[orx-triangulation] Improve triangulation, add kotlin/js support
This commit is contained in:
80
orx-triangulation/README.md
Normal file
80
orx-triangulation/README.md
Normal file
@@ -0,0 +1,80 @@
|
||||
# orx-triangulation
|
||||
|
||||
An extension for triangulating a set of points using the **Delaunay** triangulation method. From that triangulation we can also derive a **Voronoi** diagram.
|
||||
|
||||
The functionality comes from a Javascript port of the following libraries:
|
||||
|
||||
* [delaunator](https://github.com/ricardomatias/delaunator) (external)
|
||||
* [d3-delaunay](https://github.com/d3/d3-delaunay) (the port is included in this package)
|
||||
|
||||
## Usage
|
||||
|
||||
### DelaunayTriangulation
|
||||
|
||||
The entry point is the `DelaunayTriangulation` class.
|
||||
|
||||
```kotlin
|
||||
val points: List<Vector2>
|
||||
val delaunay = DelaunayTriangulation(points)
|
||||
|
||||
// or
|
||||
|
||||
val delaunay = points.delaunayTriangulation()
|
||||
```
|
||||
|
||||
This is how you retrieve the triangulation results:
|
||||
|
||||
```kotlin
|
||||
val triangles: List<Triangle> = delaunay.triangles()
|
||||
val halfedges: List<ShapeContour> = delaunay.halfedges()
|
||||
val hull: ShapeContour = delaunay.hull()
|
||||
|
||||
```
|
||||
|
||||
### Voronoi
|
||||
|
||||
The bounds specify where the Voronoi diagram will be clipped.
|
||||
|
||||
```kotlin
|
||||
val bounds: Rectangle
|
||||
|
||||
val delaunay = points.delaunayTriangulation()
|
||||
val voronoi = delaunay.voronoiDiagram(bounds)
|
||||
// or
|
||||
val voronoi = points.voronoiDiagram(bounds)
|
||||
```
|
||||
|
||||
See [To Infinity and Back Again](https://observablehq.com/@mbostock/to-infinity-and-back-again) for an interactive explanation of Voronoi cell clipping.
|
||||
|
||||
This is how you retrieve th results:
|
||||
|
||||
```kotlin
|
||||
val cells: List<ShapeContour> = voronoi.cellPolygons()
|
||||
val cell: ShapeContour = voronoi.cellPolygon(int) // index
|
||||
val circumcenters: List<Vector2> = voronoi.circumcenters
|
||||
|
||||
// Returns true if the cell with the specified index i contains the specified vector
|
||||
val containsVector = voronoi.contains(int, Vector2)
|
||||
```
|
||||
|
||||
|
||||
### Authors
|
||||
|
||||
Ricardo Matias / [@ricardomatias](https://github.com/ricardomatias)
|
||||
Edwin Jakobs / [@edwinRNDR](https://github.com/edwinRNDR)
|
||||
<!-- __demos__ -->
|
||||
## Demos
|
||||
### DemoDelaunay01
|
||||
[source code](src/demo/kotlin/DemoDelaunay01.kt)
|
||||
|
||||

|
||||
|
||||
### DemoDelaunay02
|
||||
[source code](src/demo/kotlin/DemoDelaunay02.kt)
|
||||
|
||||

|
||||
|
||||
### DemoVoronoi01
|
||||
[source code](src/demo/kotlin/DemoVoronoi01.kt)
|
||||
|
||||

|
||||
72
orx-triangulation/build.gradle.kts
Normal file
72
orx-triangulation/build.gradle.kts
Normal file
@@ -0,0 +1,72 @@
|
||||
import ScreenshotsHelper.collectScreenshots
|
||||
|
||||
plugins {
|
||||
org.openrndr.extra.convention.`kotlin-multiplatform`
|
||||
}
|
||||
|
||||
kotlin {
|
||||
jvm {
|
||||
@Suppress("UNUSED_VARIABLE")
|
||||
val demo by compilations.getting {
|
||||
// TODO: Move demos to /jvmDemo
|
||||
defaultSourceSet {
|
||||
kotlin.srcDir("src/demo/kotlin")
|
||||
}
|
||||
collectScreenshots { }
|
||||
}
|
||||
compilations.all {
|
||||
kotlinOptions.jvmTarget = libs.versions.jvmTarget.get()
|
||||
kotlinOptions.apiVersion = libs.versions.kotlinApi.get()
|
||||
}
|
||||
testRuns["test"].executionTask.configure {
|
||||
useJUnitPlatform()
|
||||
}
|
||||
}
|
||||
js(IR) {
|
||||
browser()
|
||||
nodejs()
|
||||
}
|
||||
|
||||
sourceSets {
|
||||
@Suppress("UNUSED_VARIABLE")
|
||||
val commonMain by getting {
|
||||
dependencies {
|
||||
api(libs.openrndr.math)
|
||||
api(libs.openrndr.shape)
|
||||
}
|
||||
}
|
||||
|
||||
@Suppress("UNUSED_VARIABLE")
|
||||
val jvmMain by getting {
|
||||
}
|
||||
|
||||
@Suppress("UNUSED_VARIABLE")
|
||||
val jvmDemo by getting {
|
||||
dependencies {
|
||||
implementation(project(":orx-shapes"))
|
||||
implementation(project(":orx-triangulation"))
|
||||
implementation(project(":orx-noise"))
|
||||
}
|
||||
}
|
||||
|
||||
@Suppress("UNUSED_VARIABLE")
|
||||
val jvmTest by getting {
|
||||
dependencies {
|
||||
implementation(kotlin("test-common"))
|
||||
implementation(kotlin("test-annotations-common"))
|
||||
implementation(kotlin("test-junit5"))
|
||||
implementation(libs.kotlin.serialization.json)
|
||||
runtimeOnly(libs.bundles.jupiter)
|
||||
implementation(libs.spek.dsl)
|
||||
implementation(libs.kluent)
|
||||
}
|
||||
}
|
||||
|
||||
@Suppress("UNUSED_VARIABLE")
|
||||
val jsTest by getting {
|
||||
dependencies {
|
||||
implementation(kotlin("test-js"))
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
597
orx-triangulation/src/commonMain/kotlin/Delaunator.kt
Normal file
597
orx-triangulation/src/commonMain/kotlin/Delaunator.kt
Normal file
@@ -0,0 +1,597 @@
|
||||
package org.openrndr.extra.triangulation
|
||||
|
||||
import kotlin.math.*
|
||||
|
||||
private val EPSILON: Double = 2.0.pow(-52)
|
||||
|
||||
/**
|
||||
* A Kotlin port of Mapbox's Delaunator incredibly fast JavaScript library for Delaunay triangulation of 2D points.
|
||||
*
|
||||
* @description Port of Mapbox's Delaunator (JavaScript) library - https://github.com/mapbox/delaunator
|
||||
* @property coords flat positions' array - [x0, y0, x1, y1..]
|
||||
*
|
||||
* @since f0ed80d - commit
|
||||
* @author Ricardo Matias
|
||||
*/
|
||||
@Suppress("unused")
|
||||
internal class Delaunator(val coords: DoubleArray) {
|
||||
private val EDGE_STACK = IntArray(512)
|
||||
|
||||
private var count = coords.size shr 1
|
||||
|
||||
// arrays that will store the triangulation graph
|
||||
val maxTriangles = (2 * count - 5).coerceAtLeast(0)
|
||||
private val _triangles = IntArray(maxTriangles * 3)
|
||||
private val _halfedges = IntArray(maxTriangles * 3)
|
||||
|
||||
lateinit var triangles: IntArray
|
||||
lateinit var halfedges: IntArray
|
||||
|
||||
// temporary arrays for tracking the edges of the advancing convex hull
|
||||
private var hashSize = ceil(sqrt(count * 1.0)).toInt()
|
||||
private var hullPrev = IntArray(count) // edge to prev edge
|
||||
private var hullNext = IntArray(count) // edge to next edge
|
||||
private var hullTri = IntArray(count) // edge to adjacent triangle
|
||||
private var hullHash = IntArray(hashSize) // angular edge hash
|
||||
private var hullStart: Int = -1
|
||||
|
||||
// temporary arrays for sorting points
|
||||
private var ids = IntArray(count)
|
||||
private var dists = DoubleArray(count)
|
||||
|
||||
private var cx: Double = Double.NaN
|
||||
private var cy: Double = Double.NaN
|
||||
|
||||
private var trianglesLen: Int = -1
|
||||
|
||||
lateinit var hull: IntArray
|
||||
|
||||
init {
|
||||
update()
|
||||
}
|
||||
|
||||
fun update() {
|
||||
if (coords.size <= 2) {
|
||||
halfedges = IntArray(0)
|
||||
triangles = IntArray(0)
|
||||
hull = IntArray(0)
|
||||
return
|
||||
}
|
||||
|
||||
|
||||
// populate an array of point indices calculate input data bbox
|
||||
var minX = Double.POSITIVE_INFINITY
|
||||
var minY = Double.POSITIVE_INFINITY
|
||||
var maxX = Double.NEGATIVE_INFINITY
|
||||
var maxY = Double.NEGATIVE_INFINITY
|
||||
|
||||
// points -> points
|
||||
// minX, minY, maxX, maxY
|
||||
for (i in 0 until count) {
|
||||
val x = coords[2 * i]
|
||||
val y = coords[2 * i + 1]
|
||||
if (x < minX) minX = x
|
||||
if (y < minY) minY = y
|
||||
if (x > maxX) maxX = x
|
||||
if (y > maxY) maxY = y
|
||||
|
||||
ids[i] = i
|
||||
}
|
||||
|
||||
val cx = (minX + maxX) / 2
|
||||
val cy = (minY + maxY) / 2
|
||||
|
||||
var minDist = Double.POSITIVE_INFINITY
|
||||
|
||||
var i0: Int = -1
|
||||
var i1: Int = -1
|
||||
var i2: Int = -1
|
||||
|
||||
// pick a seed point close to the center
|
||||
for (i in 0 until count) {
|
||||
val d = dist(cx, cy, coords[2 * i], coords[2 * i + 1])
|
||||
|
||||
if (d < minDist) {
|
||||
i0 = i
|
||||
minDist = d
|
||||
}
|
||||
}
|
||||
|
||||
val i0x = coords[2 * i0]
|
||||
val i0y = coords[2 * i0 + 1]
|
||||
|
||||
minDist = Double.POSITIVE_INFINITY
|
||||
|
||||
// Find the point closest to the seed
|
||||
for(i in 0 until count) {
|
||||
if (i == i0) continue
|
||||
|
||||
val d = dist(i0x, i0y, coords[2 * i], coords[2 * i + 1])
|
||||
|
||||
if (d < minDist && d > 0) {
|
||||
i1 = i
|
||||
minDist = d
|
||||
}
|
||||
}
|
||||
|
||||
var i1x = coords[2 * i1]
|
||||
var i1y = coords[2 * i1 + 1]
|
||||
|
||||
var minRadius = Double.POSITIVE_INFINITY
|
||||
|
||||
// Find the third point which forms the smallest circumcircle with the first two
|
||||
for (i in 0 until count) {
|
||||
if(i == i0 || i == i1) continue
|
||||
|
||||
val r = circumradius(i0x, i0y, i1x, i1y, coords[2 * i], coords[2 * i + 1])
|
||||
|
||||
if(r < minRadius) {
|
||||
i2 = i
|
||||
minRadius = r
|
||||
}
|
||||
}
|
||||
|
||||
if (minRadius == Double.POSITIVE_INFINITY) {
|
||||
// order collinear points by dx (or dy if all x are identical)
|
||||
// and return the list as a hull
|
||||
for (i in 0 until count) {
|
||||
val a = (coords[2 * i] - coords[0])
|
||||
val b = (coords[2 * i + 1] - coords[1])
|
||||
dists[i] = if (a == 0.0) b else a
|
||||
}
|
||||
|
||||
quicksort(ids, dists, 0, count - 1)
|
||||
|
||||
val nhull = IntArray(count)
|
||||
var j = 0
|
||||
var d0 = Double.NEGATIVE_INFINITY
|
||||
|
||||
for (i in 0 until count) {
|
||||
val id = ids[i]
|
||||
if (dists[id] > d0) {
|
||||
nhull[j++] = id
|
||||
d0 = dists[id]
|
||||
}
|
||||
}
|
||||
|
||||
hull = nhull.copyOf(j)
|
||||
triangles = IntArray(0)
|
||||
halfedges = IntArray(0)
|
||||
|
||||
return
|
||||
}
|
||||
|
||||
var i2x = coords[2 * i2]
|
||||
var i2y = coords[2 * i2 + 1]
|
||||
|
||||
// swap the order of the seed points for counter-clockwise orientation
|
||||
if (orient2d(i0x, i0y, i1x, i1y, i2x, i2y) < 0.0) {
|
||||
val i = i1
|
||||
val x = i1x
|
||||
val y = i1y
|
||||
i1 = i2
|
||||
i1x = i2x
|
||||
i1y = i2y
|
||||
i2 = i
|
||||
i2x = x
|
||||
i2y = y
|
||||
}
|
||||
|
||||
|
||||
val center = circumcenter(i0x, i0y, i1x, i1y, i2x, i2y)
|
||||
|
||||
this.cx = center[0]
|
||||
this.cy = center[1]
|
||||
|
||||
for (i in 0 until count) {
|
||||
dists[i] = dist(coords[2 * i], coords[2 * i + 1], center[0], center[1])
|
||||
}
|
||||
|
||||
// sort the points by distance from the seed triangle circumcenter
|
||||
quicksort(ids, dists, 0, count - 1)
|
||||
|
||||
// set up the seed triangle as the starting hull
|
||||
hullStart = i0
|
||||
var hullSize = 3
|
||||
|
||||
hullNext[i0] = i1
|
||||
hullNext[i1] = i2
|
||||
hullNext[i2] = i0
|
||||
|
||||
hullPrev[i2] = i1
|
||||
hullPrev[i0] = i2
|
||||
hullPrev[i1] = i0
|
||||
|
||||
hullTri[i0] = 0
|
||||
hullTri[i1] = 1
|
||||
hullTri[i2] = 2
|
||||
|
||||
hullHash.fill(-1)
|
||||
hullHash[hashKey(i0x, i0y)] = i0
|
||||
hullHash[hashKey(i1x, i1y)] = i1
|
||||
hullHash[hashKey(i2x, i2y)] = i2
|
||||
|
||||
trianglesLen = 0
|
||||
addTriangle(i0, i1, i2, -1, -1, -1)
|
||||
|
||||
var xp = 0.0
|
||||
var yp = 0.0
|
||||
|
||||
for (k in ids.indices) {
|
||||
val i = ids[k]
|
||||
val x = coords[2 * i]
|
||||
val y = coords[2 * i + 1]
|
||||
|
||||
// skip near-duplicate points
|
||||
if (k > 0 && abs(x - xp) <= EPSILON && abs(y - yp) <= EPSILON) continue
|
||||
|
||||
xp = x
|
||||
yp = y
|
||||
|
||||
// skip seed triangle points
|
||||
if (i == i0 || i == i1 || i == i2) continue
|
||||
|
||||
// find a visible edge on the convex hull using edge hash
|
||||
var start = 0
|
||||
val key = hashKey(x, y)
|
||||
|
||||
for (j in 0 until hashSize) {
|
||||
start = hullHash[(key + j) % hashSize]
|
||||
|
||||
if (start != -1 && start != hullNext[start]) break
|
||||
}
|
||||
|
||||
start = hullPrev[start]
|
||||
|
||||
var e = start
|
||||
var q = hullNext[e]
|
||||
|
||||
while (orient2d(x, y, coords[2 * e], coords[2 * e + 1], coords[2 * q], coords[2 * q + 1]) >= 0) {
|
||||
e = q
|
||||
|
||||
if (e == start) {
|
||||
e = -1
|
||||
break
|
||||
}
|
||||
|
||||
q = hullNext[e]
|
||||
}
|
||||
|
||||
if (e == -1) continue // likely a near-duplicate point skip it
|
||||
|
||||
// add the first triangle from the point
|
||||
var t = addTriangle(e, i, hullNext[e], -1, -1, hullTri[e])
|
||||
|
||||
// recursively flip triangles from the point until they satisfy the Delaunay condition
|
||||
hullTri[i] = legalize(t + 2)
|
||||
hullTri[e] = t // keep track of boundary triangles on the hull
|
||||
hullSize++
|
||||
|
||||
// walk forward through the hull, adding more triangles and flipping recursively
|
||||
var next = hullNext[e]
|
||||
q = hullNext[next]
|
||||
|
||||
while (orient2d(x, y, coords[2 * next], coords[2 * next + 1], coords[2 * q], coords[2 * q + 1]) < 0) {
|
||||
t = addTriangle(next, i, q, hullTri[i], -1, hullTri[next])
|
||||
hullTri[i] = legalize(t + 2)
|
||||
hullNext[next] = next // mark as removed
|
||||
hullSize--
|
||||
|
||||
next = q
|
||||
q = hullNext[next]
|
||||
}
|
||||
|
||||
// walk backward from the other side, adding more triangles and flipping
|
||||
if (e == start) {
|
||||
q = hullPrev[e]
|
||||
|
||||
while (orient2d(x, y, coords[2 * q], coords[2 * q + 1], coords[2 * e], coords[2 * e + 1]) < 0) {
|
||||
t = addTriangle(q, i, e, -1, hullTri[e], hullTri[q])
|
||||
legalize(t + 2)
|
||||
hullTri[q] = t
|
||||
hullNext[e] = e // mark as removed
|
||||
hullSize--
|
||||
|
||||
e = q
|
||||
q = hullPrev[e]
|
||||
}
|
||||
}
|
||||
|
||||
// update the hull indices
|
||||
hullStart = e
|
||||
hullPrev[i] = e
|
||||
|
||||
hullNext[e] = i
|
||||
hullPrev[next] = i
|
||||
hullNext[i] = next
|
||||
|
||||
// save the two new edges in the hash table
|
||||
hullHash[hashKey(x, y)] = i
|
||||
hullHash[hashKey(coords[2 * e], coords[2 * e + 1])] = e
|
||||
}
|
||||
|
||||
hull = IntArray(hullSize)
|
||||
|
||||
var e = hullStart
|
||||
|
||||
for (i in 0 until hullSize) {
|
||||
hull[i] = e
|
||||
e = hullNext[e]
|
||||
}
|
||||
|
||||
// trim typed triangle mesh arrays
|
||||
triangles = _triangles.copyOf(trianglesLen)
|
||||
halfedges = _halfedges.copyOf(trianglesLen)
|
||||
}
|
||||
|
||||
private fun legalize(a: Int): Int {
|
||||
var i = 0
|
||||
var na = a
|
||||
var ar: Int
|
||||
|
||||
// recursion eliminated with a fixed-size stack
|
||||
while (true) {
|
||||
val b = _halfedges[na]
|
||||
|
||||
/* if the pair of triangles doesn't satisfy the Delaunay condition
|
||||
* (p1 is inside the circumcircle of [p0, pl, pr]), flip them,
|
||||
* then do the same check/flip recursively for the new pair of triangles
|
||||
*
|
||||
* pl pl
|
||||
* /||\ / \
|
||||
* al/ || \bl al/ \a
|
||||
* / || \ / \
|
||||
* / a||b \ flip /___ar___\
|
||||
* p0\ || /p1 => p0\---bl---/p1
|
||||
* \ || / \ /
|
||||
* ar\ || /br b\ /br
|
||||
* \||/ \ /
|
||||
* pr pr
|
||||
*/
|
||||
val a0 = na - na % 3
|
||||
ar = a0 + (na + 2) % 3
|
||||
|
||||
if (b == -1) { // convex hull edge
|
||||
if (i == 0) break
|
||||
na = EDGE_STACK[--i]
|
||||
continue
|
||||
}
|
||||
|
||||
val b0 = b - b % 3
|
||||
val al = a0 + (na + 1) % 3
|
||||
val bl = b0 + (b + 2) % 3
|
||||
|
||||
val p0 = _triangles[ar]
|
||||
val pr = _triangles[na]
|
||||
val pl = _triangles[al]
|
||||
val p1 = _triangles[bl]
|
||||
|
||||
val illegal = inCircle(
|
||||
coords[2 * p0], coords[2 * p0 + 1],
|
||||
coords[2 * pr], coords[2 * pr + 1],
|
||||
coords[2 * pl], coords[2 * pl + 1],
|
||||
coords[2 * p1], coords[2 * p1 + 1])
|
||||
|
||||
if (illegal) {
|
||||
_triangles[na] = p1
|
||||
_triangles[b] = p0
|
||||
|
||||
val hbl = _halfedges[bl]
|
||||
|
||||
// edge swapped on the other side of the hull (rare) fix the halfedge reference
|
||||
if (hbl == -1) {
|
||||
var e = hullStart
|
||||
do {
|
||||
if (hullTri[e] == bl) {
|
||||
hullTri[e] = na
|
||||
break
|
||||
}
|
||||
e = hullPrev[e]
|
||||
} while (e != hullStart)
|
||||
}
|
||||
link(na, hbl)
|
||||
link(b, _halfedges[ar])
|
||||
link(ar, bl)
|
||||
|
||||
val br = b0 + (b + 1) % 3
|
||||
|
||||
// don't worry about hitting the cap: it can only happen on extremely degenerate input
|
||||
if (i < EDGE_STACK.size) {
|
||||
EDGE_STACK[i++] = br
|
||||
}
|
||||
} else {
|
||||
if (i == 0) break
|
||||
na = EDGE_STACK[--i]
|
||||
}
|
||||
}
|
||||
|
||||
return ar
|
||||
|
||||
}
|
||||
|
||||
private fun link(a:Int, b:Int) {
|
||||
_halfedges[a] = b
|
||||
if (b != -1) _halfedges[b] = a
|
||||
}
|
||||
|
||||
// add a new triangle given vertex indices and adjacent half-edge ids
|
||||
private fun addTriangle(i0: Int, i1: Int, i2: Int, a: Int, b: Int, c: Int): Int {
|
||||
val t = trianglesLen
|
||||
|
||||
_triangles[t] = i0
|
||||
_triangles[t + 1] = i1
|
||||
_triangles[t + 2] = i2
|
||||
|
||||
link(t, a)
|
||||
link(t + 1, b)
|
||||
link(t + 2, c)
|
||||
|
||||
trianglesLen += 3
|
||||
|
||||
return t
|
||||
}
|
||||
|
||||
private fun hashKey(x: Double, y: Double): Int {
|
||||
return (floor(pseudoAngle(x - cx, y - cy) * hashSize) % hashSize).toInt()
|
||||
}
|
||||
}
|
||||
|
||||
fun circumradius(ax: Double, ay: Double,
|
||||
bx: Double, by: Double,
|
||||
cx: Double, cy: Double): Double {
|
||||
val dx = bx - ax
|
||||
val dy = by - ay
|
||||
val ex = cx - ax
|
||||
val ey = cy - ay
|
||||
|
||||
val bl = dx * dx + dy * dy
|
||||
val cl = ex * ex + ey * ey
|
||||
val d = 0.5 / (dx * ey - dy * ex)
|
||||
|
||||
val x = (ey * bl - dy * cl) * d
|
||||
val y = (dx * cl - ex * bl) * d
|
||||
|
||||
return x * x + y * y
|
||||
}
|
||||
|
||||
fun circumcenter(ax: Double, ay: Double,
|
||||
bx: Double, by: Double,
|
||||
cx: Double, cy: Double): DoubleArray {
|
||||
val dx = bx - ax
|
||||
val dy = by - ay
|
||||
val ex = cx - ax
|
||||
val ey = cy - ay
|
||||
|
||||
val bl = dx * dx + dy * dy
|
||||
val cl = ex * ex + ey * ey
|
||||
val d = 0.5 / (dx * ey - dy * ex)
|
||||
|
||||
val x = ax + (ey * bl - dy * cl) * d
|
||||
val y = ay + (dx * cl - ex * bl) * d
|
||||
|
||||
return doubleArrayOf(x, y)
|
||||
}
|
||||
|
||||
fun quicksort(ids: IntArray, dists: DoubleArray, left: Int, right: Int) {
|
||||
if (right - left <= 20) {
|
||||
for (i in (left + 1)..right) {
|
||||
val temp = ids[i]
|
||||
val tempDist = dists[temp]
|
||||
var j = i - 1
|
||||
while (j >= left && dists[ids[j]] > tempDist) ids[j + 1] = ids[j--]
|
||||
ids[j + 1] = temp
|
||||
}
|
||||
} else {
|
||||
val median = (left + right) shr 1
|
||||
var i = left + 1
|
||||
var j = right
|
||||
|
||||
swap(ids, median, i)
|
||||
|
||||
if (dists[ids[left]] > dists[ids[right]]) swap(ids, left, right)
|
||||
if (dists[ids[i]] > dists[ids[right]]) swap(ids, i, right)
|
||||
if (dists[ids[left]] > dists[ids[i]]) swap(ids, left, i)
|
||||
|
||||
val temp = ids[i]
|
||||
val tempDist = dists[temp]
|
||||
|
||||
while (true) {
|
||||
do i++ while (dists[ids[i]] < tempDist)
|
||||
do j-- while (dists[ids[j]] > tempDist)
|
||||
if (j < i) break
|
||||
swap(ids, i, j)
|
||||
}
|
||||
|
||||
ids[left + 1] = ids[j]
|
||||
ids[j] = temp
|
||||
|
||||
if (right - i + 1 >= j - left) {
|
||||
quicksort(ids, dists, i, right)
|
||||
quicksort(ids, dists, left, j - 1)
|
||||
} else {
|
||||
quicksort(ids, dists, left, j - 1)
|
||||
quicksort(ids, dists, i, right)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
private fun swap(arr: IntArray, i: Int, j: Int) {
|
||||
val tmp = arr[i]
|
||||
arr[i] = arr[j]
|
||||
arr[j] = tmp
|
||||
}
|
||||
|
||||
// monotonically increases with real angle, but doesn't need expensive trigonometry
|
||||
private fun pseudoAngle(dx: Double, dy: Double): Double {
|
||||
val p = dx / (abs(dx) + abs(dy))
|
||||
val a = if (dy > 0.0) 3.0 - p else 1.0 + p
|
||||
|
||||
return a / 4.0 // [0..1]
|
||||
}
|
||||
/*
|
||||
private fun inCircle(ax: Double, ay: Double,
|
||||
bx: Double, by: Double,
|
||||
cx: Double, cy: Double,
|
||||
px: Double, py: Double): Boolean {
|
||||
val dx = ax - px
|
||||
val dy = ay - py
|
||||
val ex = bx - px
|
||||
val ey = by - py
|
||||
val fx = cx - px
|
||||
val fy = cy - py
|
||||
|
||||
val ap = dx * dx + dy * dy
|
||||
val bp = ex * ex + ey * ey
|
||||
val cp = fx * fx + fy * fy
|
||||
|
||||
return dx * (ey * cp - bp * fy) -
|
||||
dy * (ex * cp - bp * fx) +
|
||||
ap * (ex * fy - ey * fx) < 0
|
||||
}*/
|
||||
|
||||
private fun inCircle(
|
||||
ax: Double, ay: Double,
|
||||
bx: Double, by: Double,
|
||||
cx: Double, cy: Double,
|
||||
px: Double, py: Double
|
||||
): Boolean {
|
||||
|
||||
val dx = twoDiff(ax, px)
|
||||
val dy = twoDiff(ay, py)
|
||||
val ex = twoDiff(bx, px)
|
||||
val ey = twoDiff(by, py)
|
||||
val fx = twoDiff(cx, px)
|
||||
val fy = twoDiff(cy, py)
|
||||
|
||||
val ap = ddAddDd(ddMultDd(dx, dx), ddMultDd(dy, dy))
|
||||
val bp = ddAddDd(ddMultDd(ex, ex), ddMultDd(ey, ey))
|
||||
val cp = ddAddDd(ddMultDd(fx, fx), ddMultDd(fy, fy))
|
||||
|
||||
val dd = ddAddDd(
|
||||
ddDiffDd(
|
||||
ddMultDd(dx, ddDiffDd(ddMultDd(ey, cp), ddMultDd(bp, fy))),
|
||||
ddMultDd(dy, ddDiffDd(ddMultDd(ex, cp), ddMultDd(bp, fx)))
|
||||
),
|
||||
ddMultDd(ap, ddDiffDd(ddMultDd(ex, fy), ddMultDd(ey, fx)))
|
||||
)
|
||||
// add a small bias here, it seems to help
|
||||
return (dd[1]) <= 1E-8
|
||||
}
|
||||
|
||||
|
||||
private fun dist(ax: Double, ay: Double, bx: Double, by: Double): Double {
|
||||
//val dx = ax - bx
|
||||
//val dy = ay - by
|
||||
//return dx * dx + dy * dy
|
||||
|
||||
// double-double implementation but I think it is overkill.
|
||||
|
||||
val dx = twoDiff(ax, bx)
|
||||
val dy = twoDiff(ay, by)
|
||||
val dx2 = ddMultDd(dx, dx)
|
||||
val dy2 = ddMultDd(dy, dy)
|
||||
val d2 = ddAddDd(dx2, dy2)
|
||||
|
||||
return d2[0] + d2[1]
|
||||
|
||||
}
|
||||
228
orx-triangulation/src/commonMain/kotlin/Delaunay.kt
Normal file
228
orx-triangulation/src/commonMain/kotlin/Delaunay.kt
Normal file
@@ -0,0 +1,228 @@
|
||||
package org.openrndr.extra.triangulation
|
||||
|
||||
import org.openrndr.math.Vector2
|
||||
import org.openrndr.shape.Rectangle
|
||||
import org.openrndr.shape.Triangle
|
||||
import org.openrndr.shape.contour
|
||||
import org.openrndr.shape.contours
|
||||
import kotlin.js.JsName
|
||||
import kotlin.math.cos
|
||||
import kotlin.math.pow
|
||||
import kotlin.math.sin
|
||||
|
||||
/*
|
||||
ISC License
|
||||
|
||||
Copyright 2021 Ricardo Matias.
|
||||
|
||||
Permission to use, copy, modify, and/or distribute this software for any purpose
|
||||
with or without fee is hereby granted, provided that the above copyright notice
|
||||
and this permission notice appear in all copies.
|
||||
|
||||
THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES WITH
|
||||
REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND
|
||||
FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT,
|
||||
INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS
|
||||
OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
|
||||
TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF
|
||||
THIS SOFTWARE.
|
||||
*/
|
||||
|
||||
/**
|
||||
* Use [from] static method to use the delaunay triangulation
|
||||
*
|
||||
* @description Port of d3-delaunay (JavaScript) library - https://github.com/d3/d3-delaunay
|
||||
* @property points flat positions' array - [x0, y0, x1, y1..]
|
||||
*
|
||||
* @since 9258fa3 - commit
|
||||
* @author Ricardo Matias
|
||||
*/
|
||||
@Suppress("unused")
|
||||
class Delaunay(val points: DoubleArray) {
|
||||
companion object {
|
||||
/**
|
||||
* Entry point for the delaunay triangulation
|
||||
*
|
||||
* @property points a list of 2D points
|
||||
*/
|
||||
fun from(points: List<Vector2>): Delaunay {
|
||||
val n = points.size
|
||||
val coords = DoubleArray(n * 2)
|
||||
|
||||
for (i in points.indices) {
|
||||
val p = points[i]
|
||||
coords[2 * i] = p.x
|
||||
coords[2 * i + 1] = p.y
|
||||
}
|
||||
|
||||
return Delaunay(coords)
|
||||
}
|
||||
}
|
||||
|
||||
private var delaunator: Delaunator = Delaunator(points)
|
||||
|
||||
val inedges = IntArray(points.size / 2)
|
||||
private val hullIndex = IntArray(points.size / 2)
|
||||
|
||||
var halfedges: IntArray = delaunator.halfedges
|
||||
var hull: IntArray = delaunator.hull
|
||||
var triangles: IntArray = delaunator.triangles
|
||||
|
||||
init {
|
||||
init()
|
||||
}
|
||||
|
||||
fun update() {
|
||||
delaunator.update()
|
||||
init()
|
||||
}
|
||||
|
||||
fun neighbors(i:Int) = sequence<Int> {
|
||||
val e0 = inedges.getOrNull(i) ?: return@sequence
|
||||
if (e0 != -1) {
|
||||
var e = e0
|
||||
var p0 = -1
|
||||
|
||||
loop@do {
|
||||
p0 = triangles[e]
|
||||
yield(p0)
|
||||
e = if (e % 3 == 2) e - 2 else e + 1
|
||||
if (e == -1) {
|
||||
break@loop
|
||||
}
|
||||
|
||||
if (triangles[e] != i) {
|
||||
break@loop
|
||||
//error("bad triangulation")
|
||||
}
|
||||
e = halfedges[e]
|
||||
|
||||
if (e == -1) {
|
||||
val p = hull[(hullIndex[i] + 1) % hull.size]
|
||||
if (p != p0) {
|
||||
yield(p)
|
||||
}
|
||||
break@loop
|
||||
}
|
||||
} while (e != e0)
|
||||
}
|
||||
}
|
||||
|
||||
fun collinear(): Boolean {
|
||||
for (i in 0 until triangles.size step 3) {
|
||||
val a = 2 * triangles[i]
|
||||
val b = 2 * triangles[i + 1]
|
||||
val c = 2 * triangles[i + 2]
|
||||
val coords = points
|
||||
val cross = (coords[c] - coords[a]) * (coords[b + 1] - coords[a + 1])
|
||||
- (coords[b] - coords[a]) * (coords[c + 1] - coords[a + 1])
|
||||
if (cross > 1e-10) return false;
|
||||
}
|
||||
return true
|
||||
}
|
||||
private fun jitter(x:Double, y:Double, r:Double): DoubleArray {
|
||||
return doubleArrayOf(x + sin(x+y) * r, y + cos(x-y)*r)
|
||||
}
|
||||
fun init() {
|
||||
|
||||
if (hull.size > 2 && collinear()) {
|
||||
println("warning: triangulation is collinear")
|
||||
val r = 1E-8
|
||||
for (i in 0 until points.size step 2) {
|
||||
val p = jitter(points[i], points[i+1], r)
|
||||
points[i] = p[0]
|
||||
points[i+1] = p[1]
|
||||
}
|
||||
|
||||
delaunator = Delaunator(points)
|
||||
halfedges = delaunator.halfedges
|
||||
hull = delaunator.hull
|
||||
triangles = delaunator.triangles
|
||||
|
||||
}
|
||||
|
||||
inedges.fill(-1)
|
||||
hullIndex.fill(-1)
|
||||
|
||||
// Compute an index from each point to an (arbitrary) incoming halfedge
|
||||
// Used to give the first neighbor of each point for this reason,
|
||||
// on the hull we give priority to exterior halfedges
|
||||
for (e in halfedges.indices) {
|
||||
val p = triangles[nextHalfedge(e)]
|
||||
|
||||
if (halfedges[e] == -1 || inedges[p] == -1) inedges[p] = e
|
||||
}
|
||||
|
||||
for (i in hull.indices) {
|
||||
hullIndex[hull[i]] = i
|
||||
}
|
||||
|
||||
// degenerate case: 1 or 2 (distinct) points
|
||||
if (hull.size in 1..2) {
|
||||
triangles = IntArray(3) { -1 }
|
||||
halfedges = IntArray(3) { -1 }
|
||||
triangles[0] = hull[0]
|
||||
inedges[hull[0]] = 1
|
||||
if (hull.size == 2) {
|
||||
inedges[hull[1]] = 0
|
||||
triangles[1] = hull[1]
|
||||
triangles[2] = hull[1]
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
fun find(x: Double, y: Double, i: Int = 0): Int {
|
||||
var i1 = i
|
||||
var c = step(i, x, y)
|
||||
|
||||
while (c >= 0 && c != i && c != i1) {
|
||||
i1 = c
|
||||
c = step(i1, x, y)
|
||||
}
|
||||
return c
|
||||
}
|
||||
|
||||
fun nextHalfedge(e: Int) = if (e % 3 == 2) e - 2 else e + 1
|
||||
fun prevHalfedge(e: Int) = if (e % 3 == 0) e + 2 else e - 1
|
||||
|
||||
fun step(i: Int, x: Double, y: Double): Int {
|
||||
if (inedges[i] == -1 || points.isEmpty()) return (i + 1) % (points.size shr 1)
|
||||
|
||||
var c = i
|
||||
var dc = (x - points[i * 2]).pow(2) + (y - points[i * 2 + 1]).pow(2)
|
||||
val e0 = inedges[i]
|
||||
var e = e0
|
||||
do {
|
||||
val t = triangles[e]
|
||||
val dt = (x - points[t * 2]).pow(2) + (y - points[t * 2 + 1]).pow(2)
|
||||
|
||||
if (dt < dc) {
|
||||
dc = dt
|
||||
c = t
|
||||
}
|
||||
|
||||
e = if (e % 3 == 2) e - 2 else e + 1
|
||||
|
||||
if (triangles[e] != i) {
|
||||
//error("bad triangulation")
|
||||
break
|
||||
} // bad triangulation
|
||||
|
||||
e = halfedges[e]
|
||||
|
||||
if (e == -1) {
|
||||
e = hull[(hullIndex[i] + 1) % hull.size]
|
||||
if (e != t) {
|
||||
if ((x - points[e * 2]).pow(2) + (y - points[e * 2 + 1]).pow(2) < dc) return e
|
||||
}
|
||||
break
|
||||
}
|
||||
} while (e != e0)
|
||||
|
||||
return c
|
||||
}
|
||||
|
||||
fun voronoi(bounds: Rectangle): Voronoi = Voronoi(this, bounds)
|
||||
}
|
||||
|
||||
@@ -0,0 +1,71 @@
|
||||
package org.openrndr.extra.triangulation
|
||||
|
||||
import org.openrndr.math.Vector2
|
||||
import org.openrndr.shape.Rectangle
|
||||
import org.openrndr.shape.Triangle
|
||||
import org.openrndr.shape.contour
|
||||
import org.openrndr.shape.contours
|
||||
|
||||
/**
|
||||
* Kotlin/OPENRNDR idiomatic interface to `Delaunay`
|
||||
*/
|
||||
class DelaunayTriangulation(val points: List<Vector2>) {
|
||||
internal val delaunay: Delaunay = Delaunay.from(points)
|
||||
|
||||
fun voronoiDiagram(bounds: Rectangle) = VoronoiDiagram(this, bounds)
|
||||
|
||||
fun neighbors(pointIndex: Int) : Sequence<Int> {
|
||||
return delaunay.neighbors(pointIndex)
|
||||
}
|
||||
|
||||
fun neighborPoints(pointIndex: Int) : List<Vector2> {
|
||||
return neighbors(pointIndex).map { points[it] }.toList()
|
||||
}
|
||||
|
||||
fun triangles(): List<Triangle> {
|
||||
val list = mutableListOf<Triangle>()
|
||||
|
||||
for (i in delaunay.triangles.indices step 3 ) {
|
||||
val t0 = delaunay.triangles[i]
|
||||
val t1 = delaunay.triangles[i + 1]
|
||||
val t2 = delaunay.triangles[i + 2]
|
||||
|
||||
val p1 = points[t0]
|
||||
val p2 = points[t1]
|
||||
val p3 = points[t2]
|
||||
|
||||
// originally they are defined *counterclockwise*
|
||||
list.add(Triangle(p3, p2, p1))
|
||||
}
|
||||
return list
|
||||
}
|
||||
|
||||
// Inner edges of the delaunay triangulation (without hull)
|
||||
fun halfedges() = contours {
|
||||
for (i in delaunay.halfedges.indices) {
|
||||
val j = delaunay.halfedges[i]
|
||||
|
||||
if (j < i) continue
|
||||
val ti = delaunay.triangles[i]
|
||||
val tj = delaunay.triangles[j]
|
||||
|
||||
moveTo(points[ti])
|
||||
lineTo(points[tj])
|
||||
}
|
||||
}
|
||||
|
||||
fun hull() = contour {
|
||||
for (h in delaunay.hull) {
|
||||
moveOrLineTo(points[2 * h])
|
||||
}
|
||||
close()
|
||||
}
|
||||
|
||||
fun nearest(query: Vector2) : Int = delaunay.find(query.x, query.y)
|
||||
|
||||
fun nearestPoint(query: Vector2) : Vector2 = points[nearest(query)]
|
||||
}
|
||||
|
||||
fun List<Vector2>.delaunayTriangulation() : DelaunayTriangulation {
|
||||
return DelaunayTriangulation(this)
|
||||
}
|
||||
320
orx-triangulation/src/commonMain/kotlin/DoubleDouble.kt
Normal file
320
orx-triangulation/src/commonMain/kotlin/DoubleDouble.kt
Normal file
@@ -0,0 +1,320 @@
|
||||
package org.openrndr.extra.triangulation
|
||||
|
||||
import kotlin.math.pow
|
||||
|
||||
// original code: https://github.com/FlorisSteenkamp/double-double/
|
||||
|
||||
|
||||
/**
|
||||
* Returns the difference and exact error of subtracting two floating point
|
||||
* numbers.
|
||||
* Uses an EFT (error-free transformation), i.e. `a-b === x+y` exactly.
|
||||
* The returned result is a non-overlapping expansion (smallest value first!).
|
||||
*
|
||||
* * **precondition:** `abs(a) >= abs(b)` - A fast test that can be used is
|
||||
* `(a > b) === (a > -b)`
|
||||
*
|
||||
* See https://people.eecs.berkeley.edu/~jrs/papers/robustr.pdf
|
||||
*/
|
||||
internal fun fastTwoDiff(a: Double, b: Double): DoubleArray {
|
||||
val x = a - b;
|
||||
val y = (a - x) - b;
|
||||
|
||||
return doubleArrayOf(y, x)
|
||||
}
|
||||
|
||||
/**
|
||||
* Returns the sum and exact error of adding two floating point numbers.
|
||||
* Uses an EFT (error-free transformation), i.e. a+b === x+y exactly.
|
||||
* The returned sum is a non-overlapping expansion (smallest value first!).
|
||||
*
|
||||
* Precondition: abs(a) >= abs(b) - A fast test that can be used is
|
||||
* (a > b) === (a > -b)
|
||||
*
|
||||
* See https://people.eecs.berkeley.edu/~jrs/papers/robustr.pdf
|
||||
*/
|
||||
internal fun fastTwoSum(a: Double, b: Double): DoubleArray {
|
||||
val x = a + b;
|
||||
|
||||
return doubleArrayOf(b - (x - a), x)
|
||||
}
|
||||
|
||||
|
||||
/**
|
||||
* Truncates a floating point value's significand and returns the result.
|
||||
* Similar to split, but with the ability to specify the number of bits to keep.
|
||||
*
|
||||
* **Theorem 17 (Veltkamp-Dekker)**: Let a be a p-bit floating-point number, where
|
||||
* p >= 3. Choose a splitting point s such that p/2 <= s <= p-1. Then the
|
||||
* following algorithm will produce a (p-s)-bit value a_hi and a
|
||||
* nonoverlapping (s-1)-bit value a_lo such that abs(a_hi) >= abs(a_lo) and
|
||||
* a = a_hi + a_lo.
|
||||
*
|
||||
* * see [Shewchuk](https://people.eecs.berkeley.edu/~jrs/papers/robustr.pdf)
|
||||
*
|
||||
* @param a a double
|
||||
* @param bits the number of significand bits to leave intact
|
||||
*/
|
||||
internal fun reduceSignificand(
|
||||
a: Double,
|
||||
bits: Int
|
||||
): Double {
|
||||
|
||||
val s = 53 - bits;
|
||||
val f = 2.0.pow(s) + 1;
|
||||
|
||||
val c = f * a;
|
||||
val r = c - (c - a);
|
||||
|
||||
return r;
|
||||
}
|
||||
|
||||
|
||||
/**
|
||||
* === 2^Math.ceil(p/2) + 1 where p is the # of significand bits in a double === 53.
|
||||
* @internal
|
||||
*/
|
||||
private const val f = 134217729; // 2**27 + 1;
|
||||
|
||||
|
||||
/**
|
||||
* Returns the result of splitting a double into 2 26-bit doubles.
|
||||
*
|
||||
* Theorem 17 (Veltkamp-Dekker): Let a be a p-bit floating-point number, where
|
||||
* p >= 3. Choose a splitting point s such that p/2 <= s <= p-1. Then the
|
||||
* following algorithm will produce a (p-s)-bit value a_hi and a
|
||||
* nonoverlapping (s-1)-bit value a_lo such that abs(a_hi) >= abs(a_lo) and
|
||||
* a = a_hi + a_lo.
|
||||
*
|
||||
* see e.g. [Shewchuk](https://people.eecs.berkeley.edu/~jrs/papers/robustr.pdf)
|
||||
* @param a A double floating point number
|
||||
*/
|
||||
private fun split(a: Double): DoubleArray {
|
||||
val c = f * a;
|
||||
val a_h = c - (c - a);
|
||||
val a_l = a - a_h;
|
||||
|
||||
return doubleArrayOf(a_h, a_l)
|
||||
}
|
||||
|
||||
/**
|
||||
* Returns the exact result of subtracting b from a.
|
||||
*
|
||||
* @param a minuend - a double-double precision floating point number
|
||||
* @param b subtrahend - a double-double precision floating point number
|
||||
*/
|
||||
internal fun twoDiff(a: Double, b: Double): DoubleArray {
|
||||
val x = a - b;
|
||||
val bvirt = a - x;
|
||||
val y = (a - (x + bvirt)) + (bvirt - b);
|
||||
|
||||
return doubleArrayOf(y, x)
|
||||
}
|
||||
|
||||
/**
|
||||
* Returns the exact result of multiplying two doubles.
|
||||
*
|
||||
* * the resulting array is the reverse of the standard twoSum in the literature.
|
||||
*
|
||||
* Theorem 18 (Shewchuk): Let a and b be p-bit floating-point numbers, where
|
||||
* p >= 6. Then the following algorithm will produce a nonoverlapping expansion
|
||||
* x + y such that ab = x + y, where x is an approximation to ab and y
|
||||
* represents the roundoff error in the calculation of x. Furthermore, if
|
||||
* round-to-even tiebreaking is used, x and y are non-adjacent.
|
||||
*
|
||||
* See https://people.eecs.berkeley.edu/~jrs/papers/robustr.pdf
|
||||
* @param a A double
|
||||
* @param b Another double
|
||||
*/
|
||||
internal fun twoProduct(a: Double, b: Double): DoubleArray {
|
||||
val x = a * b;
|
||||
|
||||
//const [ah, al] = split(a);
|
||||
val c = f * a;
|
||||
val ah = c - (c - a);
|
||||
val al = a - ah;
|
||||
//const [bh, bl] = split(b);
|
||||
val d = f * b;
|
||||
val bh = d - (d - b);
|
||||
val bl = b - bh;
|
||||
|
||||
val y = (al * bl) - ((x - (ah * bh)) - (al * bh) - (ah * bl));
|
||||
|
||||
//const err1 = x - (ah * bh);
|
||||
//const err2 = err1 - (al * bh);
|
||||
//const err3 = err2 - (ah * bl);
|
||||
//const y = (al * bl) - err3;
|
||||
|
||||
return doubleArrayOf(y, x)
|
||||
}
|
||||
|
||||
internal fun twoSquare(a: Double): DoubleArray {
|
||||
val x = a * a;
|
||||
|
||||
//const [ah, al] = split(a);
|
||||
val c = f * a;
|
||||
val ah = c - (c - a);
|
||||
val al = a - ah;
|
||||
|
||||
val y = (al * al) - ((x - (ah * ah)) - 2 * (ah * al));
|
||||
|
||||
return doubleArrayOf(y, x)
|
||||
}
|
||||
|
||||
/**
|
||||
* Returns the exact result of adding two doubles.
|
||||
*
|
||||
* * the resulting array is the reverse of the standard twoSum in the literature.
|
||||
*
|
||||
* Theorem 7 (Knuth): Let a and b be p-bit floating-point numbers. Then the
|
||||
* following algorithm will produce a nonoverlapping expansion x + y such that
|
||||
* a + b = x + y, where x is an approximation to a + b and y is the roundoff
|
||||
* error in the calculation of x.
|
||||
*
|
||||
* See https://people.eecs.berkeley.edu/~jrs/papers/robustr.pdf
|
||||
*/
|
||||
internal fun twoSum(a: Double, b: Double): DoubleArray {
|
||||
val x = a + b;
|
||||
val bv = x - a;
|
||||
|
||||
return doubleArrayOf((a - (x - bv)) + (b - bv), x)
|
||||
}
|
||||
|
||||
/**
|
||||
* Returns the result of subtracting the second given double-double-precision
|
||||
* floating point number from the first.
|
||||
*
|
||||
* * relative error bound: 3u^2 + 13u^3, i.e. fl(a-b) = (a-b)(1+ϵ),
|
||||
* where ϵ <= 3u^2 + 13u^3, u = 0.5 * Number.EPSILON
|
||||
* * the error bound is not sharp - the worst case that could be found by the
|
||||
* authors were 2.25u^2
|
||||
*
|
||||
* ALGORITHM 6 of https://hal.archives-ouvertes.fr/hal-01351529v3/document
|
||||
* @param x a double-double precision floating point number
|
||||
* @param y another double-double precision floating point number
|
||||
*/
|
||||
internal fun ddDiffDd(x: DoubleArray, y: DoubleArray): DoubleArray {
|
||||
val xl = x[0];
|
||||
val xh = x[1];
|
||||
val yl = y[0];
|
||||
val yh = y[1];
|
||||
|
||||
//const [sl,sh] = twoSum(xh,yh);
|
||||
val sh = xh - yh; val _1 = sh - xh; val sl = (xh - (sh - _1)) + (-yh - _1);
|
||||
//const [tl,th] = twoSum(xl,yl);
|
||||
val th = xl - yl; val _2 = th - xl; val tl = (xl - (th - _2)) + (-yl - _2);
|
||||
val c = sl + th;
|
||||
//const [vl,vh] = fastTwoSum(sh,c)
|
||||
val vh = sh + c; val vl = c - (vh - sh);
|
||||
val w = tl + vl
|
||||
//const [zl,zh] = fastTwoSum(vh,w)
|
||||
val zh = vh + w; val zl = w - (zh - vh);
|
||||
|
||||
return doubleArrayOf(zl, zh)
|
||||
}
|
||||
|
||||
/**
|
||||
* Returns the product of two double-double-precision floating point numbers.
|
||||
*
|
||||
* * relative error bound: 7u^2, i.e. fl(a+b) = (a+b)(1+ϵ),
|
||||
* where ϵ <= 7u^2, u = 0.5 * Number.EPSILON
|
||||
* the error bound is not sharp - the worst case that could be found by the
|
||||
* authors were 5u^2
|
||||
*
|
||||
* * ALGORITHM 10 of https://hal.archives-ouvertes.fr/hal-01351529v3/document
|
||||
* @param x a double-double precision floating point number
|
||||
* @param y another double-double precision floating point number
|
||||
*/
|
||||
internal fun ddMultDd(x: DoubleArray, y: DoubleArray): DoubleArray {
|
||||
|
||||
|
||||
//const xl = x[0];
|
||||
val xh = x[1];
|
||||
//const yl = y[0];
|
||||
val yh = y[1];
|
||||
|
||||
//const [cl1,ch] = twoProduct(xh,yh);
|
||||
val ch = xh*yh;
|
||||
val c = f * xh; val ah = c - (c - xh); val al = xh - ah;
|
||||
val d = f * yh; val bh = d - (d - yh); val bl = yh - bh;
|
||||
val cl1 = (al*bl) - ((ch - (ah*bh)) - (al*bh) - (ah*bl));
|
||||
|
||||
//return fastTwoSum(ch,cl1 + (xh*yl + xl*yh));
|
||||
val b = cl1 + (xh*y[0] + x[0]*yh);
|
||||
val xx = ch + b;
|
||||
|
||||
return doubleArrayOf(b - (xx - ch), xx)
|
||||
}
|
||||
|
||||
|
||||
/**
|
||||
* Returns the result of adding two double-double-precision floating point
|
||||
* numbers.
|
||||
*
|
||||
* * relative error bound: 3u^2 + 13u^3, i.e. fl(a+b) = (a+b)(1+ϵ),
|
||||
* where ϵ <= 3u^2 + 13u^3, u = 0.5 * Number.EPSILON
|
||||
* * the error bound is not sharp - the worst case that could be found by the
|
||||
* authors were 2.25u^2
|
||||
*
|
||||
* ALGORITHM 6 of https://hal.archives-ouvertes.fr/hal-01351529v3/document
|
||||
* @param x a double-double precision floating point number
|
||||
* @param y another double-double precision floating point number
|
||||
*/
|
||||
internal fun ddAddDd(x: DoubleArray, y: DoubleArray): DoubleArray {
|
||||
val xl = x[0];
|
||||
val xh = x[1];
|
||||
val yl = y[0];
|
||||
val yh = y[1];
|
||||
|
||||
//const [sl,sh] = twoSum(xh,yh);
|
||||
val sh = xh + yh; val _1 = sh - xh; val sl = (xh - (sh - _1)) + (yh - _1);
|
||||
//val [tl,th] = twoSum(xl,yl);
|
||||
val th = xl + yl; val _2 = th - xl; val tl = (xl - (th - _2)) + (yl - _2);
|
||||
val c = sl + th;
|
||||
//val [vl,vh] = fastTwoSum(sh,c)
|
||||
val vh = sh + c; val vl = c - (vh - sh);
|
||||
val w = tl + vl
|
||||
//val [zl,zh] = fastTwoSum(vh,w)
|
||||
val zh = vh + w; val zl = w - (zh - vh);
|
||||
|
||||
return doubleArrayOf(zl, zh)
|
||||
}
|
||||
|
||||
|
||||
/**
|
||||
* Returns the product of a double-double-precision floating point number and a
|
||||
* double.
|
||||
*
|
||||
* * slower than ALGORITHM 8 (one call to fastTwoSum more) but about 2x more
|
||||
* accurate
|
||||
* * relative error bound: 1.5u^2 + 4u^3, i.e. fl(a+b) = (a+b)(1+ϵ),
|
||||
* where ϵ <= 1.5u^2 + 4u^3, u = 0.5 * Number.EPSILON
|
||||
* * the bound is very sharp
|
||||
* * probably prefer `ddMultDouble2` due to extra speed
|
||||
*
|
||||
* * ALGORITHM 7 of https://hal.archives-ouvertes.fr/hal-01351529v3/document
|
||||
* @param y a double
|
||||
* @param x a double-double precision floating point number
|
||||
*/
|
||||
internal fun ddMultDouble1(y: Double, x: DoubleArray): DoubleArray {
|
||||
val xl = x[0];
|
||||
val xh = x[1];
|
||||
|
||||
//val [cl1,ch] = twoProduct(xh,y);
|
||||
val ch = xh*y;
|
||||
val c = f * xh; val ah = c - (c - xh); val al = xh - ah;
|
||||
val d = f * y; val bh = d - (d - y); val bl = y - bh;
|
||||
val cl1 = (al*bl) - ((ch - (ah*bh)) - (al*bh) - (ah*bl));
|
||||
|
||||
val cl2 = xl*y;
|
||||
//val [tl1,th] = fastTwoSum(ch,cl2);
|
||||
val th = ch + cl2;
|
||||
val tl1 = cl2 - (th - ch);
|
||||
|
||||
val tl2 = tl1 + cl1;
|
||||
//val [zl,zh] = fastTwoSum(th,tl2);
|
||||
val zh = th + tl2;
|
||||
val zl = tl2 - (zh - th);
|
||||
|
||||
return doubleArrayOf(zl,zh);
|
||||
}
|
||||
19
orx-triangulation/src/commonMain/kotlin/Predicates.kt
Normal file
19
orx-triangulation/src/commonMain/kotlin/Predicates.kt
Normal file
@@ -0,0 +1,19 @@
|
||||
package org.openrndr.extra.triangulation
|
||||
|
||||
internal fun orient2d(bx: Double, by: Double, ax: Double, ay: Double, cx: Double, cy: Double): Double {
|
||||
// (ax,ay) (bx,by) are swapped such that the sign of the determinant is flipped. which is what Delaunator.kt expects.
|
||||
|
||||
/*
|
||||
| a b | = | ax - cx ay - cy |
|
||||
| c d | | bx - cx by - cy |
|
||||
*/
|
||||
|
||||
val a = ax - cx
|
||||
val b = ay - cy
|
||||
val c = bx - cx
|
||||
val d = by - cy
|
||||
|
||||
val determinant = ddDiffDd(twoProduct(a, d), twoProduct(b, c))
|
||||
|
||||
return determinant[1]
|
||||
}
|
||||
627
orx-triangulation/src/commonMain/kotlin/Voronoi.kt
Normal file
627
orx-triangulation/src/commonMain/kotlin/Voronoi.kt
Normal file
@@ -0,0 +1,627 @@
|
||||
package org.openrndr.extra.triangulation
|
||||
|
||||
import org.openrndr.math.Vector2
|
||||
import org.openrndr.shape.Rectangle
|
||||
import org.openrndr.shape.Shape
|
||||
import org.openrndr.shape.ShapeContour
|
||||
import org.openrndr.shape.bounds
|
||||
import kotlin.js.JsName
|
||||
import kotlin.math.abs
|
||||
import kotlin.math.floor
|
||||
import kotlin.math.sign
|
||||
|
||||
/*
|
||||
ISC License
|
||||
|
||||
Copyright 2021 Ricardo Matias.
|
||||
|
||||
Permission to use, copy, modify, and/or distribute this software for any purpose
|
||||
with or without fee is hereby granted, provided that the above copyright notice
|
||||
and this permission notice appear in all copies.
|
||||
|
||||
THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES WITH
|
||||
REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND
|
||||
FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT,
|
||||
INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS
|
||||
OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
|
||||
TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF
|
||||
THIS SOFTWARE.
|
||||
*/
|
||||
|
||||
|
||||
/**
|
||||
* This is a fast library for computing the Voronoi diagram of a set of two-dimensional points.
|
||||
* The Voronoi diagram is constructed by connecting the circumcenters of adjacent triangles
|
||||
* in the Delaunay triangulation.
|
||||
*
|
||||
* @description Port of d3-delaunay (JavaScript) library - https://github.com/d3/d3-delaunay
|
||||
* @property points flat positions' array - [x0, y0, x1, y1..]
|
||||
*
|
||||
* @since 9258fa3 - commit
|
||||
* @author Ricardo Matias
|
||||
*/
|
||||
class Voronoi(val delaunay: Delaunay, val bounds: Rectangle) {
|
||||
private val _circumcenters = DoubleArray(delaunay.points.size * 2)
|
||||
lateinit var circumcenters: DoubleArray
|
||||
private set
|
||||
|
||||
val vectors = DoubleArray(delaunay.points.size * 2)
|
||||
|
||||
init {
|
||||
init()
|
||||
}
|
||||
|
||||
fun update() {
|
||||
delaunay.update()
|
||||
init()
|
||||
}
|
||||
|
||||
fun init() {
|
||||
val points = delaunay.points
|
||||
|
||||
if (delaunay.points.isEmpty()) {
|
||||
return
|
||||
}
|
||||
|
||||
val triangles = delaunay.triangles
|
||||
val hull = delaunay.hull
|
||||
|
||||
if (points.size == 2) {
|
||||
_circumcenters[0] = points[0]
|
||||
_circumcenters[1] = points[1]
|
||||
circumcenters = _circumcenters
|
||||
return
|
||||
}
|
||||
|
||||
circumcenters = _circumcenters.copyOf(delaunay.triangles.size / 3 * 2)
|
||||
|
||||
// Compute circumcenters
|
||||
var i = 0
|
||||
var j = 0
|
||||
|
||||
var x: Double
|
||||
var y: Double
|
||||
|
||||
while (i < triangles.size) {
|
||||
val t1 = triangles[i] * 2
|
||||
val t2 = triangles[i + 1] * 2
|
||||
val t3 = triangles[i + 2] * 2
|
||||
val x1 = points[t1]
|
||||
val y1 = points[t1 + 1]
|
||||
val x2 = points[t2]
|
||||
val y2 = points[t2 + 1]
|
||||
val x3 = points[t3]
|
||||
val y3 = points[t3 + 1]
|
||||
|
||||
val dx = x2 - x1
|
||||
val dy = y2 - y1
|
||||
val ex = x3 - x1
|
||||
val ey = y3 - y1
|
||||
val ab = (dx * ey - dy * ex) * 2
|
||||
|
||||
if (abs(ab) < 1e-9) {
|
||||
var a = 1e9
|
||||
val r = triangles[0] * 2
|
||||
a *= sign((points[r] - x1) * ey - (points[r + 1] - y1) * ex)
|
||||
x = (x1 + x3) / 2 - a * ey
|
||||
y = (y1 + y3) / 2 + a * ex
|
||||
} else {
|
||||
val d = 1 / ab
|
||||
val bl = dx * dx + dy * dy
|
||||
val cl = ex * ex + ey * ey
|
||||
x = x1 + (ey * bl - dy * cl) * d
|
||||
y = y1 + (dx * cl - ex * bl) * d
|
||||
}
|
||||
|
||||
circumcenters[j] = x
|
||||
circumcenters[j + 1] = y
|
||||
|
||||
i += 3
|
||||
j += 2
|
||||
}
|
||||
|
||||
// Compute exterior cell rays.
|
||||
var h = hull[hull.size - 1]
|
||||
var p0: Int
|
||||
var p1 = h * 4
|
||||
var x0: Double
|
||||
var x1 = points[2 * h]
|
||||
var y0: Double
|
||||
var y1 = points[2 * h + 1]
|
||||
var y01: Double
|
||||
var x10: Double
|
||||
|
||||
vectors.fill(0.0)
|
||||
|
||||
for (idx in hull.indices) {
|
||||
h = hull[idx]
|
||||
p0 = p1
|
||||
x0 = x1
|
||||
y0 = y1
|
||||
p1 = h * 4
|
||||
x1 = points[2 * h]
|
||||
y1 = points[2 * h + 1]
|
||||
|
||||
y01 = y0 - y1
|
||||
x10 = x1 - x0
|
||||
|
||||
vectors[p0 + 2] = y01
|
||||
vectors[p1] = y01
|
||||
vectors[p0 + 3] = x10
|
||||
vectors[p1 + 1] = x10
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
|
||||
|
||||
private fun cell(i: Int): MutableList<Double>? {
|
||||
|
||||
|
||||
|
||||
val inedges = delaunay.inedges
|
||||
val halfedges = delaunay.halfedges
|
||||
val triangles = delaunay.triangles
|
||||
|
||||
val e0 = inedges[i]
|
||||
|
||||
if (e0 == -1) return null // coincident point
|
||||
|
||||
val points = mutableListOf<Double>()
|
||||
|
||||
var e = e0
|
||||
|
||||
do {
|
||||
val t = floor(e / 3.0).toInt()
|
||||
|
||||
points.add(circumcenters[t * 2])
|
||||
points.add(circumcenters[t * 2 + 1])
|
||||
|
||||
e = if (e % 3 == 2) e - 2 else e + 1 // next half edge
|
||||
|
||||
if (triangles[e] != i) break
|
||||
|
||||
e = halfedges[e]
|
||||
} while (e != e0 && e != -1)
|
||||
|
||||
return points
|
||||
}
|
||||
|
||||
fun neighbors(i: Int) = sequence {
|
||||
val ci = clip(i)
|
||||
if (ci != null) {
|
||||
for (j in delaunay.neighbors(i)) {
|
||||
val cj = clip(j)
|
||||
if (cj != null) {
|
||||
val li = ci.size
|
||||
val lj = cj.size
|
||||
loop@ for (ai in 0 until ci.size step 2) {
|
||||
for (aj in 0 until cj.size step 2) {
|
||||
if (ci[ai] == cj[aj]
|
||||
&& ci[ai + 1] == cj[aj + 1]
|
||||
&& ci[(ai + 2) % li] == cj[(aj + lj - 2) % lj]
|
||||
&& ci[(ai + 3) % li] == cj[(aj + lj - 1) % lj]
|
||||
) {
|
||||
yield(j)
|
||||
break@loop
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
internal fun clip(i: Int): List<Double>? {
|
||||
// degenerate case (1 valid point: return the box)
|
||||
if (i == 0 && delaunay.points.size == 2) {
|
||||
return listOf(
|
||||
bounds.xmax,
|
||||
bounds.ymin,
|
||||
bounds.xmax,
|
||||
bounds.ymax,
|
||||
bounds.xmin,
|
||||
bounds.ymax,
|
||||
bounds.xmin,
|
||||
bounds.ymin
|
||||
)
|
||||
}
|
||||
|
||||
val points = cell(i) ?: return null
|
||||
|
||||
val clipVectors = vectors
|
||||
val v = i * 4
|
||||
|
||||
val a = !clipVectors[v].isFalsy()
|
||||
val b = !clipVectors[v + 1].isFalsy()
|
||||
|
||||
return if (a || b) {
|
||||
this.clipInfinite(i, points, clipVectors[v], clipVectors[v + 1], clipVectors[v + 2], clipVectors[v + 3])
|
||||
} else {
|
||||
this.clipFinite(i, points)
|
||||
}
|
||||
}
|
||||
|
||||
private fun clipInfinite(
|
||||
i: Int,
|
||||
points: MutableList<Double>,
|
||||
vx0: Double,
|
||||
vy0: Double,
|
||||
vxn: Double,
|
||||
vyn: Double
|
||||
): List<Double>? {
|
||||
var P: MutableList<Double>? = points.mutableCopyOf()
|
||||
|
||||
P!!
|
||||
project(P[0], P[1], vx0, vy0)?.let { p -> P!!.add(0, p[1]); P!!.add(0, p[0]) }
|
||||
project(P[P.size - 2], P[P.size - 1], vxn, vyn)?.let { p -> P!!.add(p[0]); P!!.add(p[1]) }
|
||||
|
||||
P = this.clipFinite(i, P!!)
|
||||
var n = 0
|
||||
if (P != null) {
|
||||
n = P!!.size
|
||||
var c0 = -1
|
||||
var c1 = edgeCode(P[n - 2], P[n - 1])
|
||||
var j = 0
|
||||
var n = P.size
|
||||
while (j < n) {
|
||||
c0 = c1
|
||||
c1 = edgeCode(P[j], P[j + 1])
|
||||
if (c0 != 0 && c1 != 0) {
|
||||
j = edge(i, c0, c1, P, j)
|
||||
n = P.size
|
||||
}
|
||||
j += 2
|
||||
}
|
||||
} else if (this.contains(i, (bounds.xmin + bounds.xmax) / 2.0, (bounds.ymin + bounds.ymax) / 2.0)) {
|
||||
P = mutableListOf(
|
||||
bounds.xmin,
|
||||
bounds.ymin,
|
||||
bounds.xmax,
|
||||
bounds.ymin,
|
||||
bounds.xmax,
|
||||
bounds.ymax,
|
||||
bounds.xmin,
|
||||
bounds.ymax
|
||||
)
|
||||
}
|
||||
return P
|
||||
}
|
||||
|
||||
private fun clipFinite(i: Int, points: MutableList<Double>): MutableList<Double>? {
|
||||
val n = points.size
|
||||
|
||||
val P = mutableListOf<Double>()
|
||||
var x0: Double
|
||||
var y0: Double
|
||||
var x1 = points[n - 2]
|
||||
var y1 = points[n - 1]
|
||||
var c0: Int
|
||||
var c1: Int = regionCode(x1, y1)
|
||||
var e0: Int? = null
|
||||
var e1: Int? = 0
|
||||
|
||||
for (j in 0 until n step 2) {
|
||||
x0 = x1
|
||||
y0 = y1
|
||||
x1 = points[j]
|
||||
y1 = points[j + 1]
|
||||
c0 = c1
|
||||
c1 = regionCode(x1, y1)
|
||||
|
||||
if (c0 == 0 && c1 == 0) {
|
||||
e0 = e1
|
||||
e1 = 0
|
||||
|
||||
P.add(x1)
|
||||
P.add(y1)
|
||||
} else {
|
||||
var S: DoubleArray?
|
||||
var sx0: Double
|
||||
var sy0: Double
|
||||
var sx1: Double
|
||||
var sy1: Double
|
||||
|
||||
if (c0 == 0) {
|
||||
S = clipSegment(x0, y0, x1, y1, c0, c1)
|
||||
if (S == null) continue
|
||||
sx0 = S[0]
|
||||
sy0 = S[1]
|
||||
sx1 = S[2]
|
||||
sy1 = S[3]
|
||||
} else {
|
||||
S = clipSegment(x1, y1, x0, y0, c1, c0)
|
||||
if (S == null) continue
|
||||
sx1 = S[0]
|
||||
sy1 = S[1]
|
||||
sx0 = S[2]
|
||||
sy0 = S[3]
|
||||
|
||||
e0 = e1
|
||||
e1 = this.edgeCode(sx0, sy0)
|
||||
|
||||
if (e0 != 0 && e1 != 0) this.edge(i, e0!!, e1, P, P.size)
|
||||
|
||||
P.add(sx0)
|
||||
P.add(sy0)
|
||||
}
|
||||
|
||||
e0 = e1
|
||||
e1 = this.edgeCode(sx1, sy1);
|
||||
|
||||
if (e0.isTruthy() && e1.isTruthy()) this.edge(i, e0!!, e1, P, P.size);
|
||||
|
||||
P.add(sx1)
|
||||
P.add(sy1)
|
||||
}
|
||||
}
|
||||
|
||||
if (P.isNotEmpty()) {
|
||||
e0 = e1
|
||||
e1 = this.edgeCode(P[0], P[1])
|
||||
|
||||
if (e0.isTruthy() && e1.isTruthy()) this.edge(i, e0!!, e1!!, P, P.size);
|
||||
} else if (this.contains(i, (bounds.xmin + bounds.xmax) / 2, (bounds.ymin + bounds.ymax) / 2)) {
|
||||
return mutableListOf(
|
||||
bounds.xmax,
|
||||
bounds.ymin,
|
||||
bounds.xmax,
|
||||
bounds.ymax,
|
||||
bounds.xmin,
|
||||
bounds.ymax,
|
||||
bounds.xmin,
|
||||
bounds.ymin
|
||||
)
|
||||
} else {
|
||||
return null
|
||||
}
|
||||
return P
|
||||
}
|
||||
|
||||
private fun clipSegment(x0: Double, y0: Double, x1: Double, y1: Double, c0: Int, c1: Int): DoubleArray? {
|
||||
var nx0: Double = x0
|
||||
var ny0: Double = y0
|
||||
var nx1: Double = x1
|
||||
var ny1: Double = y1
|
||||
var nc0: Int = c0
|
||||
var nc1: Int = c1
|
||||
|
||||
while (true) {
|
||||
if (nc0 == 0 && nc1 == 0) return doubleArrayOf(nx0, ny0, nx1, ny1)
|
||||
// SHAKY STUFF
|
||||
if ((nc0 and nc1) != 0) return null
|
||||
|
||||
var x: Double
|
||||
var y: Double
|
||||
val c: Int = if (nc0 != 0) nc0 else nc1
|
||||
|
||||
when {
|
||||
(c and 0b1000) != 0 -> {
|
||||
x = nx0 + (nx1 - nx0) * (bounds.ymax - ny0) / (ny1 - ny0)
|
||||
y = bounds.ymax;
|
||||
}
|
||||
(c and 0b0100) != 0 -> {
|
||||
x = nx0 + (nx1 - nx0) * (bounds.ymin - ny0) / (ny1 - ny0)
|
||||
y = bounds.ymin
|
||||
}
|
||||
(c and 0b0010) != 0 -> {
|
||||
y = ny0 + (ny1 - ny0) * (bounds.xmax - nx0) / (nx1 - nx0)
|
||||
x = bounds.xmax
|
||||
}
|
||||
else -> {
|
||||
y = ny0 + (ny1 - ny0) * (bounds.xmin - nx0) / (nx1 - nx0)
|
||||
x = bounds.xmin;
|
||||
}
|
||||
}
|
||||
|
||||
if (nc0 != 0) {
|
||||
nx0 = x
|
||||
ny0 = y
|
||||
nc0 = this.regionCode(nx0, ny0)
|
||||
} else {
|
||||
nx1 = x
|
||||
ny1 = y
|
||||
nc1 = this.regionCode(nx1, ny1)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
private fun regionCode(x: Double, y: Double): Int {
|
||||
val xcode = when {
|
||||
x < bounds.xmin -> 0b0001
|
||||
x > bounds.xmax -> 0b0010
|
||||
else -> 0b0000
|
||||
}
|
||||
val ycode = when {
|
||||
y < bounds.ymin -> 0b0100
|
||||
y > bounds.ymax -> 0b1000
|
||||
else -> 0b0000
|
||||
}
|
||||
return xcode or ycode
|
||||
}
|
||||
|
||||
|
||||
private fun contains(i: Int, x: Double, y: Double): Boolean {
|
||||
if (x.isNaN() || y.isNaN()) return false
|
||||
return this.delaunay.step(i, x, y) == i;
|
||||
}
|
||||
|
||||
private fun edge(i: Int, e0: Int, e1: Int, p: MutableList<Double>, j: Int): Int {
|
||||
var j = j
|
||||
var e = e0
|
||||
loop@ while (e != e1) {
|
||||
var x: Double = Double.NaN
|
||||
var y: Double = Double.NaN
|
||||
|
||||
when (e) {
|
||||
0b0101 -> { // top-left
|
||||
e = 0b0100
|
||||
continue@loop
|
||||
}
|
||||
0b0100 -> { // top
|
||||
e = 0b0110
|
||||
x = bounds.xmax
|
||||
y = bounds.ymin
|
||||
}
|
||||
0b0110 -> { // top-right
|
||||
e = 0b0010
|
||||
continue@loop
|
||||
}
|
||||
0b0010 -> { // right
|
||||
e = 0b1010
|
||||
x = bounds.xmax
|
||||
y = bounds.ymax
|
||||
}
|
||||
0b1010 -> { // bottom-right
|
||||
e = 0b1000
|
||||
continue@loop
|
||||
}
|
||||
0b1000 -> { // bottom
|
||||
e = 0b1001
|
||||
x = bounds.xmin
|
||||
y = bounds.ymax
|
||||
}
|
||||
0b1001 -> { // bottom-left
|
||||
e = 0b0001
|
||||
continue@loop
|
||||
}
|
||||
0b0001 -> { // left
|
||||
e = 0b0101
|
||||
x = bounds.xmin
|
||||
y = bounds.ymin
|
||||
}
|
||||
}
|
||||
|
||||
if (((j < p.size && (p[j] != x)) || ((j + 1) < p.size && p[j + 1] != y)) && contains(i, x, y)) {
|
||||
require(!x.isNaN())
|
||||
require(!y.isNaN())
|
||||
p.add(j, y)
|
||||
p.add(j, x)
|
||||
j += 2
|
||||
} else if (j >= p.size && contains(i, x, y)) {
|
||||
require(!x.isNaN())
|
||||
require(!y.isNaN())
|
||||
p.add(x)
|
||||
p.add(y)
|
||||
j += 2
|
||||
}
|
||||
}
|
||||
|
||||
if (p.size > 4) {
|
||||
var idx = 0
|
||||
var n = p.size
|
||||
while (idx < n) {
|
||||
val j = (idx + 2) % p.size
|
||||
val k = (idx + 4) % p.size
|
||||
|
||||
if ((p[idx] == p[j] && p[j] == p[k])
|
||||
|| (p[idx + 1] == p[j + 1] && p[j + 1] == p[k + 1])
|
||||
) {
|
||||
// SHAKY
|
||||
p.removeAt(j)
|
||||
p.removeAt(j)
|
||||
idx -= 2
|
||||
n -= 2
|
||||
}
|
||||
idx += 2
|
||||
}
|
||||
}
|
||||
return j
|
||||
}
|
||||
|
||||
private fun project(x0: Double, y0: Double, vx: Double, vy: Double): Vector2? {
|
||||
var t = Double.POSITIVE_INFINITY
|
||||
var c: Double
|
||||
var x = Double.NaN
|
||||
var y = Double.NaN
|
||||
|
||||
// top
|
||||
if (vy < 0) {
|
||||
if (y0 <= bounds.ymin) return null
|
||||
c = (bounds.ymin - y0) / vy
|
||||
|
||||
if (c < t) {
|
||||
t = c
|
||||
|
||||
y = bounds.ymin
|
||||
x = x0 + t * vx
|
||||
}
|
||||
} else if (vy > 0) { // bottom
|
||||
if (y0 >= bounds.ymax) return null
|
||||
c = (bounds.ymax - y0) / vy
|
||||
|
||||
if (c < t) {
|
||||
t = c
|
||||
|
||||
y = bounds.ymax
|
||||
x = x0 + t * vx
|
||||
}
|
||||
}
|
||||
// right
|
||||
if (vx > 0) {
|
||||
if (x0 >= bounds.xmax) return null
|
||||
c = (bounds.xmax - x0) / vx
|
||||
|
||||
if (c < t) {
|
||||
t = c
|
||||
|
||||
x = bounds.xmax
|
||||
y = y0 + t * vy
|
||||
}
|
||||
} else if (vx < 0) { // left
|
||||
if (x0 <= bounds.xmin) return null
|
||||
c = (bounds.xmin - x0) / vx
|
||||
|
||||
if (c < t) {
|
||||
t = c
|
||||
|
||||
x = bounds.xmin
|
||||
y = y0 + t * vy
|
||||
}
|
||||
}
|
||||
|
||||
if (x.isNaN() || y.isNaN()) return null
|
||||
|
||||
return Vector2(x, y)
|
||||
}
|
||||
|
||||
private fun edgeCode(x: Double, y: Double): Int {
|
||||
val xcode = when (x) {
|
||||
bounds.xmin -> 0b0001
|
||||
bounds.xmax -> 0b0010
|
||||
else -> 0b0000
|
||||
}
|
||||
val ycode = when (y) {
|
||||
bounds.ymin -> 0b0100
|
||||
bounds.ymax -> 0b1000
|
||||
else -> 0b0000
|
||||
}
|
||||
return xcode or ycode
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
private fun Int?.isTruthy(): Boolean {
|
||||
return (this != null && this != 0)
|
||||
}
|
||||
|
||||
private fun <T> List<T>.mutableCopyOf(): MutableList<T> {
|
||||
val original = this
|
||||
return mutableListOf<T>().apply { addAll(original) }
|
||||
}
|
||||
|
||||
private val Rectangle.xmin: Double
|
||||
get() = this.corner.x
|
||||
|
||||
private val Rectangle.xmax: Double
|
||||
get() = this.corner.x + width
|
||||
|
||||
private val Rectangle.ymin: Double
|
||||
get() = this.corner.y
|
||||
|
||||
private val Rectangle.ymax: Double
|
||||
get() = this.corner.y + height
|
||||
|
||||
private fun Double?.isFalsy() = this == null || this == -0.0 || this == 0.0 || isNaN()
|
||||
|
||||
|
||||
56
orx-triangulation/src/commonMain/kotlin/VoronoiDiagram.kt
Normal file
56
orx-triangulation/src/commonMain/kotlin/VoronoiDiagram.kt
Normal file
@@ -0,0 +1,56 @@
|
||||
package org.openrndr.extra.triangulation
|
||||
|
||||
import org.openrndr.math.Vector2
|
||||
import org.openrndr.shape.Rectangle
|
||||
import org.openrndr.shape.ShapeContour
|
||||
import org.openrndr.shape.bounds
|
||||
|
||||
class VoronoiDiagram(val delaunayTriangulation: DelaunayTriangulation, val bounds: Rectangle) {
|
||||
private val voronoi = Voronoi(delaunayTriangulation.delaunay, bounds)
|
||||
|
||||
val vectors by lazy {
|
||||
voronoi.vectors.toList().windowed(2, 2).map {
|
||||
Vector2(it[0], it[1])
|
||||
}
|
||||
}
|
||||
|
||||
val circumcenters by lazy {
|
||||
voronoi.circumcenters.toList().windowed(2, 2).map {
|
||||
Vector2(it[0], it[1])
|
||||
}
|
||||
}
|
||||
|
||||
fun cellPolygon(i: Int): ShapeContour {
|
||||
val points = voronoi.clip(i)
|
||||
|
||||
if (points == null || points.isEmpty()) return ShapeContour.EMPTY
|
||||
|
||||
val polygon = mutableListOf(Vector2(points[0], points[1]))
|
||||
var n = points.size
|
||||
|
||||
while (n > 1 && points[0] == points[n - 2] && points[1] == points[n - 1]) n -= 2
|
||||
|
||||
for (idx in 2 until n step 2) {
|
||||
if (points[idx] != points[idx - 2] || points[idx + 1] != points[idx - 1]) {
|
||||
polygon.add(Vector2(points[idx], points[idx + 1]))
|
||||
}
|
||||
}
|
||||
return ShapeContour.fromPoints(polygon, true)
|
||||
}
|
||||
|
||||
fun cellPolygons(): List<ShapeContour> {
|
||||
val points = delaunayTriangulation.points
|
||||
return (points.indices).map {
|
||||
cellPolygon(it)
|
||||
}
|
||||
}
|
||||
|
||||
fun neighbors(cellIndex: Int): Sequence<Int> {
|
||||
return voronoi.neighbors(cellIndex)
|
||||
}
|
||||
}
|
||||
|
||||
fun List<Vector2>.voronoiDiagram(bounds: Rectangle = this.bounds): VoronoiDiagram {
|
||||
val d = this.delaunayTriangulation()
|
||||
return d.voronoiDiagram(bounds)
|
||||
}
|
||||
68
orx-triangulation/src/commonTest/kotlin/TestDelaunay.kt
Normal file
68
orx-triangulation/src/commonTest/kotlin/TestDelaunay.kt
Normal file
@@ -0,0 +1,68 @@
|
||||
import org.openrndr.extra.triangulation.Delaunay
|
||||
import org.openrndr.math.Vector2
|
||||
import org.openrndr.shape.Circle
|
||||
import kotlin.test.Test
|
||||
import kotlin.test.assertEquals
|
||||
import kotlin.test.assertTrue
|
||||
|
||||
class TestDelaunay {
|
||||
/**
|
||||
* Test if an empty triangulation can be made
|
||||
*/
|
||||
@Test
|
||||
fun testEmpty() {
|
||||
val points = listOf<Vector2>()
|
||||
val d = Delaunay.from(points)
|
||||
assertEquals(0, d.triangles.size)
|
||||
assertEquals(0, d.halfedges.size)
|
||||
assertEquals(0, d.hull.size)
|
||||
assertEquals(0, (d.neighbors(0).toList().size))
|
||||
}
|
||||
|
||||
/**
|
||||
* Test if a one point triangulation can be made
|
||||
*/
|
||||
@Test
|
||||
fun testOnePoint() {
|
||||
val points = listOf(Vector2(100.0, 100.0))
|
||||
val d = Delaunay.from(points)
|
||||
assertEquals(0, (d.neighbors(0).toList().size))
|
||||
}
|
||||
|
||||
/**
|
||||
* Test if a two point triangulation can be made
|
||||
*/
|
||||
@Test
|
||||
fun testTwoPoints() {
|
||||
val points = listOf(Vector2(100.0, 100.0), Vector2(300.0, 100.0))
|
||||
val d = Delaunay.from(points)
|
||||
println(d.triangles.size)
|
||||
println("${d.triangles[0]}, ${d.triangles[1]}, ${d.triangles[2]}")
|
||||
|
||||
// this will be one degenerate triangle since we only have 2 points
|
||||
assertEquals(3, d.triangles.size)
|
||||
assertEquals(2, d.hull.size)
|
||||
|
||||
assertEquals(1, (d.neighbors(0).toList().size))
|
||||
assertEquals(1, (d.neighbors(0).toList().first()))
|
||||
|
||||
assertEquals(1, (d.neighbors(1).toList().size))
|
||||
assertEquals(0, (d.neighbors(1).toList().first()))
|
||||
}
|
||||
|
||||
@Test
|
||||
fun testThreePointsCollinear() {
|
||||
val points = listOf(Vector2(100.0, 100.0), Vector2(200.0, 100.0), Vector2(300.0, 100.0))
|
||||
val d = Delaunay.from(points)
|
||||
assertEquals(3, d.triangles.size)
|
||||
}
|
||||
|
||||
@Test
|
||||
fun testNeighbors() {
|
||||
val c = Circle(200.0, 200.0, 150.0).contour.equidistantPositions(20).take(20)
|
||||
val d = Delaunay.from(c)
|
||||
for (j in c.indices) {
|
||||
assertTrue(d.neighbors(j).toList().isNotEmpty())
|
||||
}
|
||||
}
|
||||
}
|
||||
17
orx-triangulation/src/commonTest/kotlin/TestVoronoi.kt
Normal file
17
orx-triangulation/src/commonTest/kotlin/TestVoronoi.kt
Normal file
@@ -0,0 +1,17 @@
|
||||
import org.openrndr.extra.triangulation.Delaunay
|
||||
import org.openrndr.shape.Circle
|
||||
import org.openrndr.shape.Rectangle
|
||||
import kotlin.test.Test
|
||||
import kotlin.test.assertTrue
|
||||
|
||||
class TestVoronoi {
|
||||
@Test
|
||||
fun testNeighbors() {
|
||||
val c = Circle(200.0, 200.0, 150.0).contour.equidistantPositions(20).take(20)
|
||||
val d = Delaunay.from(c)
|
||||
val v = d.voronoi(Rectangle(0.0, 0.0, 400.0, 400.0))
|
||||
for (j in c.indices) {
|
||||
assertTrue(v.neighbors(j).toList().isNotEmpty())
|
||||
}
|
||||
}
|
||||
}
|
||||
@@ -0,0 +1,53 @@
|
||||
import org.openrndr.extra.triangulation.Delaunay
|
||||
import org.openrndr.extra.triangulation.delaunayTriangulation
|
||||
import org.openrndr.math.Vector2
|
||||
import org.openrndr.shape.Circle
|
||||
import org.openrndr.shape.Rectangle
|
||||
import kotlin.test.Test
|
||||
import kotlin.test.assertEquals
|
||||
import kotlin.test.assertTrue
|
||||
|
||||
class TestVoronoiDiagram {
|
||||
@Test
|
||||
fun testNeighbors() {
|
||||
val c = Circle(200.0, 200.0, 150.0).contour.equidistantPositions(20).take(20)
|
||||
val d = Delaunay.from(c)
|
||||
val v = d.voronoi(Rectangle(0.0, 0.0, 400.0, 400.0))
|
||||
for (j in c.indices) {
|
||||
assertTrue(v.neighbors(j).toList().isNotEmpty())
|
||||
}
|
||||
}
|
||||
|
||||
@Test
|
||||
fun testEmpty() {
|
||||
val dt = listOf<Vector2>().delaunayTriangulation()
|
||||
val v = dt.voronoiDiagram(Rectangle(0.0, 0.0, 400.0, 400.0))
|
||||
assertEquals(0, dt.triangles().size)
|
||||
assertEquals(0, v.cellPolygons().size)
|
||||
}
|
||||
|
||||
@Test
|
||||
fun testOnePoint() {
|
||||
val dt = listOf(Vector2(100.0, 100.0)).delaunayTriangulation()
|
||||
val v = dt.voronoiDiagram(Rectangle(0.0, 0.0, 400.0, 400.0))
|
||||
assertEquals(0, dt.triangles().size)
|
||||
assertEquals(1, v.cellPolygons().size)
|
||||
}
|
||||
|
||||
|
||||
@Test
|
||||
fun testTwoPoints() {
|
||||
val dt = listOf(Vector2(100.0, 100.0), Vector2(300.0, 300.0)).delaunayTriangulation()
|
||||
val v = dt.voronoiDiagram(Rectangle(0.0, 0.0, 400.0, 400.0))
|
||||
assertEquals(1, dt.triangles().size)
|
||||
assertEquals(2, v.cellPolygons().size)
|
||||
}
|
||||
|
||||
@Test
|
||||
fun testThreePointsCollinear() {
|
||||
val dt = listOf(Vector2(100.0, 100.0), Vector2(200.0, 200.0), Vector2(300.0, 300.0)).delaunayTriangulation()
|
||||
val v = dt.voronoiDiagram(Rectangle(0.0, 0.0, 400.0, 400.0))
|
||||
assertEquals(1, dt.triangles().size)
|
||||
assertEquals(3, v.cellPolygons().size)
|
||||
}
|
||||
}
|
||||
32
orx-triangulation/src/demo/kotlin/DemoDelaunay01.kt
Normal file
32
orx-triangulation/src/demo/kotlin/DemoDelaunay01.kt
Normal file
@@ -0,0 +1,32 @@
|
||||
import org.openrndr.application
|
||||
import org.openrndr.color.ColorRGBa
|
||||
import org.openrndr.extra.noise.scatter
|
||||
import org.openrndr.extra.triangulation.delaunayTriangulation
|
||||
import org.openrndr.math.Vector2
|
||||
import org.openrndr.shape.Circle
|
||||
|
||||
fun main() {
|
||||
application {
|
||||
configure {
|
||||
width = 800
|
||||
height = 800
|
||||
title = "Delaunator"
|
||||
}
|
||||
program {
|
||||
val circle = Circle(Vector2(400.0), 250.0)
|
||||
val points = circle.shape.scatter(30.0)
|
||||
|
||||
val delaunay = (points + circle.contour.equidistantPositions(40)).delaunayTriangulation()
|
||||
val triangles = delaunay.triangles().map { it.contour }
|
||||
|
||||
extend {
|
||||
drawer.clear(ColorRGBa.BLACK)
|
||||
for ((i, triangle) in triangles.withIndex()) {
|
||||
drawer.fill = ColorRGBa.PINK.shade(1.0 - i / (triangles.size * 1.2))
|
||||
drawer.stroke = ColorRGBa.PINK.shade( i / (triangles.size * 1.0) + 0.1)
|
||||
drawer.contour(triangle)
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
34
orx-triangulation/src/demo/kotlin/DemoDelaunay02.kt
Normal file
34
orx-triangulation/src/demo/kotlin/DemoDelaunay02.kt
Normal file
@@ -0,0 +1,34 @@
|
||||
import org.openrndr.application
|
||||
import org.openrndr.color.ColorRGBa
|
||||
import org.openrndr.extra.noise.poissonDiskSampling
|
||||
import org.openrndr.extra.triangulation.delaunayTriangulation
|
||||
import org.openrndr.math.Vector2
|
||||
import org.openrndr.shape.Rectangle
|
||||
|
||||
fun main() {
|
||||
application {
|
||||
configure {
|
||||
width = 800
|
||||
height = 800
|
||||
}
|
||||
program {
|
||||
val frame = Rectangle.fromCenter(Vector2(400.0), 600.0, 600.0)
|
||||
val points = poissonDiskSampling(frame, 50.0).map { it + frame.corner }
|
||||
|
||||
val delaunay = points.delaunayTriangulation()
|
||||
val halfedges = delaunay.halfedges()
|
||||
val hull = delaunay.hull()
|
||||
|
||||
extend {
|
||||
drawer.clear(ColorRGBa.BLACK)
|
||||
|
||||
drawer.fill = null
|
||||
drawer.stroke = ColorRGBa.PINK
|
||||
drawer.contours(halfedges)
|
||||
|
||||
drawer.stroke = ColorRGBa.GREEN
|
||||
drawer.contour(hull)
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
35
orx-triangulation/src/demo/kotlin/DemoVoronoi01.kt
Normal file
35
orx-triangulation/src/demo/kotlin/DemoVoronoi01.kt
Normal file
@@ -0,0 +1,35 @@
|
||||
import org.openrndr.application
|
||||
import org.openrndr.color.ColorRGBa
|
||||
import org.openrndr.extra.noise.poissonDiskSampling
|
||||
import org.openrndr.extra.triangulation.delaunayTriangulation
|
||||
import org.openrndr.math.Vector2
|
||||
import org.openrndr.shape.Circle
|
||||
import org.openrndr.shape.Rectangle
|
||||
|
||||
fun main() {
|
||||
application {
|
||||
configure {
|
||||
width = 800
|
||||
height = 800
|
||||
}
|
||||
program {
|
||||
val circle = Circle(Vector2(400.0), 250.0)
|
||||
val frame = Rectangle.fromCenter(Vector2(400.0), 600.0, 600.0)
|
||||
|
||||
val points = poissonDiskSampling(drawer.bounds, 30.0)
|
||||
.filter { circle.contains(it) }
|
||||
|
||||
val delaunay = (points + circle.contour.equidistantPositions(40)).delaunayTriangulation()
|
||||
val voronoi = delaunay.voronoiDiagram(frame)
|
||||
|
||||
val cells = voronoi.cellPolygons()
|
||||
|
||||
extend {
|
||||
drawer.clear(ColorRGBa.BLACK)
|
||||
drawer.fill = null
|
||||
drawer.stroke = ColorRGBa.PINK
|
||||
drawer.contours(cells)
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
33
orx-triangulation/src/demo/kotlin/DemoVoronoi02.kt
Normal file
33
orx-triangulation/src/demo/kotlin/DemoVoronoi02.kt
Normal file
@@ -0,0 +1,33 @@
|
||||
import org.openrndr.application
|
||||
import org.openrndr.color.ColorRGBa
|
||||
import org.openrndr.extra.shapes.grid
|
||||
import org.openrndr.extra.triangulation.delaunayTriangulation
|
||||
import org.openrndr.shape.Circle
|
||||
|
||||
fun main() {
|
||||
application {
|
||||
configure {
|
||||
width = 720
|
||||
height = 720
|
||||
}
|
||||
program {
|
||||
extend {
|
||||
val r = drawer.bounds.offsetEdges(-50.0)
|
||||
val grid = r.grid(8, 8).flatten()
|
||||
val circles = grid.map { Circle(it.center, it.width / 4.0) }
|
||||
val points = circles.flatMap { it.contour.equidistantPositions(6) }
|
||||
drawer.circles(points, 5.0)
|
||||
val d = points.delaunayTriangulation()
|
||||
drawer.stroke = ColorRGBa.PINK
|
||||
drawer.contours(d.halfedges())
|
||||
|
||||
drawer.stroke = ColorRGBa.YELLOW
|
||||
drawer.fill = null
|
||||
drawer.contours(d.voronoiDiagram(drawer.bounds.offsetEdges(-50.0)).cellPolygons())
|
||||
|
||||
drawer.stroke = ColorRGBa.GRAY
|
||||
drawer.contours(d.triangles().map { it.contour })
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
41
orx-triangulation/src/demo/kotlin/DemoVoronoi03.kt
Normal file
41
orx-triangulation/src/demo/kotlin/DemoVoronoi03.kt
Normal file
@@ -0,0 +1,41 @@
|
||||
import org.openrndr.application
|
||||
import org.openrndr.color.ColorRGBa
|
||||
import org.openrndr.extra.shapes.grid
|
||||
import org.openrndr.extra.triangulation.delaunayTriangulation
|
||||
import org.openrndr.math.Vector2
|
||||
import org.openrndr.math.Vector3
|
||||
import org.openrndr.math.transforms.buildTransform
|
||||
import org.openrndr.shape.Circle
|
||||
|
||||
fun main() {
|
||||
application {
|
||||
configure {
|
||||
width = 750
|
||||
height = 1000
|
||||
}
|
||||
program {
|
||||
extend {
|
||||
val r = drawer.bounds.offsetEdges(-100.0)
|
||||
val grid = r.grid(3,6).flatten()
|
||||
val circles = grid.map { Circle(Vector2.ZERO, 158.975).contour.transform(
|
||||
buildTransform {
|
||||
translate(it.center)
|
||||
rotate(Vector3.UNIT_Z, 0.0)
|
||||
}
|
||||
) }
|
||||
val points = circles.flatMap { it.contour.equidistantPositions(16).take(16) }
|
||||
drawer.circles(points, 5.0)
|
||||
val d = points.delaunayTriangulation()
|
||||
drawer.stroke = ColorRGBa.PINK
|
||||
drawer.contours(d.halfedges())
|
||||
|
||||
drawer.stroke = ColorRGBa.YELLOW
|
||||
drawer.fill = ColorRGBa.GRAY.opacify(0.5)
|
||||
drawer.contours(d.voronoiDiagram(drawer.bounds).cellPolygons())
|
||||
|
||||
drawer.stroke = ColorRGBa.GRAY
|
||||
drawer.contours(d.triangles().map { it.contour })
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
Reference in New Issue
Block a user