Add data binding for orx-gradient-descent

Add 0 check in minimizer
This commit is contained in:
Edwin Jakobs
2019-09-24 18:18:25 +02:00
parent 6eec2919f9
commit b86c9c847c
2 changed files with 86 additions and 1 deletions

View File

@@ -0,0 +1,73 @@
package org.openrndr.extra.gradientdescent
import org.openrndr.math.Vector2
import org.openrndr.math.Vector3
import org.openrndr.math.Vector4
/**
* converts a model to an array of doubles
*/
fun <T : Any> modelToArray(model: T): DoubleArray {
val doubles = mutableListOf<Double>()
model::class.java.declaredFields.forEach {
when {
it.type == Double::class.java -> {
it.trySetAccessible()
doubles.add(it.getDouble(model))
}
it.type == Vector2::class.java -> {
it.trySetAccessible()
val v2 = it.get(model) as Vector2
doubles.add(v2.x)
doubles.add(v2.y)
}
it.type == Vector3::class.java -> {
it.trySetAccessible()
val v3 = it.get(model) as Vector3
doubles.add(v3.x)
doubles.add(v3.y)
doubles.add(v3.z)
}
it.type == Vector4::class.java -> {
it.trySetAccessible()
val v4 = it.get(model) as Vector4
doubles.add(v4.x)
doubles.add(v4.y)
doubles.add(v4.z)
doubles.add(v4.w)
}
}
}
return doubles.toDoubleArray()
}
/**
* converts array of doubles to model values
*/
fun <T : Any> arrayToModel(data: DoubleArray, model: T) {
var index = 0
model::class.java.declaredFields.forEach {
when {
it.type == Double::class.java -> {
it.trySetAccessible()
it.setDouble(model, data[index])
index++
}
it.type == Vector2::class.java -> {
it.trySetAccessible()
it.set(model, Vector2(data[index], data[index+1]))
index+=2
}
it.type == Vector3::class.java -> {
it.trySetAccessible()
it.set(model, Vector3(data[index], data[index+1],data[index+2]))
index+=3
}
it.type == Vector4::class.java -> {
it.trySetAccessible()
it.set(model, Vector4(data[index], data[index+1],data[index+2],data[index+3]))
index+=3
}
}
}
}

View File

@@ -21,6 +21,8 @@
// THE SOFTWARE.
//
package org.openrndr.extra.gradientdescent
import kotlin.math.abs
import kotlin.math.max
import kotlin.math.min
@@ -66,6 +68,7 @@ fun gradient(x: DoubleArray, objective: (parameters: DoubleArray) -> Double): Do
k++
}
}
//println("gradient at (${x.contentToString()}) -> (${grad.contentToString()}) ")
return grad
}
@@ -105,8 +108,10 @@ fun minimize(_x0: DoubleArray, endOnLineSearch: Boolean = true, tol: Double = 1e
while (iteration < maxIterations) {
require(g0.all { it == it && it != Double.POSITIVE_INFINITY && it != Double.NEGATIVE_INFINITY })
val pstep = dot(H1, g0)
require(pstep.all { it == it }) { "pstep contains NaNs"}
require(pstep.all { it != Double.POSITIVE_INFINITY && it != Double.NEGATIVE_INFINITY }) { "pstep contains infs" }
val step = neg(pstep)
require(step.all { it == it && it != Double.POSITIVE_INFINITY && it != Double.NEGATIVE_INFINITY })
val nstep = norm2(step)
require(nstep == nstep)
if (nstep < tol) {
@@ -121,6 +126,8 @@ fun minimize(_x0: DoubleArray, endOnLineSearch: Boolean = true, tol: Double = 1e
s = mul(step, t)
x1 = add(x0, s)
f1 = f(x1)
require(f1 == f1) { "f1 is NaN"}
if (!(f1 - f0 >= 0.1 * t * df0)) {
break
}
@@ -134,8 +141,12 @@ fun minimize(_x0: DoubleArray, endOnLineSearch: Boolean = true, tol: Double = 1e
}
if (iteration >= maxIterations) break
val g1 = grad(x1)
require(g1.all { it == it })
val y = sub(g1, g0)
val ys = dot(y, s)
if (ys==0.0) {
break
}
val Hy = dot(H1, y)
H1 = sub(
add(
@@ -158,5 +169,6 @@ fun minimize(_x0: DoubleArray, endOnLineSearch: Boolean = true, tol: Double = 1e
g0 = g1
iteration++
}
return MinimizationResult(x0, f0, g0, H1, iteration)
}