[orx-triangulation] Improve triangulation, add kotlin/js support
This commit is contained in:
320
orx-triangulation/src/commonMain/kotlin/DoubleDouble.kt
Normal file
320
orx-triangulation/src/commonMain/kotlin/DoubleDouble.kt
Normal file
@@ -0,0 +1,320 @@
|
||||
package org.openrndr.extra.triangulation
|
||||
|
||||
import kotlin.math.pow
|
||||
|
||||
// original code: https://github.com/FlorisSteenkamp/double-double/
|
||||
|
||||
|
||||
/**
|
||||
* Returns the difference and exact error of subtracting two floating point
|
||||
* numbers.
|
||||
* Uses an EFT (error-free transformation), i.e. `a-b === x+y` exactly.
|
||||
* The returned result is a non-overlapping expansion (smallest value first!).
|
||||
*
|
||||
* * **precondition:** `abs(a) >= abs(b)` - A fast test that can be used is
|
||||
* `(a > b) === (a > -b)`
|
||||
*
|
||||
* See https://people.eecs.berkeley.edu/~jrs/papers/robustr.pdf
|
||||
*/
|
||||
internal fun fastTwoDiff(a: Double, b: Double): DoubleArray {
|
||||
val x = a - b;
|
||||
val y = (a - x) - b;
|
||||
|
||||
return doubleArrayOf(y, x)
|
||||
}
|
||||
|
||||
/**
|
||||
* Returns the sum and exact error of adding two floating point numbers.
|
||||
* Uses an EFT (error-free transformation), i.e. a+b === x+y exactly.
|
||||
* The returned sum is a non-overlapping expansion (smallest value first!).
|
||||
*
|
||||
* Precondition: abs(a) >= abs(b) - A fast test that can be used is
|
||||
* (a > b) === (a > -b)
|
||||
*
|
||||
* See https://people.eecs.berkeley.edu/~jrs/papers/robustr.pdf
|
||||
*/
|
||||
internal fun fastTwoSum(a: Double, b: Double): DoubleArray {
|
||||
val x = a + b;
|
||||
|
||||
return doubleArrayOf(b - (x - a), x)
|
||||
}
|
||||
|
||||
|
||||
/**
|
||||
* Truncates a floating point value's significand and returns the result.
|
||||
* Similar to split, but with the ability to specify the number of bits to keep.
|
||||
*
|
||||
* **Theorem 17 (Veltkamp-Dekker)**: Let a be a p-bit floating-point number, where
|
||||
* p >= 3. Choose a splitting point s such that p/2 <= s <= p-1. Then the
|
||||
* following algorithm will produce a (p-s)-bit value a_hi and a
|
||||
* nonoverlapping (s-1)-bit value a_lo such that abs(a_hi) >= abs(a_lo) and
|
||||
* a = a_hi + a_lo.
|
||||
*
|
||||
* * see [Shewchuk](https://people.eecs.berkeley.edu/~jrs/papers/robustr.pdf)
|
||||
*
|
||||
* @param a a double
|
||||
* @param bits the number of significand bits to leave intact
|
||||
*/
|
||||
internal fun reduceSignificand(
|
||||
a: Double,
|
||||
bits: Int
|
||||
): Double {
|
||||
|
||||
val s = 53 - bits;
|
||||
val f = 2.0.pow(s) + 1;
|
||||
|
||||
val c = f * a;
|
||||
val r = c - (c - a);
|
||||
|
||||
return r;
|
||||
}
|
||||
|
||||
|
||||
/**
|
||||
* === 2^Math.ceil(p/2) + 1 where p is the # of significand bits in a double === 53.
|
||||
* @internal
|
||||
*/
|
||||
private const val f = 134217729; // 2**27 + 1;
|
||||
|
||||
|
||||
/**
|
||||
* Returns the result of splitting a double into 2 26-bit doubles.
|
||||
*
|
||||
* Theorem 17 (Veltkamp-Dekker): Let a be a p-bit floating-point number, where
|
||||
* p >= 3. Choose a splitting point s such that p/2 <= s <= p-1. Then the
|
||||
* following algorithm will produce a (p-s)-bit value a_hi and a
|
||||
* nonoverlapping (s-1)-bit value a_lo such that abs(a_hi) >= abs(a_lo) and
|
||||
* a = a_hi + a_lo.
|
||||
*
|
||||
* see e.g. [Shewchuk](https://people.eecs.berkeley.edu/~jrs/papers/robustr.pdf)
|
||||
* @param a A double floating point number
|
||||
*/
|
||||
private fun split(a: Double): DoubleArray {
|
||||
val c = f * a;
|
||||
val a_h = c - (c - a);
|
||||
val a_l = a - a_h;
|
||||
|
||||
return doubleArrayOf(a_h, a_l)
|
||||
}
|
||||
|
||||
/**
|
||||
* Returns the exact result of subtracting b from a.
|
||||
*
|
||||
* @param a minuend - a double-double precision floating point number
|
||||
* @param b subtrahend - a double-double precision floating point number
|
||||
*/
|
||||
internal fun twoDiff(a: Double, b: Double): DoubleArray {
|
||||
val x = a - b;
|
||||
val bvirt = a - x;
|
||||
val y = (a - (x + bvirt)) + (bvirt - b);
|
||||
|
||||
return doubleArrayOf(y, x)
|
||||
}
|
||||
|
||||
/**
|
||||
* Returns the exact result of multiplying two doubles.
|
||||
*
|
||||
* * the resulting array is the reverse of the standard twoSum in the literature.
|
||||
*
|
||||
* Theorem 18 (Shewchuk): Let a and b be p-bit floating-point numbers, where
|
||||
* p >= 6. Then the following algorithm will produce a nonoverlapping expansion
|
||||
* x + y such that ab = x + y, where x is an approximation to ab and y
|
||||
* represents the roundoff error in the calculation of x. Furthermore, if
|
||||
* round-to-even tiebreaking is used, x and y are non-adjacent.
|
||||
*
|
||||
* See https://people.eecs.berkeley.edu/~jrs/papers/robustr.pdf
|
||||
* @param a A double
|
||||
* @param b Another double
|
||||
*/
|
||||
internal fun twoProduct(a: Double, b: Double): DoubleArray {
|
||||
val x = a * b;
|
||||
|
||||
//const [ah, al] = split(a);
|
||||
val c = f * a;
|
||||
val ah = c - (c - a);
|
||||
val al = a - ah;
|
||||
//const [bh, bl] = split(b);
|
||||
val d = f * b;
|
||||
val bh = d - (d - b);
|
||||
val bl = b - bh;
|
||||
|
||||
val y = (al * bl) - ((x - (ah * bh)) - (al * bh) - (ah * bl));
|
||||
|
||||
//const err1 = x - (ah * bh);
|
||||
//const err2 = err1 - (al * bh);
|
||||
//const err3 = err2 - (ah * bl);
|
||||
//const y = (al * bl) - err3;
|
||||
|
||||
return doubleArrayOf(y, x)
|
||||
}
|
||||
|
||||
internal fun twoSquare(a: Double): DoubleArray {
|
||||
val x = a * a;
|
||||
|
||||
//const [ah, al] = split(a);
|
||||
val c = f * a;
|
||||
val ah = c - (c - a);
|
||||
val al = a - ah;
|
||||
|
||||
val y = (al * al) - ((x - (ah * ah)) - 2 * (ah * al));
|
||||
|
||||
return doubleArrayOf(y, x)
|
||||
}
|
||||
|
||||
/**
|
||||
* Returns the exact result of adding two doubles.
|
||||
*
|
||||
* * the resulting array is the reverse of the standard twoSum in the literature.
|
||||
*
|
||||
* Theorem 7 (Knuth): Let a and b be p-bit floating-point numbers. Then the
|
||||
* following algorithm will produce a nonoverlapping expansion x + y such that
|
||||
* a + b = x + y, where x is an approximation to a + b and y is the roundoff
|
||||
* error in the calculation of x.
|
||||
*
|
||||
* See https://people.eecs.berkeley.edu/~jrs/papers/robustr.pdf
|
||||
*/
|
||||
internal fun twoSum(a: Double, b: Double): DoubleArray {
|
||||
val x = a + b;
|
||||
val bv = x - a;
|
||||
|
||||
return doubleArrayOf((a - (x - bv)) + (b - bv), x)
|
||||
}
|
||||
|
||||
/**
|
||||
* Returns the result of subtracting the second given double-double-precision
|
||||
* floating point number from the first.
|
||||
*
|
||||
* * relative error bound: 3u^2 + 13u^3, i.e. fl(a-b) = (a-b)(1+ϵ),
|
||||
* where ϵ <= 3u^2 + 13u^3, u = 0.5 * Number.EPSILON
|
||||
* * the error bound is not sharp - the worst case that could be found by the
|
||||
* authors were 2.25u^2
|
||||
*
|
||||
* ALGORITHM 6 of https://hal.archives-ouvertes.fr/hal-01351529v3/document
|
||||
* @param x a double-double precision floating point number
|
||||
* @param y another double-double precision floating point number
|
||||
*/
|
||||
internal fun ddDiffDd(x: DoubleArray, y: DoubleArray): DoubleArray {
|
||||
val xl = x[0];
|
||||
val xh = x[1];
|
||||
val yl = y[0];
|
||||
val yh = y[1];
|
||||
|
||||
//const [sl,sh] = twoSum(xh,yh);
|
||||
val sh = xh - yh; val _1 = sh - xh; val sl = (xh - (sh - _1)) + (-yh - _1);
|
||||
//const [tl,th] = twoSum(xl,yl);
|
||||
val th = xl - yl; val _2 = th - xl; val tl = (xl - (th - _2)) + (-yl - _2);
|
||||
val c = sl + th;
|
||||
//const [vl,vh] = fastTwoSum(sh,c)
|
||||
val vh = sh + c; val vl = c - (vh - sh);
|
||||
val w = tl + vl
|
||||
//const [zl,zh] = fastTwoSum(vh,w)
|
||||
val zh = vh + w; val zl = w - (zh - vh);
|
||||
|
||||
return doubleArrayOf(zl, zh)
|
||||
}
|
||||
|
||||
/**
|
||||
* Returns the product of two double-double-precision floating point numbers.
|
||||
*
|
||||
* * relative error bound: 7u^2, i.e. fl(a+b) = (a+b)(1+ϵ),
|
||||
* where ϵ <= 7u^2, u = 0.5 * Number.EPSILON
|
||||
* the error bound is not sharp - the worst case that could be found by the
|
||||
* authors were 5u^2
|
||||
*
|
||||
* * ALGORITHM 10 of https://hal.archives-ouvertes.fr/hal-01351529v3/document
|
||||
* @param x a double-double precision floating point number
|
||||
* @param y another double-double precision floating point number
|
||||
*/
|
||||
internal fun ddMultDd(x: DoubleArray, y: DoubleArray): DoubleArray {
|
||||
|
||||
|
||||
//const xl = x[0];
|
||||
val xh = x[1];
|
||||
//const yl = y[0];
|
||||
val yh = y[1];
|
||||
|
||||
//const [cl1,ch] = twoProduct(xh,yh);
|
||||
val ch = xh*yh;
|
||||
val c = f * xh; val ah = c - (c - xh); val al = xh - ah;
|
||||
val d = f * yh; val bh = d - (d - yh); val bl = yh - bh;
|
||||
val cl1 = (al*bl) - ((ch - (ah*bh)) - (al*bh) - (ah*bl));
|
||||
|
||||
//return fastTwoSum(ch,cl1 + (xh*yl + xl*yh));
|
||||
val b = cl1 + (xh*y[0] + x[0]*yh);
|
||||
val xx = ch + b;
|
||||
|
||||
return doubleArrayOf(b - (xx - ch), xx)
|
||||
}
|
||||
|
||||
|
||||
/**
|
||||
* Returns the result of adding two double-double-precision floating point
|
||||
* numbers.
|
||||
*
|
||||
* * relative error bound: 3u^2 + 13u^3, i.e. fl(a+b) = (a+b)(1+ϵ),
|
||||
* where ϵ <= 3u^2 + 13u^3, u = 0.5 * Number.EPSILON
|
||||
* * the error bound is not sharp - the worst case that could be found by the
|
||||
* authors were 2.25u^2
|
||||
*
|
||||
* ALGORITHM 6 of https://hal.archives-ouvertes.fr/hal-01351529v3/document
|
||||
* @param x a double-double precision floating point number
|
||||
* @param y another double-double precision floating point number
|
||||
*/
|
||||
internal fun ddAddDd(x: DoubleArray, y: DoubleArray): DoubleArray {
|
||||
val xl = x[0];
|
||||
val xh = x[1];
|
||||
val yl = y[0];
|
||||
val yh = y[1];
|
||||
|
||||
//const [sl,sh] = twoSum(xh,yh);
|
||||
val sh = xh + yh; val _1 = sh - xh; val sl = (xh - (sh - _1)) + (yh - _1);
|
||||
//val [tl,th] = twoSum(xl,yl);
|
||||
val th = xl + yl; val _2 = th - xl; val tl = (xl - (th - _2)) + (yl - _2);
|
||||
val c = sl + th;
|
||||
//val [vl,vh] = fastTwoSum(sh,c)
|
||||
val vh = sh + c; val vl = c - (vh - sh);
|
||||
val w = tl + vl
|
||||
//val [zl,zh] = fastTwoSum(vh,w)
|
||||
val zh = vh + w; val zl = w - (zh - vh);
|
||||
|
||||
return doubleArrayOf(zl, zh)
|
||||
}
|
||||
|
||||
|
||||
/**
|
||||
* Returns the product of a double-double-precision floating point number and a
|
||||
* double.
|
||||
*
|
||||
* * slower than ALGORITHM 8 (one call to fastTwoSum more) but about 2x more
|
||||
* accurate
|
||||
* * relative error bound: 1.5u^2 + 4u^3, i.e. fl(a+b) = (a+b)(1+ϵ),
|
||||
* where ϵ <= 1.5u^2 + 4u^3, u = 0.5 * Number.EPSILON
|
||||
* * the bound is very sharp
|
||||
* * probably prefer `ddMultDouble2` due to extra speed
|
||||
*
|
||||
* * ALGORITHM 7 of https://hal.archives-ouvertes.fr/hal-01351529v3/document
|
||||
* @param y a double
|
||||
* @param x a double-double precision floating point number
|
||||
*/
|
||||
internal fun ddMultDouble1(y: Double, x: DoubleArray): DoubleArray {
|
||||
val xl = x[0];
|
||||
val xh = x[1];
|
||||
|
||||
//val [cl1,ch] = twoProduct(xh,y);
|
||||
val ch = xh*y;
|
||||
val c = f * xh; val ah = c - (c - xh); val al = xh - ah;
|
||||
val d = f * y; val bh = d - (d - y); val bl = y - bh;
|
||||
val cl1 = (al*bl) - ((ch - (ah*bh)) - (al*bh) - (ah*bl));
|
||||
|
||||
val cl2 = xl*y;
|
||||
//val [tl1,th] = fastTwoSum(ch,cl2);
|
||||
val th = ch + cl2;
|
||||
val tl1 = cl2 - (th - ch);
|
||||
|
||||
val tl2 = tl1 + cl1;
|
||||
//val [zl,zh] = fastTwoSum(th,tl2);
|
||||
val zh = th + tl2;
|
||||
val zl = tl2 - (zh - th);
|
||||
|
||||
return doubleArrayOf(zl,zh);
|
||||
}
|
||||
Reference in New Issue
Block a user