[orx-mesh-noise] Add generated and verified documentation
This commit is contained in:
@@ -23,6 +23,22 @@ fun uniformBarycentric(random: Random = Random.Default): Vector3 {
|
||||
return Vector3(b0, b1, 1.0 - b0 - b1)
|
||||
}
|
||||
|
||||
/**
|
||||
* Generate a non-uniformly distributed barycentric coordinate
|
||||
* @param random a random number generator
|
||||
*/
|
||||
fun nonUniformBarycentric(weight0: Double, weight1: Double, weight2: Double, random: Random = Random.Default): Vector3 {
|
||||
val b = uniformBarycentric()
|
||||
var b0 = b.x / weight0
|
||||
var b1 = b.y / weight1
|
||||
var b2 = b.z / weight2
|
||||
val totalWeight = b0 + b1 + b2
|
||||
b0 /= totalWeight
|
||||
b1 /= totalWeight
|
||||
b2 /= totalWeight
|
||||
return Vector3(b0, b1, b2)
|
||||
}
|
||||
|
||||
/**
|
||||
* Generate a uniformly distributed barycentric coordinate
|
||||
* @param random a random number generator
|
||||
@@ -32,7 +48,6 @@ fun hashBarycentric(seed: Int, x: Int): Vector3 {
|
||||
val v = fhash1D(seed, u.toRawBits().toInt() - x)
|
||||
|
||||
|
||||
|
||||
val su0 = sqrt(u)
|
||||
val b0 = 1.0 - su0
|
||||
val b1 = v * su0
|
||||
@@ -46,28 +61,64 @@ fun hashBarycentric(seed: Int, x: Int): Vector3 {
|
||||
* @param random a random number generator
|
||||
*/
|
||||
fun IIndexedPolygon.uniform(vertexData: IVertexData, random: Random = Random.Default): Vector3 {
|
||||
require(positions.size == 3) { "polygon must be a triangle"}
|
||||
require(positions.size == 3) { "polygon must be a triangle" }
|
||||
|
||||
val x = vertexData.positions.slice(positions)
|
||||
val b = uniformBarycentric(random)
|
||||
return x[0] * b.x + x[1] * b.y + x[2] * b.z
|
||||
}
|
||||
|
||||
/**
|
||||
* Computes a point within a triangle defined by the current indexed polygon. The point is determined
|
||||
* through non-uniform barycentric coordinates, which are influenced by the specified weights.
|
||||
*
|
||||
* @param vertexData the vertex data containing positions and other attributes
|
||||
* @param weight0 the weight associated with the first vertex of the triangle
|
||||
* @param weight1 the weight associated with the second vertex of the triangle
|
||||
* @param weight2 the weight associated with the third vertex of the triangle
|
||||
* @param random an optional random number generator used for generating the barycentric coordinates
|
||||
* @return a 3D vector representing a point within the triangle specified by the barycentric coordinates
|
||||
*/
|
||||
fun IIndexedPolygon.nonUniform(
|
||||
vertexData: IVertexData,
|
||||
weight0: Double,
|
||||
weight1: Double,
|
||||
weight2: Double,
|
||||
random: Random = Random.Default
|
||||
): Vector3 {
|
||||
require(positions.size == 3) { "polygon must be a triangle" }
|
||||
|
||||
val x = vertexData.positions.slice(positions)
|
||||
val b = nonUniformBarycentric(weight0, weight1, weight2, random)
|
||||
return x[0] * b.x + x[1] * b.y + x[2] * b.z
|
||||
}
|
||||
|
||||
/**
|
||||
* Generate a uniformly distributed point that lies inside this [IIndexedPolygon]
|
||||
* @param vertexData vertex data used to resolve positions
|
||||
* @param random a random number generator
|
||||
*/
|
||||
fun IIndexedPolygon.hash(vertexData: IVertexData, seed:Int, x: Int): Vector3 {
|
||||
require(positions.size == 3) { "polygon must be a triangle"}
|
||||
fun IIndexedPolygon.hash(vertexData: IVertexData, seed: Int, x: Int): Vector3 {
|
||||
require(positions.size == 3) { "polygon must be a triangle" }
|
||||
|
||||
val s = vertexData.positions.slice(positions)
|
||||
val b = hashBarycentric(seed, x)
|
||||
return s[0] * b.x + s[1] * b.y + s[2] * b.z
|
||||
}
|
||||
|
||||
/**
|
||||
* Calculates the area of the triangular polygon.
|
||||
*
|
||||
* The method assumes that the polygon is a triangle and computes its area
|
||||
* using the cross product formula. The computed area is a positive value as it
|
||||
* represents the absolute area of the triangle.
|
||||
*
|
||||
* @param vertexData the vertex data containing positional information of the polygon vertices
|
||||
* @return the area of the triangle as a Double
|
||||
* @throws IllegalArgumentException if the polygon is not a triangle (i.e., does not have exactly 3 vertices)
|
||||
*/
|
||||
internal fun IIndexedPolygon.area(vertexData: IVertexData): Double {
|
||||
require(positions.size == 3) { "polygon must be a triangle"}
|
||||
require(positions.size == 3) { "polygon must be a triangle" }
|
||||
val x = vertexData.positions.slice(positions)
|
||||
val u = x[1] - x[0]
|
||||
val v = x[2] - x[0]
|
||||
@@ -75,7 +126,32 @@ internal fun IIndexedPolygon.area(vertexData: IVertexData): Double {
|
||||
}
|
||||
|
||||
/**
|
||||
* Generate points on the surface described by the mesh data
|
||||
* Computes the weighted area of a triangular polygon by scaling its area with the average of the given weights.
|
||||
*
|
||||
* @param vertexData the vertex data containing position information of the polygon vertices
|
||||
* @param weight0 the weight associated with the first vertex of the polygon
|
||||
* @param weight1 the weight associated with the second vertex of the polygon
|
||||
* @param weight2 the weight associated with the third vertex of the polygon
|
||||
* @return the weighted area of the triangular polygon
|
||||
*/
|
||||
internal fun IIndexedPolygon.weightedArea(
|
||||
vertexData: IVertexData,
|
||||
weight0: Double,
|
||||
weight1: Double,
|
||||
weight2: Double
|
||||
): Double {
|
||||
return area(vertexData) * (weight0 + weight1 + weight2) / 3.0
|
||||
}
|
||||
|
||||
/**
|
||||
* Generates a list of uniformly distributed points on the surface of the given mesh.
|
||||
*
|
||||
* The method uses triangulation and computes areas of triangular polygons to ensure
|
||||
* uniform distribution of points across the surface.
|
||||
*
|
||||
* @param count the number of points to generate
|
||||
* @param random a random number generator instance, defaulting to [Random.Default]
|
||||
* @return a list of [Vector3] points uniformly distributed across the mesh surface
|
||||
*/
|
||||
fun IMeshData.uniform(count: Int, random: Random = Random.Default): List<Vector3> {
|
||||
val triangulated = triangulate()
|
||||
@@ -100,7 +176,7 @@ fun IMeshData.uniform(count: Int, random: Random = Random.Default): List<Vector3
|
||||
/**
|
||||
* Generate points on the surface described by the mesh data
|
||||
*/
|
||||
fun IMeshData.hash(count: Int, seed:Int, x: Int): List<Vector3> {
|
||||
fun IMeshData.hash(count: Int, seed: Int, x: Int): List<Vector3> {
|
||||
val triangulated = triangulate()
|
||||
val result = mutableListOf<Vector3>()
|
||||
val totalArea = triangulated.polygons.sumOf { it.area(vertexData) }
|
||||
|
||||
@@ -10,8 +10,21 @@ import org.openrndr.math.Vector3
|
||||
import java.io.File
|
||||
import kotlin.random.Random
|
||||
|
||||
|
||||
/**
|
||||
* Demonstrate uniform point on mesh generation
|
||||
* This demo creates a 3D visualization program using the OPENRNDR framework.
|
||||
* It demonstrates loading an OBJ model, generating uniform points on the surface
|
||||
* of the mesh, and rendering these points as small spheres using a custom shader.
|
||||
*
|
||||
* The following key processes are performed:
|
||||
* - Loading mesh data from an OBJ file.
|
||||
* - Generating a list of uniformly distributed points on the mesh surface.
|
||||
* - Rendering the generated points with small spheres.
|
||||
* - Using an "Orbital" extension for interactive camera control.
|
||||
* - Applying a shader effect to visualize surface normals.
|
||||
*
|
||||
* The application runs with a window size of 720x720 pixels and positions the camera
|
||||
* in front of the scene using the "Orbital" extension.
|
||||
*/
|
||||
fun main() {
|
||||
application {
|
||||
|
||||
Reference in New Issue
Block a user