[orx-noise] Improve ShapeProvider.poissonDiskSampling by allowing multiple initialPoints. Boost poissonDiskSampling performance
This commit is contained in:
@@ -27,6 +27,7 @@ internal const val epsilon = 0.0000001
|
||||
* @param tries number of candidates per point
|
||||
* @param randomOnRing generate random points on a ring with an annulus from r to 2r
|
||||
* @param random a random number generator, default value is [Random.Default]
|
||||
* @param initialPoints a list of points in sampler space, these points will not be tested against [r]
|
||||
* @param boundsMapper a custom function to check if a point is within bounds
|
||||
|
||||
* @return a list of points
|
||||
@@ -38,7 +39,7 @@ fun poissonDiskSampling(
|
||||
tries: Int = 30,
|
||||
randomOnRing: Boolean = false,
|
||||
random: Random = Random.Default,
|
||||
initialPoint: Vector2 = Vector2(width/2.0, height/2.0),
|
||||
initialPoints: List<Vector2> = listOf(Vector2(width/2.0, height/2.0)),
|
||||
boundsMapper: ((w: Double, h: Double, v: Vector2) -> Boolean)? = null,
|
||||
): List<Vector2> {
|
||||
val disk = mutableListOf<Vector2>()
|
||||
@@ -51,21 +52,23 @@ fun poissonDiskSampling(
|
||||
val rows = ceil(height / cellSize).toInt()
|
||||
val cols = ceil(width / cellSize).toInt()
|
||||
|
||||
val grid = MutableList(rows * cols) { -1 }
|
||||
val grid = Array(rows * cols) { -1 }
|
||||
|
||||
fun addPoint(v: Vector2) {
|
||||
val x = (v.x / cellSize).fastFloor()
|
||||
val y = (v.y / cellSize).fastFloor()
|
||||
val index = x + y * cols
|
||||
|
||||
disk.add(v)
|
||||
|
||||
grid[index] = disk.lastIndex
|
||||
|
||||
queue.add(disk.lastIndex)
|
||||
if (x >= 0 && y >= 0 && x < cols && y < rows) {
|
||||
disk.add(v)
|
||||
grid[index] = disk.lastIndex
|
||||
queue.add(disk.lastIndex)
|
||||
}
|
||||
}
|
||||
|
||||
addPoint(initialPoint)
|
||||
for (initialPoint in initialPoints) {
|
||||
addPoint(initialPoint)
|
||||
}
|
||||
|
||||
val boundsRect = Rectangle(0.0, 0.0, width, height)
|
||||
|
||||
@@ -81,19 +84,20 @@ fun poissonDiskSampling(
|
||||
} else {
|
||||
active + Polar(random.nextDouble(0.0, 360.0), radius).cartesian
|
||||
}
|
||||
|
||||
if (!boundsRect.contains(c)) continue@candidateSearch
|
||||
|
||||
// check if it's within bounds
|
||||
// choose another candidate if it's not
|
||||
if (boundsMapper != null && !boundsMapper(width, height, c)) continue@candidateSearch
|
||||
|
||||
val x = (c.x / cellSize).fastFloor()
|
||||
val y = (c.y / cellSize).fastFloor()
|
||||
|
||||
// EJ: early bail-out;
|
||||
// if grid[y,x] is populated we know that its inhabitant is within the minimum point distance
|
||||
if (grid[x + y * cols] != -1) {
|
||||
continue@candidateSearch
|
||||
}
|
||||
|
||||
// Check closest neighbours in a 5x5 grid
|
||||
for (ix in (-2..2)) {
|
||||
for (iy in (-2..2)) {
|
||||
for (iy in (-2..2)) {
|
||||
for (ix in (-2..2)) {
|
||||
val nx = clamp(x + ix, 0, cols - 1)
|
||||
val ny = clamp(y + iy, 0, rows - 1)
|
||||
|
||||
@@ -109,10 +113,15 @@ fun poissonDiskSampling(
|
||||
}
|
||||
}
|
||||
|
||||
// check if the candidate point is within bounds
|
||||
// EJ: This is somewhat counter-intuitively moved to the last stage in the process;
|
||||
// It turns out that the above neighbour search is much more affordable than the bounds check in the
|
||||
// case of complex bounds (such as described by Shapes or ShapeContours). A simple benchmark shows a
|
||||
// speed-up of roughly 300%
|
||||
if (boundsMapper != null && !boundsMapper(width, height, c)) continue@candidateSearch
|
||||
|
||||
addPoint(c)
|
||||
|
||||
candidateAccepted = true
|
||||
|
||||
break
|
||||
}
|
||||
|
||||
@@ -121,6 +130,6 @@ fun poissonDiskSampling(
|
||||
queue.remove(activeIndex)
|
||||
}
|
||||
}
|
||||
|
||||
return disk
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
Reference in New Issue
Block a user