[orx-noise] Improve ShapeProvider.poissonDiskSampling by allowing multiple initialPoints. Boost poissonDiskSampling performance

This commit is contained in:
Edwin Jakobs
2021-10-19 09:22:17 +02:00
parent 737f1bcf85
commit d4309cf2c7
2 changed files with 79 additions and 25 deletions

View File

@@ -27,6 +27,7 @@ internal const val epsilon = 0.0000001
* @param tries number of candidates per point
* @param randomOnRing generate random points on a ring with an annulus from r to 2r
* @param random a random number generator, default value is [Random.Default]
* @param initialPoints a list of points in sampler space, these points will not be tested against [r]
* @param boundsMapper a custom function to check if a point is within bounds
* @return a list of points
@@ -38,7 +39,7 @@ fun poissonDiskSampling(
tries: Int = 30,
randomOnRing: Boolean = false,
random: Random = Random.Default,
initialPoint: Vector2 = Vector2(width/2.0, height/2.0),
initialPoints: List<Vector2> = listOf(Vector2(width/2.0, height/2.0)),
boundsMapper: ((w: Double, h: Double, v: Vector2) -> Boolean)? = null,
): List<Vector2> {
val disk = mutableListOf<Vector2>()
@@ -51,21 +52,23 @@ fun poissonDiskSampling(
val rows = ceil(height / cellSize).toInt()
val cols = ceil(width / cellSize).toInt()
val grid = MutableList(rows * cols) { -1 }
val grid = Array(rows * cols) { -1 }
fun addPoint(v: Vector2) {
val x = (v.x / cellSize).fastFloor()
val y = (v.y / cellSize).fastFloor()
val index = x + y * cols
disk.add(v)
grid[index] = disk.lastIndex
queue.add(disk.lastIndex)
if (x >= 0 && y >= 0 && x < cols && y < rows) {
disk.add(v)
grid[index] = disk.lastIndex
queue.add(disk.lastIndex)
}
}
addPoint(initialPoint)
for (initialPoint in initialPoints) {
addPoint(initialPoint)
}
val boundsRect = Rectangle(0.0, 0.0, width, height)
@@ -81,19 +84,20 @@ fun poissonDiskSampling(
} else {
active + Polar(random.nextDouble(0.0, 360.0), radius).cartesian
}
if (!boundsRect.contains(c)) continue@candidateSearch
// check if it's within bounds
// choose another candidate if it's not
if (boundsMapper != null && !boundsMapper(width, height, c)) continue@candidateSearch
val x = (c.x / cellSize).fastFloor()
val y = (c.y / cellSize).fastFloor()
// EJ: early bail-out;
// if grid[y,x] is populated we know that its inhabitant is within the minimum point distance
if (grid[x + y * cols] != -1) {
continue@candidateSearch
}
// Check closest neighbours in a 5x5 grid
for (ix in (-2..2)) {
for (iy in (-2..2)) {
for (iy in (-2..2)) {
for (ix in (-2..2)) {
val nx = clamp(x + ix, 0, cols - 1)
val ny = clamp(y + iy, 0, rows - 1)
@@ -109,10 +113,15 @@ fun poissonDiskSampling(
}
}
// check if the candidate point is within bounds
// EJ: This is somewhat counter-intuitively moved to the last stage in the process;
// It turns out that the above neighbour search is much more affordable than the bounds check in the
// case of complex bounds (such as described by Shapes or ShapeContours). A simple benchmark shows a
// speed-up of roughly 300%
if (boundsMapper != null && !boundsMapper(width, height, c)) continue@candidateSearch
addPoint(c)
candidateAccepted = true
break
}
@@ -121,6 +130,6 @@ fun poissonDiskSampling(
queue.remove(activeIndex)
}
}
return disk
}
}

View File

@@ -4,27 +4,72 @@ import org.openrndr.math.Vector2
import org.openrndr.shape.*
import kotlin.random.Random
fun ShapeProvider.uniform(random: Random = Random.Default): Vector2 {
fun ShapeProvider.uniform(distanceToEdge: Double = 0.0, random: Random = Random.Default): Vector2 {
val shape = shape
require(!shape.empty)
var attempts = 0
return Vector2.uniformSequence(shape.bounds, random).first {
shape.contains(it)
attempts++
require(attempts < 100)
if (distanceToEdge == 0.0) {
shape.contains(it)
} else {
shape.contains(it) && shape.contours.minOf { c -> c.nearest(it).position.distanceTo(it) } > distanceToEdge
}
}
}
fun ShapeProvider.poissonDiskSampling(
r: Double,
pointDistance: Double,
distanceToEdge: Double = 0.0,
tries: Int = 30,
random: Random = Random.Default
): List<Vector2> {
val shape = shape
if (shape.empty) {
return emptyList()
}
val bounds = shape.bounds
val poissonBounds = Rectangle(0.0, 0.0, bounds.width, bounds.height)
val initialPoint = this.uniform(random).map(bounds, poissonBounds)
val initialPoints = shape.splitCompounds().flatMap { compound ->
compound.outline.segments.map {
val t = random.nextDouble()
(it.position(t) - it.normal(t).normalized * distanceToEdge)
}.filter { compound.contains(it) && compound.outline.nearest(it).position.distanceTo(it) >= distanceToEdge-1E-1 }.map {
it.map(bounds, poissonBounds)
}
}
return poissonDiskSampling(bounds.width, bounds.height, r, tries, false, random, initialPoint) { _, _, point ->
val candidatePoints = mutableListOf<Vector2>()
for (point in initialPoints) {
if ((candidatePoints.map { it.distanceTo(point) }.minOrNull() ?: Double.POSITIVE_INFINITY) >= pointDistance) {
candidatePoints.add(point)
}
}
if (candidatePoints.isEmpty()) {
return emptyList()
}
return poissonDiskSampling(
bounds.width,
bounds.height,
pointDistance,
tries,
false,
random,
candidatePoints,
) { _, _, point ->
val contourPoint = point.map(poissonBounds, bounds)
shape.contains(contourPoint)
if (distanceToEdge == 0.0) {
shape.contains(contourPoint)
} else {
shape.contains(contourPoint) && shape.contours.minOf { c ->
c.nearest(contourPoint).position.distanceTo(contourPoint)
} > distanceToEdge
}
}.map {
it.map(poissonBounds, bounds)
}