
val d = Delaunay.from(c)
val v = d.voronoi(Rectangle(0.0, 0.0, 400.0, 400.0))
for (j in c.indices) {
assertTrue(v.neighbors(j).toList().isNotEmpty())
}
}
@Test
fun testEmpty() {
val dt = listOf<Vector2>().delaunayTriangulation()
val v = dt.voronoiDiagram(Rectangle(0.0, 0.0, 400.0, 400.0))
assertEquals(0, dt.triangles().size)
assertEquals(0, v.cellPolygons().size)
}
@Test
fun testOnePoint() {
val dt = listOf(Vector2(100.0, 100.0)).delaunayTriangulation()
val v = dt.voronoiDiagram(Rectangle(0.0, 0.0, 400.0, 400.0))
assertEquals(0, dt.triangles().size)
assertEquals(1, v.cellPolygons().size)
}
@Test
fun testTwoPoints() {
val dt = listOf(Vector2(100.0, 100.0), Vector2(300.0, 300.0)).delaunayTriangulation()
val v = dt.voronoiDiagram(Rectangle(0.0, 0.0, 400.0, 400.0))
assertEquals(1, dt.triangles().size)
assertEquals(2, v.cellPolygons().size)
}
@Test
fun testThreePointsCollinear() {
val dt = listOf(Vector2(100.0, 100.0), Vector2(200.0, 200.0), Vector2(300.0, 300.0)).delaunayTriangulation()
val v = dt.voronoiDiagram(Rectangle(0.0, 0.0, 400.0, 400.0))
assertEquals(1, dt.triangles().size)
assertEquals(3, v.cellPolygons().size)
}
}

View File

@@ -1,8 +1,7 @@
import org.openrndr.application
import org.openrndr.color.ColorRGBa
import org.openrndr.extensions.SingleScreenshot
import org.openrndr.extra.noise.poissonDiskSampling
import org.openrndr.extra.triangulation.Delaunay
import org.openrndr.extra.noise.scatter
import org.openrndr.extra.triangulation.delaunayTriangulation
import org.openrndr.math.Vector2
import org.openrndr.shape.Circle
@@ -14,28 +13,17 @@ fun main() {
title = "Delaunator"
}
program {
if (System.getProperty("takeScreenshot") == "true") {
extend(SingleScreenshot()) {
this.outputFile = System.getProperty("screenshotPath")
}
}
val circle = Circle(Vector2(400.0), 250.0)
val points = circle.shape.scatter(30.0)
val points = poissonDiskSampling(drawer.bounds, 30.0)
.filter { circle.contains(it) }
val delaunay = Delaunay.from(points + circle.contour.equidistantPositions(40))
val delaunay = (points + circle.contour.equidistantPositions(40)).delaunayTriangulation()
val triangles = delaunay.triangles().map { it.contour }
extend {
drawer.clear(ColorRGBa.BLACK)
for ((i, triangle) in triangles.withIndex()) {
drawer.fill = ColorRGBa.PINK.shade(1.0 - i / (triangles.size * 1.2))
drawer.stroke = ColorRGBa.PINK.shade( i / (triangles.size * 1.0) + 0.1)
drawer.contour(triangle)
}
}

View File

@@ -1,8 +1,7 @@
import org.openrndr.application
import org.openrndr.color.ColorRGBa
import org.openrndr.extensions.SingleScreenshot
import org.openrndr.extra.noise.poissonDiskSampling
import org.openrndr.extra.triangulation.Delaunay
import org.openrndr.extra.triangulation.delaunayTriangulation
import org.openrndr.math.Vector2
import org.openrndr.shape.Rectangle
@@ -13,17 +12,10 @@ fun main() {
height = 800
}
program {
if (System.getProperty("takeScreenshot") == "true") {
extend(SingleScreenshot()) {
this.outputFile = System.getProperty("screenshotPath")
}
}
val frame = Rectangle.fromCenter(Vector2(400.0), 600.0, 600.0)
val points = poissonDiskSampling(frame, 50.0).map { it + frame.corner }
val delaunay = Delaunay.from(points)
val delaunay = points.delaunayTriangulation()
val halfedges = delaunay.halfedges()
val hull = delaunay.hull()

View File

@@ -1,8 +1,7 @@
import org.openrndr.application
import org.openrndr.color.ColorRGBa
import org.openrndr.extensions.SingleScreenshot
import org.openrndr.extra.noise.poissonDiskSampling
import org.openrndr.extra.triangulation.Delaunay
import org.openrndr.extra.triangulation.delaunayTriangulation
import org.openrndr.math.Vector2
import org.openrndr.shape.Circle
import org.openrndr.shape.Rectangle
@@ -14,26 +13,19 @@ fun main() {
height = 800
}
program {
if (System.getProperty("takeScreenshot") == "true") {
extend(SingleScreenshot()) {
this.outputFile = System.getProperty("screenshotPath")
}
}
val circle = Circle(Vector2(400.0), 250.0)
val frame = Rectangle.fromCenter(Vector2(400.0), 600.0, 600.0)
val points = poissonDiskSampling(drawer.bounds, 30.0)
.filter { circle.contains(it) }
val delaunay = Delaunay.from(points + circle.contour.equidistantPositions(40))
val voronoi = delaunay.voronoi(frame)
val delaunay = (points + circle.contour.equidistantPositions(40)).delaunayTriangulation()
val voronoi = delaunay.voronoiDiagram(frame)
val cells = voronoi.cellsPolygons()
val cells = voronoi.cellPolygons()
extend {
drawer.clear(ColorRGBa.BLACK)
drawer.fill = null
drawer.stroke = ColorRGBa.PINK
drawer.contours(cells)

View File

@@ -0,0 +1,33 @@
import org.openrndr.application
import org.openrndr.color.ColorRGBa
import org.openrndr.extra.shapes.grid
import org.openrndr.extra.triangulation.delaunayTriangulation
import org.openrndr.shape.Circle
fun main() {
application {
configure {
width = 720
height = 720
}
program {
extend {
val r = drawer.bounds.offsetEdges(-50.0)
val grid = r.grid(8, 8).flatten()
val circles = grid.map { Circle(it.center, it.width / 4.0) }
val points = circles.flatMap { it.contour.equidistantPositions(6) }
drawer.circles(points, 5.0)
val d = points.delaunayTriangulation()
drawer.stroke = ColorRGBa.PINK
drawer.contours(d.halfedges())
drawer.stroke = ColorRGBa.YELLOW
drawer.fill = null
drawer.contours(d.voronoiDiagram(drawer.bounds.offsetEdges(-50.0)).cellPolygons())
drawer.stroke = ColorRGBa.GRAY
drawer.contours(d.triangles().map { it.contour })
}
}
}
}

View File

@@ -0,0 +1,41 @@
import org.openrndr.application
import org.openrndr.color.ColorRGBa
import org.openrndr.extra.shapes.grid
import org.openrndr.extra.triangulation.delaunayTriangulation
import org.openrndr.math.Vector2
import org.openrndr.math.Vector3
import org.openrndr.math.transforms.buildTransform
import org.openrndr.shape.Circle
fun main() {
application {
configure {
width = 750
height = 1000
}
program {
extend {
val r = drawer.bounds.offsetEdges(-100.0)
val grid = r.grid(3,6).flatten()
val circles = grid.map { Circle(Vector2.ZERO, 158.975).contour.transform(
buildTransform {
translate(it.center)
rotate(Vector3.UNIT_Z, 0.0)
}
) }
val points = circles.flatMap { it.contour.equidistantPositions(16).take(16) }
drawer.circles(points, 5.0)
val d = points.delaunayTriangulation()
drawer.stroke = ColorRGBa.PINK
drawer.contours(d.halfedges())
drawer.stroke = ColorRGBa.YELLOW
drawer.fill = ColorRGBa.GRAY.opacify(0.5)
drawer.contours(d.voronoiDiagram(drawer.bounds).cellPolygons())
drawer.stroke = ColorRGBa.GRAY
drawer.contours(d.triangles().map { it.contour })
}
}
}
}

View File

@@ -72,7 +72,7 @@ include(
"orx-jvm:orx-tensorflow-natives-windows",
"orx-timer",
"orx-time-operators",
"orx-jvm:orx-triangulation",
"orx-triangulation",
"orx-jvm:orx-kinect-common",
"orx-jvm:orx-kinect-v1",
"orx-jvm:orx-kinect-v1-natives-linux-arm64",