[orx-kdtree] add k-nearest neighbor search to kd-tree (#199)
This commit is contained in:
35
orx-kdtree/src/demo/kotlin/DemoKNearestNeighbour01.kt
Normal file
35
orx-kdtree/src/demo/kotlin/DemoKNearestNeighbour01.kt
Normal file
@@ -0,0 +1,35 @@
|
||||
import org.openrndr.application
|
||||
import org.openrndr.color.ColorRGBa
|
||||
import org.openrndr.extra.kdtree.buildKDTree
|
||||
import org.openrndr.extra.kdtree.findKNearest
|
||||
import org.openrndr.extra.kdtree.vector2Mapper
|
||||
import org.openrndr.math.Vector2
|
||||
import org.openrndr.shape.LineSegment
|
||||
|
||||
fun main() {
|
||||
application {
|
||||
|
||||
configure {
|
||||
width = 1080
|
||||
height = 720
|
||||
}
|
||||
|
||||
program {
|
||||
val points = MutableList(1000) {
|
||||
Vector2(Math.random() * width, Math.random() * height)
|
||||
}
|
||||
val tree = buildKDTree(points, 2, ::vector2Mapper)
|
||||
|
||||
extend {
|
||||
drawer.circles(points, 5.0)
|
||||
|
||||
val kNearest = findKNearest(tree, mouse.position, k=7, dimensions = 2, ::vector2Mapper)
|
||||
drawer.fill = ColorRGBa.RED
|
||||
drawer.stroke = ColorRGBa.RED
|
||||
drawer.strokeWeight = 2.0
|
||||
drawer.circles(kNearest, 7.0)
|
||||
drawer.lineSegments(kNearest.map { LineSegment(mouse.position, it) })
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
@@ -165,7 +165,6 @@ private fun <T> sqrDistance(left: T, right: T, dimensions: Int, mapper: (T, Int)
|
||||
fun <T> findAllNodes(root: KDTreeNode<T>): List<KDTreeNode<T>> {
|
||||
val stack = Stack<KDTreeNode<T>>()
|
||||
val all = ArrayList<KDTreeNode<T>>()
|
||||
stack.empty()
|
||||
stack.push(root)
|
||||
while (!stack.isEmpty()) {
|
||||
val node = stack.pop()
|
||||
@@ -184,6 +183,54 @@ fun <T> findAllNodes(root: KDTreeNode<T>): List<KDTreeNode<T>> {
|
||||
}
|
||||
|
||||
|
||||
fun <T> findKNearest(
|
||||
root: KDTreeNode<T>,
|
||||
item: T,
|
||||
k: Int,
|
||||
dimensions: Int,
|
||||
mapper: (T, Int) -> Double
|
||||
): List<T> {
|
||||
// max-heap with size k
|
||||
val queue = PriorityQueue<Pair<KDTreeNode<T>, Double>>(k + 1) {
|
||||
nodeA, nodeB -> compareValues(nodeB.second, nodeA.second)
|
||||
}
|
||||
|
||||
fun nearest(node: KDTreeNode<T>?, item: T) {
|
||||
if (node != null) {
|
||||
val dimensionValue = mapper(item, node.dimension)
|
||||
val route: Int = if (dimensionValue < node.median) {
|
||||
nearest(node.children[0], item)
|
||||
0
|
||||
} else {
|
||||
nearest(node.children[1], item)
|
||||
1
|
||||
}
|
||||
|
||||
val distance = sqrDistance(item, node.item
|
||||
?: throw IllegalStateException("item is null"), dimensions, mapper)
|
||||
|
||||
if (queue.size < k || distance < queue.peek().second) {
|
||||
queue.add(Pair(node, distance))
|
||||
if (queue.size > k) {
|
||||
queue.poll()
|
||||
}
|
||||
}
|
||||
|
||||
val d = abs(node.median - dimensionValue)
|
||||
if (d * d < queue.peek().second || queue.size < k) {
|
||||
nearest(node.children[1 - route], item)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
nearest(root, item)
|
||||
|
||||
return generateSequence { queue.poll() }
|
||||
.map { it.first.item }
|
||||
.filterNotNull()
|
||||
.toList().reversed()
|
||||
}
|
||||
|
||||
fun <T> findNearest(root: KDTreeNode<T>, item: T, dimensions: Int, mapper: (T, Int) -> Double): T? {
|
||||
var nearest = java.lang.Double.POSITIVE_INFINITY
|
||||
var nearestArg: KDTreeNode<T>? = null
|
||||
|
||||
Reference in New Issue
Block a user