[orx-math] Add demo and readme texts.
This commit is contained in:
@@ -1,6 +1,8 @@
|
||||
# orx-math
|
||||
|
||||
Mathematical utilities
|
||||
Mathematical utilities, including complex numbers,
|
||||
linear ranges, simplex ranges, matrices and radial basis functions (RBF).
|
||||
|
||||
|
||||
<!-- __demos__ -->
|
||||
## Demos
|
||||
|
||||
@@ -9,6 +9,27 @@ import org.openrndr.shape.Rectangle
|
||||
import kotlin.math.cos
|
||||
import kotlin.math.sin
|
||||
|
||||
/**
|
||||
* Demonstrate how to create a 1D linear range between two instances of a `LinearType`, in this case,
|
||||
* a horizontal `Rectangle` and a vertical one.
|
||||
*
|
||||
* Notice how the `..` operator is used to construct the `LinearRange1D`.
|
||||
*
|
||||
* The resulting `LinearRange1D` provides a `value()` method that takes a normalized
|
||||
* input and returns an interpolated value between the two input elements.
|
||||
*
|
||||
* This example draws a grid of rectangles interpolated between the horizontal and the vertical
|
||||
* triangles. The x and y coordinates and the `seconds` variable are used to specify the
|
||||
* interpolation value for each grid cell.
|
||||
*
|
||||
* One can use the `LinearRange` class to construct
|
||||
* - a `LinearRange2D` out of two `LinearRange1D`
|
||||
* - a `LinearRange3D` out of two `LinearRange2D`
|
||||
* - a `LinearRange4D` out of two `LinearRange3D`
|
||||
*
|
||||
* (not demonstrated here)
|
||||
*
|
||||
*/
|
||||
fun main() {
|
||||
application {
|
||||
configure {
|
||||
@@ -24,7 +45,7 @@ fun main() {
|
||||
for (y in 0 until height step 72) {
|
||||
for (x in 0 until width step 72) {
|
||||
val u = cos(seconds + x * 0.007) * 0.5 + 0.5
|
||||
val s = sin(seconds*1.03 + y * 0.0075) * 0.5 + 0.5
|
||||
val s = sin(seconds * 1.03 + y * 0.0075) * 0.5 + 0.5
|
||||
drawer.isolated {
|
||||
drawer.translate(x.toDouble(), y.toDouble())
|
||||
drawer.rectangle(range.value(u * s))
|
||||
|
||||
@@ -9,6 +9,16 @@ import org.openrndr.shape.Rectangle
|
||||
import kotlin.math.cos
|
||||
import kotlin.math.sin
|
||||
|
||||
/**
|
||||
* Demonstrates how to create a `LinearRange2D` out of two `LinearRange1D` instances.
|
||||
* The first range interpolates a horizontal rectangle into a vertical one.
|
||||
* The second range interpolates two smaller squares of equal size, one placed
|
||||
* higher along the y-axis and another one lower.
|
||||
*
|
||||
* A grid of such rectangles is displayed, animating the `u` and `v` parameters based on
|
||||
* `seconds`, `x` and `y` indices. The second range results in a vertical wave effect.
|
||||
*
|
||||
*/
|
||||
fun main() {
|
||||
application {
|
||||
configure {
|
||||
|
||||
@@ -11,12 +11,12 @@ import kotlin.math.cos
|
||||
import kotlin.random.Random
|
||||
|
||||
/**
|
||||
* Demonstrate least squares method to find a regression line through noisy points
|
||||
* Line drawn in red is the estimated line, in green is the ground-truth line
|
||||
* Demonstrate least squares method to find a regression line through noisy points.
|
||||
* The line drawn in red is the estimated line. The green one is the ground-truth.
|
||||
*
|
||||
* Ax = b => x = A⁻¹b
|
||||
* because A is likely inconsistent, we look for an approximate x based on AᵀA, which is consistent.
|
||||
* x̂ = (AᵀA)⁻¹ Aᵀb
|
||||
* `Ax = b => x = A⁻¹b`
|
||||
* because `A` is likely inconsistent, we look for an approximate `x` based on `AᵀA`, which is consistent.
|
||||
* `x̂ = (AᵀA)⁻¹ Aᵀb`
|
||||
*/
|
||||
fun main() {
|
||||
application {
|
||||
@@ -26,23 +26,23 @@ fun main() {
|
||||
}
|
||||
program {
|
||||
extend {
|
||||
val ls = drawer.bounds.horizontal(0.5).rotateBy(cos(seconds)*45.0)
|
||||
val groundTruth = drawer.bounds.horizontal(0.5).rotateBy(cos(seconds) * 45.0)
|
||||
|
||||
val r = Random((seconds*10).toInt())
|
||||
val r = Random((seconds * 10).toInt())
|
||||
|
||||
val pointCount = 100
|
||||
val A = Matrix(pointCount, 2)
|
||||
val b = Matrix(pointCount, 1)
|
||||
for (i in 0 until pointCount) {
|
||||
|
||||
val p = ls.position(Double.uniform(0.0, 1.0, r))
|
||||
val pr = p + Vector2.uniformRing(0.0, 130.0, r)
|
||||
val point = groundTruth.position(Double.uniform(0.0, 1.0, r))
|
||||
val pointRandomized = point + Vector2.uniformRing(0.0, 130.0, r)
|
||||
|
||||
A[i, 0] = 1.0
|
||||
A[i, 1] = pr.x
|
||||
b[i, 0] = pr.y
|
||||
A[i, 1] = pointRandomized.x
|
||||
b[i, 0] = pointRandomized.y
|
||||
|
||||
drawer.circle(pr, 5.0)
|
||||
drawer.circle(pointRandomized, 5.0)
|
||||
}
|
||||
val At = A.transposed()
|
||||
val AtA = At * A
|
||||
@@ -58,7 +58,7 @@ fun main() {
|
||||
drawer.lineSegment(p0, p1)
|
||||
|
||||
drawer.stroke = ColorRGBa.GREEN
|
||||
drawer.lineSegment(ls)
|
||||
drawer.lineSegment(groundTruth)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
@@ -13,7 +13,17 @@ import kotlin.math.pow
|
||||
import kotlin.random.Random
|
||||
|
||||
/**
|
||||
* Demonstrate least squares method to fit a cubic bezier to noisy points
|
||||
* Demonstrate how to use the `least squares` method to fit a cubic bezier to noisy points.
|
||||
*
|
||||
* On every animation frame, 10 concentric circles are created centered on the window and converted to contours.
|
||||
* In OPENRNDR, circular contours are made ouf of 4 cubic-Bezier curves. Each of those curves is considered
|
||||
* one by one as the ground truth, then 5 points are sampled near those curves.
|
||||
* Finally, two matrices are constructed using those points and math operations are applied to
|
||||
* revert the randomization attempting to reconstruct the original curves.
|
||||
*
|
||||
* The result is drawn on every animation frame, revealing concentric circles that are more or less similar
|
||||
* to the ground truth depending on the random values used.
|
||||
*
|
||||
*/
|
||||
fun main() {
|
||||
application {
|
||||
@@ -34,8 +44,8 @@ fun main() {
|
||||
}
|
||||
extend {
|
||||
for (z in 0 until 10) {
|
||||
val c = Circle(drawer.bounds.center, 300.0- z*30.0).contour
|
||||
for (ls in c.segments) {
|
||||
val c = Circle(drawer.bounds.center, 300.0 - z * 30.0).contour
|
||||
for (groundTruth in c.segments) {
|
||||
|
||||
val pointCount = 5
|
||||
val A = Matrix(pointCount, 4)
|
||||
@@ -46,15 +56,15 @@ fun main() {
|
||||
pointCount - 1 -> 1.0
|
||||
else -> Double.uniform(0.0, 1.0, r)
|
||||
}
|
||||
val p = ls.position(t)
|
||||
val pr = p + Vector2.uniformRing(0.0, 0.5, r)
|
||||
val point = groundTruth.position(t)
|
||||
val pointRandomized = point + Vector2.uniformRing(0.0, 0.5, r)
|
||||
|
||||
A[i, 0] = bernstein(3, 0, t)
|
||||
A[i, 1] = bernstein(3, 1, t)
|
||||
A[i, 2] = bernstein(3, 2, t)
|
||||
A[i, 3] = bernstein(3, 3, t)
|
||||
b[i, 0] = pr.x
|
||||
b[i, 1] = pr.y
|
||||
b[i, 0] = pointRandomized.x
|
||||
b[i, 1] = pointRandomized.y
|
||||
}
|
||||
val At = A.transposed()
|
||||
val AtA = At * A
|
||||
@@ -64,11 +74,9 @@ fun main() {
|
||||
val x = AtAI * Atb
|
||||
|
||||
val segment = Segment2D(
|
||||
//ls.start,
|
||||
Vector2(x[0, 0], x[0, 1]),
|
||||
Vector2(x[1, 0], x[1, 1]),
|
||||
Vector2(x[2, 0], x[2, 1]),
|
||||
//ls.end
|
||||
Vector2(x[3, 0], x[3, 1])
|
||||
)
|
||||
|
||||
|
||||
@@ -22,6 +22,29 @@ import kotlin.ranges.until
|
||||
import kotlin.text.trimIndent
|
||||
import kotlin.text.trimMargin
|
||||
|
||||
/**
|
||||
* Demonstrates using a two-dimensional Radial Basis Function (RBF) interpolator
|
||||
* with the user provided 2D input points, their corresponding values (colors in this demo),
|
||||
* a smoothing factor, and a radial basis function kernel.
|
||||
*
|
||||
* The program chooses 14 random points in the window area leaving a 100 pixels
|
||||
* margin around the borders and assigns a randomized color to each point.
|
||||
*
|
||||
* Next it creates the interpolator using those points and colors, a smoothing factor
|
||||
* and the RBF function used for interpolation. This function takes a squared distance
|
||||
* as input and returns a scalar value representing the influence of points at that distance.
|
||||
*
|
||||
* A ShadeStyle implementing the RBF interpolation is created next, used to render
|
||||
* the background gradient interpolating all points and their colors.
|
||||
*
|
||||
* After rendering the background, the original points and their colors are
|
||||
* drawn as circles for reference.
|
||||
*
|
||||
* Finally, the current mouse position is used for sampling a color
|
||||
* from the interpolator and displayed for comparison. Notice that even if
|
||||
* the fill color is flat, it may look like a gradient due to the changing
|
||||
* colors in the surrounding pixels.
|
||||
*/
|
||||
fun main() {
|
||||
application {
|
||||
configure {
|
||||
@@ -32,7 +55,7 @@ fun main() {
|
||||
val r = Random(0)
|
||||
val points = drawer.bounds.offsetEdges(-100.0).uniform(14, r)
|
||||
|
||||
val colors = (0 until points.size).map {
|
||||
val colors = points.map {
|
||||
ColorRGBa.PINK
|
||||
.shiftHue<OKHSV>(Double.uniform(-180.0, 180.0, r))
|
||||
.shadeLuminosity<OKLab>(Double.uniform(0.4, 1.0, r))
|
||||
@@ -50,12 +73,13 @@ fun main() {
|
||||
|
||||
/**
|
||||
* Shader style that implements RBF interpolation in the fragment shader.
|
||||
* Uses Gaussian RBF function to interpolate colors between given points.
|
||||
* Uses a Gaussian RBF function to interpolate colors between given points.
|
||||
* Includes custom distance calculation and color interpolation functions.
|
||||
*/
|
||||
val ss = shadeStyle {
|
||||
fragmentPreamble = """${fhash12Phrase}
|
||||
|${rbfGaussianPhrase}
|
||||
fragmentPreamble = """
|
||||
|$fhash12Phrase
|
||||
|$rbfGaussianPhrase
|
||||
|float squaredDistance(vec2 p, vec2 q) {
|
||||
| vec2 d = p - q;
|
||||
| return dot(d, d);
|
||||
@@ -64,9 +88,7 @@ fun main() {
|
||||
| vec3 c = p_mean;
|
||||
| for (int i = 0; i < p_weights_SIZE; ++i) {
|
||||
| float r = rbfGaussian(squaredDistance(p_points[i], p), $scale);
|
||||
| c.r += p_weights[i].r * r;
|
||||
| c.g += p_weights[i].g * r;
|
||||
| c.b += p_weights[i].b * r;
|
||||
| c += p_weights[i].rgb * r;
|
||||
| }
|
||||
| return c;
|
||||
|}
|
||||
@@ -74,8 +96,8 @@ fun main() {
|
||||
|
||||
fragmentTransform = """
|
||||
x_fill.rgb = rbfInterpolate(c_boundsPosition.xy * vec2(720.0, 720.0));
|
||||
|
||||
""".trimIndent()
|
||||
|
||||
val weights = (0 until points.size).map {
|
||||
Vector3(interpolator.weights[it][0], interpolator.weights[it][1], interpolator.weights[it][2])
|
||||
}.toTypedArray()
|
||||
|
||||
@@ -9,23 +9,36 @@ import org.openrndr.extra.color.spaces.OKLab
|
||||
import org.openrndr.extra.color.tools.shadeLuminosity
|
||||
import org.openrndr.extra.color.tools.shiftHue
|
||||
import org.openrndr.extra.math.rbf.Rbf2DInterpolator
|
||||
import org.openrndr.extra.math.rbf.rbfGaussian
|
||||
import org.openrndr.extra.math.rbf.rbfInverseMultiQuadratic
|
||||
import org.openrndr.extra.math.rbf.rbfInverseQuadratic
|
||||
import org.openrndr.extra.noise.uniform
|
||||
import org.openrndr.extra.shaderphrases.noise.fhash12Phrase
|
||||
import org.openrndr.extra.shaderphrases.rbf.rbfGaussianPhrase
|
||||
import org.openrndr.extra.shaderphrases.rbf.rbfInverseMultiQuadraticPhrase
|
||||
import org.openrndr.extra.shaderphrases.rbf.rbfInverseQuadraticPhrase
|
||||
import org.openrndr.math.Vector3
|
||||
import kotlin.collections.indices
|
||||
import kotlin.collections.map
|
||||
import kotlin.collections.toTypedArray
|
||||
import kotlin.random.Random
|
||||
import kotlin.ranges.until
|
||||
import kotlin.text.trimIndent
|
||||
import kotlin.text.trimMargin
|
||||
|
||||
/**
|
||||
* Demonstrates using a two-dimensional Radial Basis Function (RBF) interpolator
|
||||
* with the user provided 2D input points, their corresponding values (colors in this demo),
|
||||
* a smoothing factor, and a radial basis function kernel.
|
||||
*
|
||||
* The program chooses 20 random points in the window area leaving a 100 pixels
|
||||
* margin around the borders and assigns a randomized color to each point.
|
||||
*
|
||||
* Next it creates the interpolator using those points and colors, a smoothing factor
|
||||
* and the RBF function used for interpolation. This function takes a squared distance
|
||||
* as input and returns a scalar value representing the influence of points at that distance.
|
||||
*
|
||||
* A ShadeStyle implementing the same RBF interpolation is created next, used to render
|
||||
* the background gradient interpolating all points and their colors.
|
||||
*
|
||||
* After rendering the background, the original points and their colors are
|
||||
* drawn as circles for reference.
|
||||
*
|
||||
* Finally, the current mouse position is used for sampling a color
|
||||
* from the interpolator and displayed for comparison. Notice that even if
|
||||
* the fill color is flat, it may look like a gradient due to the changing
|
||||
* colors in the surrounding pixels.
|
||||
*/
|
||||
fun main() {
|
||||
application {
|
||||
configure {
|
||||
@@ -36,7 +49,7 @@ fun main() {
|
||||
val r = Random(0)
|
||||
val points = drawer.bounds.offsetEdges(-100.0).uniform(20, r)
|
||||
|
||||
val colors = (0 until points.size).map {
|
||||
val colors = points.map {
|
||||
ColorRGBa.PINK
|
||||
.shiftHue<OKHSV>(Double.uniform(-180.0, 180.0, r))
|
||||
.shadeLuminosity<OKLab>(Double.uniform(0.4, 1.0, r))
|
||||
@@ -54,12 +67,13 @@ fun main() {
|
||||
|
||||
/**
|
||||
* Shader style that implements RBF interpolation in the fragment shader.
|
||||
* Uses Gaussian RBF function to interpolate colors between given points.
|
||||
* Uses an Inverse MultiQuadratic RBF function to interpolate colors between given points.
|
||||
* Includes custom distance calculation and color interpolation functions.
|
||||
*/
|
||||
val ss = shadeStyle {
|
||||
fragmentPreamble = """${fhash12Phrase}
|
||||
|${rbfInverseMultiQuadraticPhrase}
|
||||
fragmentPreamble = """
|
||||
|$fhash12Phrase
|
||||
|$rbfInverseMultiQuadraticPhrase
|
||||
|float squaredDistance(vec2 p, vec2 q) {
|
||||
| vec2 d = p - q;
|
||||
| return dot(d, d);
|
||||
@@ -68,9 +82,7 @@ fun main() {
|
||||
| vec3 c = p_mean;
|
||||
| for (int i = 0; i < p_weights_SIZE; ++i) {
|
||||
| float r = rbfInverseMultiQuadratic(squaredDistance(p_points[i], p), $scale);
|
||||
| c.r += p_weights[i].r * r;
|
||||
| c.g += p_weights[i].g * r;
|
||||
| c.b += p_weights[i].b * r;
|
||||
| c += p_weights[i].rgb * r;
|
||||
| }
|
||||
| return c;
|
||||
|}
|
||||
|
||||
@@ -9,6 +9,19 @@ import org.openrndr.extra.meshgenerators.boxMesh
|
||||
import org.openrndr.extra.math.simplexrange.SimplexRange3D
|
||||
import org.openrndr.math.Vector3
|
||||
|
||||
/**
|
||||
* Demonstrates the use of the `SimplexRange3D` class. Its constructor takes 4 instances of a `LinearType`
|
||||
* (something that can be interpolated linearly, like `ColorRGBa`). The `SimplexRange3D` instance provides
|
||||
* a `value()` method that returns a `LinearType` interpolated across the 4 constructor arguments using
|
||||
* a normalized 3D coordinate.
|
||||
*
|
||||
* This demo program creates a 3D grid of 20x20x20 unit 3D cubes. Their color is set by interpolating
|
||||
* their XYZ index across the 4 input colors.
|
||||
*
|
||||
* 2D, 4D and ND varieties are also provided by `SimplexRange`.
|
||||
*
|
||||
* *Simplex Range* is not to be confused with *Simplex Noise*.
|
||||
*/
|
||||
fun main() {
|
||||
application {
|
||||
configure {
|
||||
|
||||
Reference in New Issue
Block a user