Compare commits

...

12 Commits

Author SHA1 Message Date
0c90073363 android 去除 orx 相关依赖 2025-11-26 17:00:11 +08:00
2525d30c80 完成了土方量计算 2025-11-26 15:28:39 +08:00
0d15c60606 使用 CatmullRom 生成平滑曲线 2025-11-26 00:23:55 +08:00
ac86ab3976 Merge branch 'master' into terrain 2025-11-25 23:46:49 +08:00
816e954ed8 实现等高线的绘制 2025-11-25 19:43:51 +08:00
de15029b2b GeoJson 测试 2025-11-25 01:09:45 +08:00
a1a9a9e0e4 fix: 临时解决因 lineLoops3d) 这个方法名存在非法字符问题 2025-11-24 23:58:50 +08:00
Abe Pazos
3ba0395c16 add demos to README.md 2025-11-23 13:38:34 +00:00
Abe Pazos
10888b0e83 Update CollectScreenShots.kt
Make top comment finding less strict.
Currently some comments start with /* instead of /**, which leads to import and package lines being included in README.md files.
2025-11-23 13:27:20 +00:00
Abe Pazos
6024e62af0 add orx-jvm demos to README.md 2025-11-22 18:16:54 +00:00
Abe Pazos
4af2ed3fed add demos to README.md 2025-11-22 18:16:54 +00:00
Abe Pazos
522627ca51 Add descriptions to demos 2025-11-22 19:08:30 +01:00
92 changed files with 8435 additions and 218 deletions

View File

@@ -51,10 +51,10 @@ dependencies {
implementation(libs.androidx.constraintlayout)
implementation(libs.mapbox.maps)
implementation(project(":math"))
implementation(project(":orx-triangulation"))
implementation(libs.androidx.lifecycle.runtime.ktx)
implementation(project(":icegps-common"))
implementation(project(":icegps-shared"))
implementation(project(":icegps-triangulation"))
testImplementation(libs.junit)
androidTestImplementation(libs.ext.junit)

View File

@@ -0,0 +1,427 @@
package com.icegps.orx
import ColorBrewer2Type
import android.content.Context
import android.util.Log
import colorBrewer2Palettes
import com.icegps.math.geometry.Rectangle
import com.icegps.math.geometry.Vector2D
import com.icegps.math.geometry.Vector3D
import com.icegps.orx.catmullrom.CatmullRomChain2
import com.icegps.orx.ktx.area
import com.icegps.orx.ktx.toColorInt
import com.icegps.orx.ktx.toMapboxPoint
import com.icegps.orx.ktx.toast
import com.icegps.orx.marchingsquares.ShapeContour
import com.icegps.orx.marchingsquares.findContours
import com.icegps.shared.ktx.TAG
import com.icegps.triangulation.DelaunayTriangulation
import com.icegps.triangulation.Triangle
import com.mapbox.geojson.Feature
import com.mapbox.geojson.FeatureCollection
import com.mapbox.geojson.LineString
import com.mapbox.geojson.Polygon
import com.mapbox.maps.MapView
import com.mapbox.maps.Style
import com.mapbox.maps.extension.style.expressions.generated.Expression
import com.mapbox.maps.extension.style.layers.addLayer
import com.mapbox.maps.extension.style.layers.generated.fillLayer
import com.mapbox.maps.extension.style.layers.generated.lineLayer
import com.mapbox.maps.extension.style.layers.properties.generated.LineCap
import com.mapbox.maps.extension.style.layers.properties.generated.LineJoin
import com.mapbox.maps.extension.style.sources.addSource
import com.mapbox.maps.extension.style.sources.generated.geoJsonSource
import kotlinx.coroutines.CoroutineScope
import kotlinx.coroutines.Dispatchers
import kotlinx.coroutines.Job
import kotlinx.coroutines.async
import kotlinx.coroutines.awaitAll
import kotlinx.coroutines.flow.MutableStateFlow
import kotlinx.coroutines.flow.asStateFlow
import kotlinx.coroutines.launch
import kotlinx.coroutines.withContext
import kotlin.math.max
class ContoursManager(
private val context: Context,
private val mapView: MapView,
private val scope: CoroutineScope
) {
private val sourceId: String = "contours-source-id-10"
private val layerId: String = "contours-layer-id-10"
private val fillSourceId: String = "contours-fill-source-id-10"
private val fillLayerId: String = "contours-fill-layer-id-10"
private val gridSourceId: String = "grid-polygon-source-id"
private val gridLayerId: String = "grid-polygon-layer-id"
private var contourSize: Int = 6
private var heightRange: ClosedFloatingPointRange<Double> = 0.0..100.0
private var cellSize: Double? = 10.0
val simplePalette = SimplePalette(
range = 0.0..100.0
)
private var colors = colorBrewer2Palettes(
numberOfColors = contourSize,
paletteType = ColorBrewer2Type.Any
).first().colors.reversed()
private var points: List<Vector3D> = emptyList()
private val polylineManager = PolylineManager(mapView)
fun updateContourSize(contourSize: Int) {
this.contourSize = contourSize
colors = colorBrewer2Palettes(
numberOfColors = contourSize,
paletteType = ColorBrewer2Type.Any
).first().colors.reversed()
}
fun updateCellSize(value: Double) {
cellSize = value
}
fun updatePoints(
points: List<Vector3D>,
) {
this.points = points
}
fun updateHeightRange(
heightRange: ClosedFloatingPointRange<Double>? = null
) {
if (heightRange == null) {
if (points.isEmpty()) {
return
}
val height = points.map { it.z }
val range = height.min()..height.max()
this.heightRange = range
simplePalette.setRange(range)
} else {
this.heightRange = heightRange
simplePalette.setRange(heightRange)
}
}
private var isGridVisible: Boolean = true
private var _gridModel = MutableStateFlow<GridModel?>(null)
val gridModel = _gridModel.asStateFlow()
fun setGridVisible(visible: Boolean) {
if (visible != isGridVisible) {
isGridVisible = visible
if (visible) {
_gridModel.value?.let { gridModel ->
mapView.displayGridModel(
grid = gridModel,
sourceId = gridSourceId,
layerId = gridLayerId,
palette = simplePalette::palette
)
}
} else {
mapView.mapboxMap.getStyle { style ->
try {
style.removeStyleLayer(gridLayerId)
} catch (_: Exception) {
}
if (style.styleSourceExists(gridSourceId)) {
style.removeStyleSource(gridSourceId)
}
}
}
}
}
private var triangles: List<Triangle> = listOf()
private var isTriangleVisible: Boolean = true
fun setTriangleVisible(visible: Boolean) {
if (visible != isTriangleVisible) {
isTriangleVisible = visible
if (visible) {
polylineManager.update(
triangles.map {
listOf(it.x1, it.x2, it.x3)
.map { Vector3D(it.x, it.y, it.z) }
}
)
} else {
polylineManager.clearContours()
}
}
}
private var job: Job? = null
fun refresh() {
val points = points
if (points.size <= 3) {
context.toast("points size ${points.size}")
return
}
job?.cancel()
scope.launch {
mapView.mapboxMap.getStyle { style ->
val step = heightRange.endInclusive / contourSize
val zip = (0..contourSize).map { index ->
heightRange.start + index * step
}.zipWithNext { a, b -> a..b }
val area = points.area
val triangulation = DelaunayTriangulation(points)
val triangles = triangulation.triangles()
val cellSize: Double = if (cellSize == null || cellSize!! < 0.1) {
(max(triangulation.points.area.width, triangulation.points.area.height) / 50)
} else {
cellSize!!
}
scope.launch {
val gridModel = triangulationToGrid(
delaunator = triangulation,
cellSize = cellSize,
)
this@ContoursManager._gridModel.value = gridModel
if (isGridVisible) mapView.displayGridModel(
grid = gridModel,
sourceId = gridSourceId,
layerId = gridLayerId,
palette = simplePalette::palette
)
}
job = scope.launch(Dispatchers.Default) {
val lineFeatures = mutableListOf<List<Feature>>()
val features = zip.mapIndexed { index, range ->
async {
val contours = findContours(
triangles = triangles,
range = range,
area = area,
cellSize = cellSize
)
val color = colors[index].toColorInt()
lineFeatures.add(contoursToLineFeatures(contours, color).flatten())
contoursToPolygonFeatures(contours, color)
}
}.awaitAll()
withContext(Dispatchers.Main) {
if (false) setupLineLayer(
style = style,
sourceId = sourceId,
layerId = layerId,
features = lineFeatures.flatten()
)
setupFillLayer(
style = style,
sourceId = fillSourceId,
layerId = fillLayerId,
features = features.filterNotNull(),
)
Log.d(TAG, "refresh: 刷新完成")
}
}
}
}
}
fun findContours(
triangles: List<Triangle>,
range: ClosedFloatingPointRange<Double>,
area: Rectangle,
cellSize: Double
): List<ShapeContour> {
return findContours(
f = { v ->
val triangle = triangles.firstOrNull { triangle ->
isPointInTriangle3D(v, listOf(triangle.x1, triangle.x2, triangle.x3))
}
(triangle?.let { triangle ->
val interpolate = interpolateHeight(
point = v,
triangle = listOf(
triangle.x1,
triangle.x2,
triangle.x3,
)
)
if (interpolate.z in range) -1.0
else 1.0
} ?: 1.0).also {
Log.d(TAG, "findContours: ${v} -> ${it}")
}
},
area = area,
cellSize = cellSize,
)
}
private fun setupLineLayer(
style: Style,
sourceId: String,
layerId: String,
features: List<Feature>
) {
style.removeStyleLayer(layerId)
style.removeStyleSource(sourceId)
val source = geoJsonSource(sourceId) {
featureCollection(FeatureCollection.fromFeatures(features))
}
style.addSource(source)
val layer = lineLayer(layerId, sourceId) {
lineColor(Expression.toColor(Expression.Companion.get("color"))) // 从属性获取颜色
lineWidth(1.0)
lineCap(LineCap.ROUND)
lineJoin(LineJoin.ROUND)
lineOpacity(0.8)
}
style.addLayer(layer)
}
private fun setupFillLayer(
style: Style,
sourceId: String,
layerId: String,
features: List<Feature>
) {
style.removeStyleLayer(layerId)
style.removeStyleSource(sourceId)
val source = geoJsonSource(sourceId) {
featureCollection(FeatureCollection.fromFeatures(features))
}
style.addSource(source)
val layer = fillLayer(layerId, sourceId) {
fillColor(Expression.Companion.toColor(Expression.get("color"))) // 从属性获取颜色
fillOpacity(0.5)
fillAntialias(true)
}
style.addLayer(layer)
}
private var useCatmullRom: Boolean = true
fun setCatmullRom(enabled: Boolean) {
useCatmullRom = enabled
}
fun contoursToLineFeatures(contours: List<ShapeContour>, color: Int): List<List<Feature>> {
return contours.drop(1).map { contour ->
contour.segments.map { segment ->
LineString.fromLngLats(
listOf(
segment.start.toMapboxPoint(),
segment.end.toMapboxPoint()
)
)
}.map { lineString ->
Feature.fromGeometry(lineString).apply {
// 将颜色Int转换为十六进制字符串
addStringProperty("color", color.toHexColorString())
}
}
}
}
fun contoursToPolygonFeatures(contours: List<ShapeContour>, color: Int): Feature? {
val lists = contours.drop(0).filter { it.segments.isNotEmpty() }.map { contour ->
val start = contour.segments[0].start
listOf(start) + contour.segments.map { it.end }
}.map {
if (!useCatmullRom) return@map it
val cmr = CatmullRomChain2(it, 1.0, loop = true)
val contour = ShapeContour.fromPoints(cmr.positions(200), true)
val start = contour.segments[0].start
listOf(start) + contour.segments.map { it.end }
}.map { points -> points.map { it.toMapboxPoint() } }
if (lists.isEmpty()) {
Log.w(TAG, "contoursToPolygonFeatures: 没有有效的轮廓数据")
return null
}
val polygon = Polygon.fromLngLats(lists)
return Feature.fromGeometry(polygon).apply {
// 将颜色Int转换为十六进制字符串
addStringProperty("color", color.toHexColorString())
}
}
fun Int.toHexColorString(): String {
return String.format("#%06X", 0xFFFFFF and this)
}
fun clearContours() {
mapView.mapboxMap.getStyle { style ->
try {
style.removeStyleLayer(layerId)
} catch (_: Exception) {
}
try {
style.removeStyleSource(sourceId)
} catch (_: Exception) {
}
}
}
}
fun isPointInTriangle3D(point: Vector2D, triangle: List<Vector3D>): Boolean {
require(triangle.size == 3) { "三角形必须有3个顶点" }
val (v1, v2, v3) = triangle
// 计算重心坐标
val denominator = (v2.y - v3.y) * (v1.x - v3.x) + (v3.x - v2.x) * (v1.y - v3.y)
if (denominator == 0.0) return false // 退化三角形
val alpha = ((v2.y - v3.y) * (point.x - v3.x) + (v3.x - v2.x) * (point.y - v3.y)) / denominator
val beta = ((v3.y - v1.y) * (point.x - v3.x) + (v1.x - v3.x) * (point.y - v3.y)) / denominator
val gamma = 1.0 - alpha - beta
// 点在三角形内当且仅当所有重心坐标都在[0,1]范围内
return alpha >= 0 && beta >= 0 && gamma >= 0 &&
alpha <= 1 && beta <= 1 && gamma <= 1
}
/**
* 使用重心坐标计算点在三角形上的高度
*
* @param point 二维点 (x, y)
* @param triangle 三角形的三个顶点
* @return 三维点 (x, y, z)
*/
fun interpolateHeight(point: Vector2D, triangle: List<Vector3D>): Vector3D {
/**
* 计算点在三角形中的重心坐标
*/
fun calculateBarycentricCoordinates(
point: Vector2D,
v1: Vector3D,
v2: Vector3D,
v3: Vector3D
): Triple<Double, Double, Double> {
val denom = (v2.y - v3.y) * (v1.x - v3.x) + (v3.x - v2.x) * (v1.y - v3.y)
val alpha = ((v2.y - v3.y) * (point.x - v3.x) + (v3.x - v2.x) * (point.y - v3.y)) / denom
val beta = ((v3.y - v1.y) * (point.x - v3.x) + (v1.x - v3.x) * (point.y - v3.y)) / denom
val gamma = 1.0 - alpha - beta
return Triple(alpha, beta, gamma)
}
require(triangle.size == 3) { "三角形必须有3个顶点" }
val (v1, v2, v3) = triangle
// 计算重心坐标
val (alpha, beta, gamma) = calculateBarycentricCoordinates(point, v1, v2, v3)
// 使用重心坐标插值z值
val z = alpha * v1.z + beta * v2.z + gamma * v3.z
return Vector3D(point.x, point.y, z)
}

View File

@@ -0,0 +1,197 @@
package com.icegps.orx
import com.icegps.math.geometry.Angle
import com.icegps.math.geometry.Vector2D
import com.icegps.orx.ktx.toMapboxPoint
import com.mapbox.geojson.Feature
import com.mapbox.geojson.FeatureCollection
import com.mapbox.geojson.LineString
import com.mapbox.geojson.Point
import com.mapbox.geojson.Polygon
import com.mapbox.maps.MapView
import com.mapbox.maps.Style
import com.mapbox.maps.extension.style.expressions.generated.Expression
import com.mapbox.maps.extension.style.layers.addLayer
import com.mapbox.maps.extension.style.layers.generated.FillLayer
import com.mapbox.maps.extension.style.layers.generated.LineLayer
import com.mapbox.maps.extension.style.layers.properties.generated.LineCap
import com.mapbox.maps.extension.style.layers.properties.generated.LineJoin
import com.mapbox.maps.extension.style.sources.addSource
import com.mapbox.maps.extension.style.sources.generated.geoJsonSource
import kotlin.math.cos
import kotlin.math.min
import kotlin.math.sin
/**
* 设置趋势箭头图层
*/
fun setupTrendLayer(
style: Style,
trendSourceId: String,
trendLayerId: String,
features: List<Feature>
) {
val trendSource = geoJsonSource(trendSourceId) {
featureCollection(FeatureCollection.fromFeatures(features))
}
try {
style.removeStyleLayer(trendLayerId)
} catch (_: Exception) {
}
try {
style.removeStyleLayer("$trendLayerId-head")
} catch (_: Exception) {
}
if (style.styleSourceExists(trendSourceId)) {
style.removeStyleSource(trendSourceId)
}
style.addSource(trendSource)
val lineLayer = LineLayer(trendLayerId, trendSourceId).apply {
lineColor(Expression.toColor(Expression.get("color")))
lineWidth(4.0)
lineCap(LineCap.ROUND)
lineJoin(LineJoin.ROUND)
}
style.addLayer(lineLayer)
val headLayer = FillLayer("$trendLayerId-head", trendSourceId).apply {
fillColor(Expression.toColor(Expression.get("color")))
}
style.addLayer(headLayer)
}
fun MapView.displayControllableArrow(
grid: GridModel,
sourceId: String = "controllable-source-id-0",
layerId: String = "controllable-layer-id-0",
arrowScale: Double = 0.4,
angle: Angle,
onHeadArrowChange: (List<Point>) -> Unit
) {
mapboxMap.getStyle { style ->
val centerX = (grid.minX + grid.maxX) / 2
val centerY = (grid.minY + grid.maxY) / 2
val regionWidth = grid.maxX - grid.minX
val regionHeight = grid.maxY - grid.minY
val arrowLength = min(regionWidth, regionHeight) * arrowScale * 1.0
val arrowDirectionRad = angle.radians
val endX = centerX + sin(arrowDirectionRad) * arrowLength
val endY = centerY + cos(arrowDirectionRad) * arrowLength
val arrowLine = LineString.fromLngLats(
listOf(
Vector2D(centerX, centerY),
Vector2D(endX, endY)
).map { it.toMapboxPoint() }
)
val arrowFeature = Feature.fromGeometry(arrowLine)
arrowFeature.addStringProperty("color", "#0000FF")
arrowFeature.addStringProperty("type", "overall-trend")
// 创建箭头头部
val headSize = arrowLength * 0.2
val leftRad = arrowDirectionRad + Math.PI * 0.8
val rightRad = arrowDirectionRad - Math.PI * 0.8
val leftX = endX + sin(leftRad) * headSize
val leftY = endY + cos(leftRad) * headSize
val rightX = endX + sin(rightRad) * headSize
val rightY = endY + cos(rightRad) * headSize
val headRing = listOf(
Vector2D(endX, endY),
Vector2D(leftX, leftY),
Vector2D(rightX, rightY),
Vector2D(endX, endY)
).map { it.toMapboxPoint() }
onHeadArrowChange(headRing)
val headPolygon = Polygon.fromLngLats(listOf(headRing))
val headFeature = Feature.fromGeometry(headPolygon)
headFeature.addStringProperty("color", "#0000FF")
headFeature.addStringProperty("type", "overall-trend")
val features = listOf(arrowFeature, headFeature)
// 设置图层
setupTrendLayer(style, sourceId, layerId, features)
}
}
fun calculateArrowData(
grid: GridModel,
angle: Angle,
arrowScale: Double = 0.4
): ArrowData {
val centerX = (grid.minX + grid.maxX) / 2
val centerY = (grid.minY + grid.maxY) / 2
val regionWidth = grid.maxX - grid.minX
val regionHeight = grid.maxY - grid.minY
val arrowLength = min(regionWidth, regionHeight) * arrowScale * 1.0
val arrowDirectionRad = angle.radians
val endX = centerX + sin(arrowDirectionRad) * arrowLength
val endY = centerY + cos(arrowDirectionRad) * arrowLength
val arrowLine = listOf(
Vector2D(centerX, centerY),
Vector2D(endX, endY)
)
// 创建箭头头部
val headSize = arrowLength * 0.2
val leftRad = arrowDirectionRad + Math.PI * 0.8
val rightRad = arrowDirectionRad - Math.PI * 0.8
val leftX = endX + sin(leftRad) * headSize
val leftY = endY + cos(leftRad) * headSize
val rightX = endX + sin(rightRad) * headSize
val rightY = endY + cos(rightRad) * headSize
val headRing = listOf(
Vector2D(endX, endY),
Vector2D(leftX, leftY),
Vector2D(rightX, rightY),
Vector2D(endX, endY)
)
return ArrowData(
arrowLine = arrowLine,
headRing = headRing
)
}
data class ArrowData(
val arrowLine: List<Vector2D>,
val headRing: List<Vector2D>
)
fun MapView.displayControllableArrow(
sourceId: String = "controllable-source-id-0",
layerId: String = "controllable-layer-id-0",
arrowData: ArrowData
) {
mapboxMap.getStyle { style ->
val (arrowLine, headRing) = arrowData
val arrowFeature = Feature.fromGeometry(LineString.fromLngLats(arrowLine.map { it.toMapboxPoint() }))
arrowFeature.addStringProperty("color", "#0000FF")
arrowFeature.addStringProperty("type", "overall-trend")
val headPolygon = Polygon.fromLngLats(listOf(headRing.map { it.toMapboxPoint() }))
val headFeature = Feature.fromGeometry(headPolygon)
headFeature.addStringProperty("color", "#0000FF")
headFeature.addStringProperty("type", "overall-trend")
val features = listOf(arrowFeature, headFeature)
// 设置图层
setupTrendLayer(style, sourceId, layerId, features)
}
}

View File

@@ -0,0 +1,53 @@
package com.icegps.orx
import com.icegps.math.geometry.Angle
import com.icegps.math.geometry.Vector3D
import com.icegps.math.geometry.degrees
import kotlin.math.cos
import kotlin.math.sin
import kotlin.random.Random
/**
* @author tabidachinokaze
* @date 2025/11/25
*/
fun coordinateGenerate(): List<Vector3D> {
val minX = -20.0
val maxX = 20.0
val minY = -20.0
val maxY = 20.0
val minZ = -20.0
val maxZ = 20.0
val x: () -> Double = { Random.nextDouble(minX, maxX) }
val y: () -> Double = { Random.nextDouble(minY, maxY) }
val z: () -> Double = { Random.nextDouble(minZ, maxZ) }
val dPoints = (0..60).map {
Vector3D(x(), y(), z())
}
return dPoints
}
fun coordinateGenerate1(): List<List<Vector3D>> {
/**
* 绕 Z 轴旋转指定角度(弧度)
*/
fun Vector3D.rotateAroundZ(angle: Angle): Vector3D {
val cosAngle = cos(angle.radians)
val sinAngle = sin(angle.radians)
return Vector3D(
x = x * cosAngle - y * sinAngle,
y = x * sinAngle + y * cosAngle,
z = z
)
}
val center = Vector3D()
val direction = Vector3D(0.0, 1.0, -1.0)
return (0..360).step(10).map {
val nowDirection = direction.rotateAroundZ(it.degrees)
listOf(2, 6, 10).map {
center + nowDirection * it
}
}
}

View File

@@ -0,0 +1,144 @@
package com.icegps.orx
import android.util.Log
import com.icegps.math.geometry.Vector2D
import com.icegps.orx.ktx.toMapboxPoint
import com.mapbox.geojson.Feature
import com.mapbox.geojson.FeatureCollection
import com.mapbox.geojson.Polygon
import com.mapbox.maps.MapView
import com.mapbox.maps.Style
import com.mapbox.maps.extension.style.expressions.generated.Expression
import com.mapbox.maps.extension.style.layers.addLayer
import com.mapbox.maps.extension.style.layers.generated.FillLayer
import com.mapbox.maps.extension.style.layers.generated.LineLayer
import com.mapbox.maps.extension.style.sources.addSource
import com.mapbox.maps.extension.style.sources.generated.geoJsonSource
/**
* @author tabidachinokaze
* @date 2025/11/26
*/
/**
* 绘制斜坡设计结果
*/
fun MapView.displaySlopeResult(
originalGrid: GridModel,
slopeResult: SlopeResult,
sourceId: String = "slope-result",
layerId: String = "slope-layer",
palette: (Double?) -> String,
showDesignHeight: Boolean
) {
val elevationList = mutableListOf<Double>()
mapboxMap.getStyle { style ->
val features = mutableListOf<Feature>()
val designGrid = slopeResult.designSurface
// 对比测试,将绘制到原来图形的左边
// val minX = originalGrid.minX * 2 - originalGrid.maxX
val minX = originalGrid.minX
val maxY = originalGrid.maxY
val cellSize = originalGrid.cellSize
for (r in 0 until originalGrid.rows) {
for (c in 0 until originalGrid.cols) {
val originalElev = originalGrid.getValue(r, c) ?: continue
val designElev = designGrid.getValue(r, c) ?: continue
elevationList.add(designElev)
// 计算填挖高度
val heightDiff = designElev - originalElev
// 计算栅格边界
val x0 = minX + c * cellSize
val y0 = maxY - r * cellSize
val x1 = x0 + cellSize
val y1 = y0 - cellSize
// 1. 创建多边形要素(背景色)
val ring = listOf(
Vector2D(x0, y0),
Vector2D(x1, y0),
Vector2D(x1, y1),
Vector2D(x0, y1),
Vector2D(x0, y0)
).map { it.toMapboxPoint() }
val poly = Polygon.fromLngLats(listOf(ring))
val feature = Feature.fromGeometry(poly)
if (showDesignHeight) {
// 显示设计高度,测试坡向是否正确,和高度是否计算正确
feature.addStringProperty("color", palette(designElev))
} else {
// 显示高差
feature.addStringProperty("color", palette(heightDiff))
}
// 显示原始高度
// feature.addStringProperty("color", palette(originalElev))
features.add(feature)
}
}
Log.d("displayGridWithDirectionArrows", "对比区域的土方量计算: ${elevationList.sum()}, 平均值:${elevationList.average()}")
// 设置图层
setupEarthworkLayer(style, sourceId, layerId, features)
}
}
/**
* 完整的土方工程图层设置 - 修正版
*/
private fun setupEarthworkLayer(
style: Style,
sourceId: String,
layerId: String,
features: List<Feature>,
) {
// 创建数据源
val source = geoJsonSource(sourceId) {
featureCollection(FeatureCollection.fromFeatures(features))
}
// 清理旧图层
try {
style.removeStyleLayer(layerId)
} catch (_: Exception) {
}
try {
style.removeStyleLayer("$layerId-arrow")
} catch (_: Exception) {
}
try {
style.removeStyleLayer("$layerId-outline")
} catch (_: Exception) {
}
try {
style.removeStyleLayer("$layerId-text")
} catch (_: Exception) {
}
if (style.styleSourceExists(sourceId)) {
style.removeStyleSource(sourceId)
}
// 添加数据源
style.addSource(source)
// 主填充图层
val fillLayer = FillLayer(layerId, sourceId).apply {
fillColor(Expression.toColor(Expression.get("color")))
fillOpacity(0.7)
}
style.addLayer(fillLayer)
// 边框图层
val outlineLayer = LineLayer("$layerId-outline", sourceId).apply {
lineColor("#333333")
lineWidth(1.0)
lineOpacity(0.5)
}
style.addLayer(outlineLayer)
}

View File

@@ -0,0 +1,438 @@
package com.icegps.orx
import android.graphics.PointF
import android.util.Log
import com.icegps.common.helper.GeoHelper
import com.icegps.math.geometry.Angle
import com.icegps.math.geometry.Vector2D
import com.icegps.math.geometry.degrees
import com.icegps.shared.ktx.TAG
import com.mapbox.android.gestures.MoveGestureDetector
import com.mapbox.geojson.Point
import com.mapbox.maps.MapView
import com.mapbox.maps.ScreenCoordinate
import com.mapbox.maps.plugin.gestures.OnMoveListener
import com.mapbox.maps.plugin.gestures.addOnMoveListener
import com.mapbox.maps.plugin.gestures.removeOnMoveListener
import kotlinx.coroutines.CoroutineScope
import kotlinx.coroutines.flow.MutableStateFlow
import kotlinx.coroutines.flow.asStateFlow
import kotlinx.coroutines.flow.combine
import kotlinx.coroutines.flow.launchIn
import kotlin.math.abs
import kotlin.math.cos
import kotlin.math.sin
/**
* @author tabidachinokaze
* @date 2025/11/26
*/
object SlopeCalculator {
fun calculateSlope(
grid: GridModel,
slopeDirection: Double,
slopePercentage: Double,
baseHeightOffset: Double = 0.0
): SlopeResult {
val centerX = (grid.minX + grid.maxX) / 2
val centerY = (grid.minY + grid.maxY) / 2
val elevations = grid.cells.filterNotNull()
val baseElevation = elevations.average() + baseHeightOffset
val basePoint = Triple(centerX, centerY, baseElevation)
val earthworkResult = EarthworkCalculator.calculateForSlopeDesign(
grid = grid,
basePoint = basePoint,
slope = slopePercentage,
aspect = slopeDirection
)
return SlopeResult(
slopeDirection = slopeDirection,
slopePercentage = slopePercentage,
baseHeightOffset = baseHeightOffset,
baseElevation = baseElevation,
earthworkResult = earthworkResult,
designSurface = generateSlopeDesignGrid(
grid = grid,
basePoint = basePoint,
slopePercentage = slopePercentage,
slopeDirection = slopeDirection
)
)
}
/**
* 生成斜坡设计面网格(用于可视化)
*/
private fun generateSlopeDesignGrid(
grid: GridModel,
basePoint: Triple<Double, Double, Double>,
slopePercentage: Double,
slopeDirection: Double
): GridModel {
val designCells = Array<Double?>(grid.rows * grid.cols) { null }
val (baseX, baseY, baseElev) = basePoint
val slopeRatio = slopePercentage / 100.0
for (r in 0 until grid.rows) {
for (c in 0 until grid.cols) {
if (grid.getValue(r, c) != null) {
val cellX = grid.minX + (c + 0.5) * (grid.maxX - grid.minX) / grid.cols
val cellY = grid.minY + (r + 0.5) * (grid.maxY - grid.minY) / grid.rows
val designElev = calculateSlopeElevation(
pointX = cellX,
pointY = cellY,
baseX = baseX,
baseY = baseY,
baseElev = baseElev,
slopeRatio = slopeRatio,
slopeDirection = slopeDirection
)
designCells[r * grid.cols + c] = designElev
}
}
}
return GridModel(
minX = grid.minX,
maxX = grid.maxX,
minY = grid.minY,
maxY = grid.maxY,
rows = grid.rows,
cols = grid.cols,
cellSize = grid.cellSize,
cells = designCells
)
}
/**
* 斜坡高程计算
*/
fun calculateSlopeElevation(
pointX: Double,
pointY: Double,
baseX: Double,
baseY: Double,
baseElev: Double,
slopeRatio: Double,
slopeDirection: Double
): Double {
val dx = (pointX - baseX) * cos(Math.toRadians(baseY))
val dy = (pointY - baseY)
val slopeRad = (slopeDirection.degrees - 90.degrees).normalized.radians
val projection = dx * cos(slopeRad) + dy * sin(slopeRad)
val heightDiff = projection * slopeRatio
return baseElev + heightDiff
}
}
/**
* 斜面设计
*
* @property slopeDirection 坡向 (度)
* @property slopePercentage 坡度 (%)
* @property baseHeightOffset 基准面高度偏移 (m)
* @property baseElevation 基准点高程 (m)
* @property earthworkResult 土方量结果
* @property designSurface 设计面网格(用于可视化)
*/
data class SlopeResult(
val slopeDirection: Double,
val slopePercentage: Double,
val baseHeightOffset: Double,
val baseElevation: Double,
val earthworkResult: EarthworkResult,
val designSurface: GridModel
)
object EarthworkCalculator {
/**
* @param grid 栅格网模型
* @param designElevation 设计高程
*/
fun calculateForFlatDesign(
grid: GridModel,
designElevation: Double
): EarthworkResult {
var cutVolume = 0.0
var fillVolume = 0.0
var cutArea = 0.0
var fillArea = 0.0
val cellArea = grid.cellSize * grid.cellSize
for (r in 0 until grid.rows) {
for (c in 0 until grid.cols) {
val originalElev = grid.getValue(r, c) ?: continue
val heightDiff = designElevation - originalElev
val volume = heightDiff * cellArea
if (volume > 0) {
fillVolume += volume
fillArea += cellArea
} else if (volume < 0) {
cutVolume += abs(volume)
cutArea += cellArea
}
}
}
return EarthworkResult(
cutVolume = cutVolume,
fillVolume = fillVolume,
netVolume = fillVolume - cutVolume,
cutArea = cutArea,
fillArea = fillArea,
totalArea = cutArea + fillArea
)
}
/**
* 计算斜面设计的土方量
*/
fun calculateForSlopeDesign(
grid: GridModel,
basePoint: Triple<Double, Double, Double>,
slope: Double,
aspect: Double
): EarthworkResult {
var cutVolume = 0.0
var fillVolume = 0.0
var cutArea = 0.0
var fillArea = 0.0
val cellArea = grid.cellSize * grid.cellSize
val (baseX, baseY, baseElev) = basePoint
val slopeRatio = slope / 100.0
for (r in 0 until grid.rows) {
for (c in 0 until grid.cols) {
val originalElev = grid.getValue(r, c) ?: continue
val cellX = grid.minX + (c + 0.5) * (grid.maxX - grid.minX) / grid.cols
val cellY = grid.minY + (r + 0.5) * (grid.maxY - grid.minY) / grid.rows
val designElev = SlopeCalculator.calculateSlopeElevation(
pointX = cellX,
pointY = cellY,
baseX = baseX,
baseY = baseY,
baseElev = baseElev,
slopeRatio = slopeRatio,
slopeDirection = aspect
)
val heightElev = designElev - originalElev
val volume = heightElev * cellArea
if (volume > 0) {
fillVolume += volume
fillArea += cellArea
} else if (volume < 0) {
cutVolume += abs(volume)
cutArea += cellArea
}
}
}
return EarthworkResult(
cutVolume = cutVolume,
fillVolume = fillVolume,
netVolume = fillVolume - cutVolume,
cutArea = cutArea,
fillArea = fillArea,
totalArea = cutArea + fillArea
)
}
}
/**
* 土方量计算结果
* @property cutVolume 挖方量 (m³)
* @property fillVolume 填方量 (m³)
* @property netVolume 净土方量 (m³)
* @property cutArea 挖方面积 (m²)
* @property fillArea 填方面积 (m²)
* @property totalArea 总面积 (m²)
*/
data class EarthworkResult(
val cutVolume: Double,
val fillVolume: Double,
val netVolume: Double,
val cutArea: Double,
val fillArea: Double,
val totalArea: Double
) {
override fun toString(): String {
return buildString {
appendLine("EarthworkResult")
appendLine("挖方: ${"%.1f".format(cutVolume)}")
appendLine("填方: ${"%.1f".format(fillVolume)}")
appendLine("净土方: ${"%.1f".format(netVolume)}")
appendLine("挖方面积: ${"%.1f".format(cutArea)}")
appendLine("填方面积: ${"%.1f".format(fillArea)}")
appendLine("总面积:${"%.1f".format(totalArea)}")
}
}
}
class EarthworkManager(
private val mapView: MapView,
private val scope: CoroutineScope
) {
private val arrowSourceId: String = "controllable-source-id-0"
private val arrowLayerId: String = "controllable-layer-id-0"
private var listener: OnMoveListener? = null
private var gridModel = MutableStateFlow<GridModel?>(null)
private val arrowHead = MutableStateFlow(emptyList<Vector2D>())
private var arrowCenter = MutableStateFlow(Vector2D(0.0, 0.0))
private var arrowEnd = MutableStateFlow(Vector2D(0.0, 1.0))
private var _slopeDirection = MutableStateFlow(0.degrees)
val slopeDirection = _slopeDirection.asStateFlow()
private val _slopePercentage = MutableStateFlow(90.0)
val slopePercentage = _slopePercentage.asStateFlow()
private val _baseHeightOffset = MutableStateFlow(0.0)
val baseHeightOffset = _baseHeightOffset.asStateFlow()
init {
combine(
arrowCenter,
arrowEnd,
gridModel
) { center, arrow, gridModel ->
gridModel?.let { gridModel ->
// _slopeDirection.value = angle
displayControllableArrow(gridModel, getSlopeDirection(arrow, center))
}
}.launchIn(scope)
combine(
_slopeDirection,
gridModel
) { slopeDirection, gridModel ->
gridModel?.let {
displayControllableArrow(it, slopeDirection)
}
}.launchIn(scope)
}
private fun getSlopeDirection(
arrow: Vector2D,
center: Vector2D
): Angle {
val direction = (arrow - center)
val atan2 = Angle.atan2(direction.x, direction.y, Vector2D.UP)
val angle = atan2.normalized
return angle
}
private fun displayControllableArrow(gridModel: GridModel, slopeDirection: Angle) {
val arrowData = calculateArrowData(
grid = gridModel,
angle = slopeDirection,
)
arrowHead.value = arrowData.headRing
mapView.displayControllableArrow(
sourceId = arrowSourceId,
layerId = arrowLayerId,
arrowData = arrowData,
)
}
fun Point.toVector2D(): Vector2D {
val geoHelper = GeoHelper.getSharedInstance()
val enu = geoHelper.wgs84ToENU(lon = longitude(), lat = latitude(), hgt = 0.0)
return Vector2D(enu.x, enu.y)
}
fun removeOnMoveListener() {
listener?.let(mapView.mapboxMap::removeOnMoveListener)
listener = null
}
fun setupOnMoveListener() {
listener = object : OnMoveListener {
private var beginning: Boolean = false
private var isDragging: Boolean = false
private fun getCoordinate(focalPoint: PointF): Point {
return mapView.mapboxMap.coordinateForPixel(ScreenCoordinate(focalPoint.x.toDouble(), focalPoint.y.toDouble()))
}
override fun onMove(detector: MoveGestureDetector): Boolean {
val focalPoint = detector.focalPoint
val point = mapView.mapboxMap
.coordinateForPixel(ScreenCoordinate(focalPoint.x.toDouble(), focalPoint.y.toDouble()))
.toVector2D()
val isPointInPolygon = RayCastingAlgorithm.isPointInPolygon(
point = point,
polygon = arrowHead.value
)
if (isPointInPolygon) {
isDragging = true
}
if (isDragging) {
arrowEnd.value = point
}
return isDragging
}
override fun onMoveBegin(detector: MoveGestureDetector) {
Log.d(TAG, "onMoveBegin: $detector")
beginning = true
}
override fun onMoveEnd(detector: MoveGestureDetector) {
Log.d(TAG, "onMoveEnd: $detector")
val point = getCoordinate(detector.focalPoint)
val arrow = point.toVector2D()
if (beginning && isDragging) {
arrowEnd.value = arrow
val center = arrowCenter.value
_slopeDirection.value = getSlopeDirection(arrow, center)
}
Log.d(
TAG,
buildString {
appendLine("onMoveEnd: ")
appendLine("${point.longitude()}, ${point.latitude()}")
}
)
isDragging = false
beginning = false
}
}.also(mapView.mapboxMap::addOnMoveListener)
}
fun updateGridModel(gridModel: GridModel) {
this.gridModel.value = gridModel
calculateArrowCenter(gridModel)
}
private fun calculateArrowCenter(gridModel: GridModel) {
val centerX = (gridModel.minX + gridModel.maxX) / 2
val centerY = (gridModel.minY + gridModel.maxY) / 2
arrowCenter.value = Vector2D(centerX, centerY)
}
fun updateSlopeDirection(angle: Angle) {
_slopeDirection.value = angle
}
fun updateSlopePercentage(value: Double) {
_slopePercentage.value = value
}
fun updateDesignHeight(value: Double) {
_baseHeightOffset.value = value
}
}

View File

@@ -0,0 +1,83 @@
package com.icegps.orx
import com.icegps.common.helper.GeoHelper
import com.icegps.math.geometry.Vector2D
import com.mapbox.geojson.Feature
import com.mapbox.geojson.FeatureCollection
import com.mapbox.geojson.Point
import com.mapbox.geojson.Polygon
import com.mapbox.maps.MapView
import com.mapbox.maps.extension.style.expressions.generated.Expression
import com.mapbox.maps.extension.style.layers.addLayer
import com.mapbox.maps.extension.style.layers.generated.FillLayer
import com.mapbox.maps.extension.style.sources.addSource
import com.mapbox.maps.extension.style.sources.generated.geoJsonSource
/**
* @author tabidachinokaze
* @date 2025/11/25
*/
fun MapView.displayGridModel(
grid: GridModel,
sourceId: String,
layerId: String,
palette: (Double?) -> String,
) {
val geoHelper = GeoHelper.getSharedInstance()
mapboxMap.getStyle { style ->
val polygonFeatures = mutableListOf<Feature>()
val minX = grid.minX
val maxY = grid.maxY
val cellSize = grid.cellSize
for (r in 0 until grid.rows) {
for (c in 0 until grid.cols) {
val idx = r * grid.cols + c
val v = grid.cells[idx] ?: continue
val x0 = minX + c * cellSize
val y0 = maxY - r * cellSize
val x1 = x0 + cellSize
val y1 = y0 - cellSize
val ring = listOf(
Vector2D(x0, y0),
Vector2D(x1, y0),
Vector2D(x1, y1),
Vector2D(x0, y1),
Vector2D(x0, y0),
).map {
geoHelper.enuToWGS84Object(GeoHelper.ENU(it.x, it.y))
}.map {
Point.fromLngLat(it.lon, it.lat)
}
val poly = Polygon.fromLngLats(listOf(ring))
val polyFeature = Feature.fromGeometry(poly)
polyFeature.addStringProperty("color", palette(v))
polyFeature.addNumberProperty("value", v ?: -9999.0)
polygonFeatures.add(polyFeature)
}
}
try {
style.removeStyleLayer(layerId)
} catch (_: Exception) {
}
if (style.styleSourceExists(sourceId)) {
style.removeStyleSource(sourceId)
}
val polygonSource = geoJsonSource(sourceId) {
featureCollection(FeatureCollection.fromFeatures(polygonFeatures))
}
style.addSource(polygonSource)
val fillLayer = FillLayer(layerId, sourceId).apply {
fillColor(Expression.toColor(Expression.get("color")))
fillOpacity(0.5)
}
style.addLayer(fillLayer)
}
}

View File

@@ -0,0 +1,139 @@
package com.icegps.orx
import com.icegps.math.geometry.Vector2D
import com.icegps.math.geometry.Vector3D
import com.icegps.triangulation.DelaunayTriangulation
import kotlin.math.absoluteValue
import kotlin.math.ceil
/**
* @author tabidachinokaze
* @date 2025/11/25
*/
data class GridModel(
val minX: Double,
val maxX: Double,
val minY: Double,
val maxY: Double,
val rows: Int,
val cols: Int,
val cellSize: Double,
val cells: Array<Double?>
) {
fun getValue(row: Int, col: Int): Double? {
if (row !in 0..<rows || col < 0 || col >= cols) {
return null
}
return cells[row * cols + col]
}
}
fun triangulationToGrid(
delaunator: DelaunayTriangulation,
cellSize: Double = 50.0,
maxSidePixels: Int = 5000
): GridModel {
fun pointInTriangle(pt: Vector2D, a: Vector3D, b: Vector3D, c: Vector3D): Boolean {
val v0x = c.x - a.x
val v0y = c.y - a.y
val v1x = b.x - a.x
val v1y = b.y - a.y
val v2x = pt.x - a.x
val v2y = pt.y - a.y
val dot00 = v0x * v0x + v0y * v0y
val dot01 = v0x * v1x + v0y * v1y
val dot02 = v0x * v2x + v0y * v2y
val dot11 = v1x * v1x + v1y * v1y
val dot12 = v1x * v2x + v1y * v2y
val denom = dot00 * dot11 - dot01 * dot01
if (denom == 0.0) return false
val invDenom = 1.0 / denom
val u = (dot11 * dot02 - dot01 * dot12) * invDenom
val v = (dot00 * dot12 - dot01 * dot02) * invDenom
return u >= 0 && v >= 0 && u + v <= 1
}
fun barycentricInterpolateLegacy(pt: Vector2D, a: Vector3D, b: Vector3D, c: Vector3D, values: DoubleArray): Double {
val area = { p1: Vector2D, p2: Vector3D, p3: Vector3D ->
((p2.x - p1.x) * (p3.y - p1.y) - (p3.x - p1.x) * (p2.y - p1.y)).absoluteValue / 2.0
}
val area2 = { p1: Vector3D, p2: Vector3D, p3: Vector3D ->
((p2.x - p1.x) * (p3.y - p1.y) - (p3.x - p1.x) * (p2.y - p1.y)).absoluteValue / 2.0
}
val areaTotal = area2(a, b, c)
if (areaTotal == 0.0) return values[0]
val wA = area(pt, b, c) / areaTotal
val wB = area(pt, c, a) / areaTotal
val wC = area(pt, a, b) / areaTotal
return values[0] * wA + values[1] * wB + values[2] * wC
}
val pts = delaunator.points
require(pts.isNotEmpty()) { "points empty" }
val x = pts.map { it.x }
val y = pts.map { it.y }
val minX = x.min()
val maxX = x.max()
val minY = y.min()
val maxY = y.max()
val width = maxX - minX
val height = maxY - minY
var cols = ceil(width / cellSize).toInt()
var rows = ceil(height / cellSize).toInt()
// 防止过大
if (cols > maxSidePixels) cols = maxSidePixels
if (rows > maxSidePixels) rows = maxSidePixels
val cells = Array<Double?>(rows * cols) { null }
val triangles = delaunator.triangles()
for (ti in 0 until triangles.size) {
val (a, b, c) = triangles[ti]
val tminX = minOf(a.x, b.x, c.x)
val tmaxX = maxOf(a.x, b.x, c.x)
val tminY = minOf(a.y, b.y, c.y)
val tmaxY = maxOf(a.y, b.y, c.y)
val colMin = ((tminX - minX) / cellSize).toInt().coerceIn(0, cols - 1)
val colMax = ((tmaxX - minX) / cellSize).toInt().coerceIn(0, cols - 1)
val rowMin = ((maxY - tmaxY) / cellSize).toInt().coerceIn(0, rows - 1)
val rowMax = ((maxY - tminY) / cellSize).toInt().coerceIn(0, rows - 1)
val triVertexVals = doubleArrayOf(a.z, b.z, c.z)
for (r in rowMin..rowMax) {
for (cIdx in colMin..colMax) {
val centerX = minX + (cIdx + 0.5) * cellSize
val centerY = maxY - (r + 0.5) * cellSize
val pt = Vector2D(centerX, centerY)
if (pointInTriangle(pt, a, b, c)) {
val idx = r * cols + cIdx
val valInterp = barycentricInterpolateLegacy(pt, a, b, c, triVertexVals)
cells[idx] = valInterp
}
}
}
}
val grid = GridModel(
minX = minX,
minY = minY,
maxX = maxX,
maxY = maxY,
rows = rows,
cols = cols,
cellSize = cellSize,
cells = cells
)
return grid
}

View File

@@ -1,77 +1,220 @@
package com.icegps.orx
import android.os.Bundle
import android.util.Log
import androidx.activity.enableEdgeToEdge
import androidx.appcompat.app.AppCompatActivity
import androidx.core.view.ViewCompat
import androidx.core.view.WindowInsetsCompat
import androidx.lifecycle.ViewModel
import androidx.lifecycle.viewModelScope
import androidx.lifecycle.ViewModelProvider
import androidx.lifecycle.lifecycleScope
import com.google.android.material.slider.RangeSlider
import com.google.android.material.slider.Slider
import com.icegps.common.helper.GeoHelper
import com.icegps.math.geometry.degrees
import com.icegps.orx.databinding.ActivityMainBinding
import com.icegps.shared.SharedHttpClient
import com.icegps.shared.SharedJson
import com.icegps.shared.api.OpenElevation
import com.icegps.shared.api.OpenElevationApi
import com.icegps.shared.ktx.TAG
import com.icegps.shared.model.GeoPoint
import com.mapbox.geojson.Point
import com.mapbox.maps.CameraOptions
import com.mapbox.maps.MapView
import com.mapbox.maps.plugin.gestures.addOnMapClickListener
import kotlinx.coroutines.flow.MutableStateFlow
import kotlinx.coroutines.flow.catch
import kotlinx.coroutines.flow.combine
import kotlinx.coroutines.flow.filterNotNull
import kotlinx.coroutines.flow.launchIn
import kotlinx.coroutines.flow.map
import kotlinx.coroutines.flow.onEach
import kotlinx.coroutines.flow.update
import org.openrndr.extra.triangulation.DelaunayTriangulation
import org.openrndr.math.Vector2
import org.openrndr.math.Vector3
class MainActivity : AppCompatActivity() {
private lateinit var binding: ActivityMainBinding
private lateinit var mapView: MapView
private val viewModel: MainViewModel by lazy {
ViewModelProvider(this)[MainViewModel::class.java]
}
private lateinit var contoursManager: ContoursManager
private lateinit var earthworkManager: EarthworkManager
init {
initGeoHelper()
}
override fun onCreate(savedInstanceState: Bundle?) {
super.onCreate(savedInstanceState)
enableEdgeToEdge()
binding = ActivityMainBinding.inflate(layoutInflater)
mapView = binding.mapView
earthworkManager = EarthworkManager(mapView, lifecycleScope)
setContentView(binding.root)
ViewCompat.setOnApplyWindowInsetsListener(findViewById(R.id.main)) { v, insets ->
val systemBars = insets.getInsets(WindowInsetsCompat.Type.systemBars())
v.setPadding(systemBars.left, systemBars.top, systemBars.right, systemBars.bottom)
insets
}
mapView.mapboxMap.setCamera(
CameraOptions.Builder()
.center(Point.fromLngLat(home.longitude, home.latitude))
.pitch(0.0)
.zoom(18.0)
.bearing(0.0)
.build()
)
val points = coordinateGenerate()
// divider
contoursManager = ContoursManager(
context = this,
mapView = mapView,
scope = lifecycleScope
)
contoursManager.updateContourSize(6)
contoursManager.updatePoints(points)
val height = points.map { it.z }
val min = height.min()
val max = height.max()
contoursManager.updateHeightRange((min / 2)..max)
binding.heightRange.values = listOf(min.toFloat() / 2, max.toFloat())
binding.heightRange.valueFrom = min.toFloat()
binding.heightRange.valueTo = max.toFloat()
contoursManager.refresh()
binding.sliderTargetHeight.addOnSliderTouchListener(
object : Slider.OnSliderTouchListener {
override fun onStartTrackingTouch(p0: Slider) {
}
override fun onStopTrackingTouch(p0: Slider) {
val present = p0.value / p0.valueTo
// val targetHeight = ((valueRange.endInclusive - valueRange.start) * present) + valueRange.start
// val contours = findContours(triangles, targetHeight)
// contoursTest.clearContours()
// if (false) contoursTest.updateContours(contours)
}
}
)
binding.heightRange.addOnSliderTouchListener(
object : RangeSlider.OnSliderTouchListener {
override fun onStartTrackingTouch(slider: RangeSlider) {
}
override fun onStopTrackingTouch(slider: RangeSlider) {
contoursManager.updateHeightRange((slider.values.min().toDouble() - 1.0)..(slider.values.max().toDouble() + 1.0))
contoursManager.refresh()
}
}
)
binding.switchGrid.setOnCheckedChangeListener { _, isChecked ->
contoursManager.setGridVisible(isChecked)
}
binding.switchTriangle.setOnCheckedChangeListener { _, isChecked ->
contoursManager.setTriangleVisible(isChecked)
}
binding.update.setOnClickListener {
contoursManager.refresh()
}
binding.cellSize.addOnSliderTouchListener(
object : Slider.OnSliderTouchListener {
override fun onStartTrackingTouch(slider: Slider) {
}
override fun onStopTrackingTouch(slider: Slider) {
contoursManager.updateCellSize(slider.value.toDouble())
contoursManager.refresh()
}
}
)
mapView.mapboxMap.addOnMapClickListener {
viewModel.addPoint(it)
true
}
binding.clearPoints.setOnClickListener {
viewModel.clearPoints()
}
binding.slopeDirection.addOnSliderTouchListener(
object : Slider.OnSliderTouchListener {
override fun onStartTrackingTouch(slider: Slider) {
}
override fun onStopTrackingTouch(slider: Slider) {
earthworkManager.updateSlopeDirection(slider.value.degrees)
}
}
)
binding.slopePercentage.addOnSliderTouchListener(
object : Slider.OnSliderTouchListener {
override fun onStartTrackingTouch(slider: Slider) {
}
override fun onStopTrackingTouch(slider: Slider) {
earthworkManager.updateSlopePercentage(slider.value.toDouble())
}
}
)
binding.designHeight.addOnSliderTouchListener(
object : Slider.OnSliderTouchListener {
override fun onStartTrackingTouch(slider: Slider) {
}
override fun onStopTrackingTouch(slider: Slider) {
earthworkManager.updateDesignHeight(slider.value.toDouble())
}
}
)
binding.switchDesignSurface.setOnCheckedChangeListener { button, isChecked ->
showDesignHeight.value = isChecked
}
earthworkManager.setupOnMoveListener()
initData()
}
private val showDesignHeight = MutableStateFlow(false)
private fun initData() {
viewModel.points.onEach {
contoursManager.updatePoints(it)
contoursManager.updateHeightRange()
contoursManager.refresh()
}.launchIn(lifecycleScope)
contoursManager.gridModel.filterNotNull().onEach {
earthworkManager.updateGridModel(it)
}.launchIn(lifecycleScope)
earthworkManager.slopeDirection.onEach {
binding.slopeDirection.value = it.degrees.toFloat()
}.launchIn(lifecycleScope)
combine(
earthworkManager.slopeDirection,
earthworkManager.slopePercentage,
earthworkManager.baseHeightOffset,
contoursManager.gridModel,
showDesignHeight
) { slopeDirection, slopePercentage, baseHeightOffset, gridModel, showDesignHeight ->
gridModel?.let { gridModel ->
val slopeResult: SlopeResult = SlopeCalculator.calculateSlope(
grid = gridModel,
slopeDirection = slopeDirection.degrees,
slopePercentage = slopePercentage,
baseHeightOffset = baseHeightOffset
)
mapView.displaySlopeResult(
originalGrid = gridModel,
slopeResult = slopeResult,
palette = contoursManager.simplePalette::palette,
showDesignHeight = showDesignHeight
)
}
}.launchIn(lifecycleScope)
}
}
class MainViewModel : ViewModel() {
private val geoHelper = GeoHelper.getSharedInstance()
private val openElevation: OpenElevationApi = OpenElevation(SharedHttpClient(SharedJson()))
val home = GeoPoint(114.476060, 22.771073, 30.897)
private val _points = MutableStateFlow<List<Point>>(emptyList())
init {
_points.map {
openElevation.lookup(it.map { GeoPoint(it.longitude(), it.latitude(), it.altitude()) })
}.catch {
Log.e(TAG, "高程请求失败", it)
}.map {
it.map {
val enu =
geoHelper.wgs84ToENU(lon = it.longitude, lat = it.latitude, hgt = it.altitude)
Vector2(enu.x, enu.y)
}
}.onEach {
val triangulation = DelaunayTriangulation(it)
triangulation.triangles().map {
it.contour
}
}.launchIn(viewModelScope)
}
fun addPoint(point: Point) {
_points.update {
it.toMutableList().apply {
add(point)
}
}
}
fun initGeoHelper(base: GeoPoint = home) {
val geoHelper = GeoHelper.getSharedInstance()
geoHelper.wgs84ToENU(
lon = base.longitude,
lat = base.latitude,
hgt = base.altitude
)
}

View File

@@ -0,0 +1,59 @@
package com.icegps.orx
import android.app.Application
import android.util.Log
import androidx.lifecycle.AndroidViewModel
import androidx.lifecycle.viewModelScope
import com.icegps.common.helper.GeoHelper
import com.icegps.math.geometry.Vector3D
import com.icegps.orx.ktx.toast
import com.icegps.shared.SharedHttpClient
import com.icegps.shared.SharedJson
import com.icegps.shared.api.OpenElevation
import com.icegps.shared.api.OpenElevationApi
import com.icegps.shared.ktx.TAG
import com.icegps.shared.model.GeoPoint
import com.mapbox.geojson.Point
import kotlinx.coroutines.flow.MutableStateFlow
import kotlinx.coroutines.flow.SharingStarted
import kotlinx.coroutines.flow.catch
import kotlinx.coroutines.flow.debounce
import kotlinx.coroutines.flow.filter
import kotlinx.coroutines.flow.map
import kotlinx.coroutines.flow.stateIn
import kotlinx.coroutines.flow.update
class MainViewModel(private val context: Application) : AndroidViewModel(context) {
private val geoHelper = GeoHelper.Companion.getSharedInstance()
private val openElevation: OpenElevationApi = OpenElevation(SharedHttpClient(SharedJson()))
private val _points = MutableStateFlow<List<Point>>(emptyList())
val points = _points.filter { it.size > 3 }.debounce(1000).map {
openElevation.lookup(it.map { GeoPoint(it.longitude(), it.latitude(), it.altitude()) })
}.catch {
Log.e(TAG, "高程请求失败", it)
context.toast("高程请求失败")
}.map {
it.map {
val enu = geoHelper.wgs84ToENU(lon = it.longitude, lat = it.latitude, hgt = it.altitude)
Vector3D(enu.x, enu.y, enu.z)
}
}.stateIn(
scope = viewModelScope,
started = SharingStarted.Companion.Eagerly,
initialValue = emptyList()
)
fun addPoint(point: Point) {
context.toast("${point.longitude()}, ${point.latitude()}")
_points.update {
it.toMutableList().apply {
add(point)
}
}
}
fun clearPoints() {
_points.value = emptyList()
}
}

View File

@@ -0,0 +1,123 @@
package com.icegps.orx
import android.graphics.Color
import com.icegps.common.helper.GeoHelper
import com.icegps.math.geometry.Vector3D
import com.icegps.orx.ktx.toMapboxPoint
import com.mapbox.geojson.Feature
import com.mapbox.geojson.FeatureCollection
import com.mapbox.geojson.LineString
import com.mapbox.geojson.Polygon
import com.mapbox.maps.MapView
import com.mapbox.maps.Style
import com.mapbox.maps.extension.style.layers.addLayer
import com.mapbox.maps.extension.style.layers.generated.fillLayer
import com.mapbox.maps.extension.style.layers.generated.lineLayer
import com.mapbox.maps.extension.style.layers.properties.generated.LineCap
import com.mapbox.maps.extension.style.layers.properties.generated.LineJoin
import com.mapbox.maps.extension.style.sources.addSource
import com.mapbox.maps.extension.style.sources.generated.geoJsonSource
class PolygonTest(
private val mapView: MapView
) {
private val geoHelper = GeoHelper.Companion.getSharedInstance()
private val contourSourceId = "contour-source-id-0"
private val contourLayerId = "contour-layer-id-0"
private val fillSourceId = "fill-source-id-0"
private val fillLayerId = "fill-layer-id-0"
fun update(
outer: List<Vector3D>,
inner: List<Vector3D>,
other: List<Vector3D>
) {
val lineFeatures = mutableListOf<Feature>()
val fillFeatures = mutableListOf<Feature>()
val outerPoints = outer.map { it.toMapboxPoint() }
val innerPoints = inner.map { it.toMapboxPoint() }
val otherPoints = other.map { it.toMapboxPoint() }
val outerLine = LineString.fromLngLats(outerPoints)
Feature.fromGeometry(outerLine).also {
lineFeatures.add(it)
}
val innerLine = LineString.fromLngLats(innerPoints)
Feature.fromGeometry(innerLine).also {
lineFeatures.add(it)
}
Feature.fromGeometry(LineString.fromLngLats(otherPoints)).also {
lineFeatures.add(it)
}
//val polygon = Polygon.fromOuterInner(outerLine, innerLine)
val polygon = Polygon.fromLngLats(listOf(outerPoints, otherPoints, innerPoints))
mapView.mapboxMap.getStyle { style ->
if (false) setupLineLayer(
style = style,
sourceId = contourSourceId,
layerId = contourLayerId,
features = lineFeatures
)
setupFillLayer(
style = style,
sourceId = fillSourceId,
layerId = fillLayerId,
features = listOf(Feature.fromGeometry(polygon))
)
}
}
private fun setupLineLayer(
style: Style,
sourceId: String,
layerId: String,
features: List<Feature>
) {
style.removeStyleLayer(layerId)
style.removeStyleSource(sourceId)
val source = geoJsonSource(sourceId) {
featureCollection(FeatureCollection.fromFeatures(features))
}
style.addSource(source)
val layer = lineLayer(layerId, sourceId) {
lineColor(Color.RED)
lineWidth(2.0)
lineCap(LineCap.Companion.ROUND)
lineJoin(LineJoin.Companion.ROUND)
lineOpacity(0.8)
}
style.addLayer(layer)
}
private fun setupFillLayer(
style: Style,
sourceId: String,
layerId: String,
features: List<Feature>
) {
style.removeStyleLayer(layerId)
style.removeStyleSource(sourceId)
val source = geoJsonSource(sourceId) {
featureCollection(FeatureCollection.fromFeatures(features))
}
style.addSource(source)
val layer = fillLayer(fillLayerId, fillSourceId) {
fillColor(Color.YELLOW)
fillOpacity(0.3)
fillAntialias(true)
}
style.addLayer(layer)
}
fun clear() {
}
}

View File

@@ -0,0 +1,121 @@
package com.icegps.orx
import android.graphics.Color
import com.icegps.math.geometry.Line3D
import com.icegps.math.geometry.Vector3D
import com.icegps.orx.ktx.toMapboxPoint
import com.mapbox.geojson.Feature
import com.mapbox.geojson.FeatureCollection
import com.mapbox.geojson.LineString
import com.mapbox.maps.MapView
import com.mapbox.maps.Style
import com.mapbox.maps.extension.style.layers.addLayer
import com.mapbox.maps.extension.style.layers.generated.lineLayer
import com.mapbox.maps.extension.style.layers.properties.generated.LineCap
import com.mapbox.maps.extension.style.layers.properties.generated.LineJoin
import com.mapbox.maps.extension.style.sources.addSource
import com.mapbox.maps.extension.style.sources.generated.geoJsonSource
class PolylineManager(
private val mapView: MapView
) {
private val sourceId: String = "polyline-source-id-0"
private val layerId: String = "polyline-layer-id-0"
fun update(
points: List<List<Vector3D>>
) {
val lineStrings: List<List<Feature>> = points.map {
val lines = fromPoints(it, true)
lines.map {
LineString.fromLngLats(listOf(it.a.toMapboxPoint(), it.b.toMapboxPoint()))
}
}.map {
it.map { Feature.fromGeometry(it) }
}
mapView.mapboxMap.getStyle { style ->
setupLineLayer(
style = style,
sourceId = sourceId,
layerId = layerId,
features = lineStrings.flatten()
)
}
}
fun updateFeatures(
features: List<Feature>
) {
mapView.mapboxMap.getStyle { style ->
setupLineLayer(
style = style,
sourceId = sourceId,
layerId = layerId,
features = features
)
}
}
private fun setupLineLayer(
style: Style,
sourceId: String,
layerId: String,
features: List<Feature>
) {
style.removeStyleLayer(layerId)
style.removeStyleSource(sourceId)
val source = geoJsonSource(sourceId) {
featureCollection(FeatureCollection.fromFeatures(features))
}
style.addSource(source)
val layer = lineLayer(layerId, sourceId) {
lineColor(Color.RED)
lineWidth(2.0)
lineCap(LineCap.Companion.ROUND)
lineJoin(LineJoin.Companion.ROUND)
lineOpacity(0.8)
}
style.addLayer(layer)
}
fun clearContours() {
mapView.mapboxMap.getStyle { style ->
try {
style.removeStyleLayer(layerId)
} catch (_: Exception) {
}
try {
style.removeStyleSource(sourceId)
} catch (_: Exception) {
}
}
}
}
fun fromPoints(
points: List<Vector3D>,
closed: Boolean,
) = if (points.isEmpty()) {
emptyList()
} else {
if (!closed) {
(0 until points.size - 1).map {
Line3D(
points[it],
points[it + 1]
)
}
} else {
val d = (points.last() - points.first()).length
val usePoints = if (d > 1E-6) points else points.dropLast(1)
(usePoints.indices).map {
Line3D(
usePoints[it],
usePoints[(it + 1) % usePoints.size]
)
}
}
}

View File

@@ -0,0 +1,44 @@
package com.icegps.orx
import com.icegps.math.geometry.Vector2D
import com.icegps.math.geometry.Vector3D
import com.icegps.math.geometry.toVector2D
/**
* @author tabidachinokaze
* @date 2025/11/26
*/
object RayCastingAlgorithm {
/**
* 使用射线法判断点是否在多边形内
* @param point 测试点
* @param polygon 多边形顶点列表
* @return true如果在多边形内
*/
fun isPointInPolygon(point: Vector2D, polygon: List<Vector2D>): Boolean {
if (polygon.size < 3) return false
val x = point.x
val y = point.y
var inside = false
var j = polygon.size - 1
for (i in polygon.indices) {
val xi = polygon[i].x
val yi = polygon[i].y
val xj = polygon[j].x
val yj = polygon[j].y
val intersect = ((yi > y) != (yj > y)) && (x < (xj - xi) * (y - yi) / (yj - yi) + xi)
if (intersect) inside = !inside
j = i
}
return inside
}
fun isPointInPolygon(point: Vector3D, polygon: List<Vector3D>): Boolean {
return isPointInPolygon(point.toVector2D(), polygon.map { it.toVector2D() })
}
}

View File

@@ -0,0 +1,123 @@
package com.icegps.orx
import android.util.Log
/**
* @author tabidachinokaze
* @date 2025/11/25
*/
class SimplePalette(
private var range: ClosedFloatingPointRange<Double>
) {
fun setRange(range: ClosedFloatingPointRange<Double>) {
this.range = range
}
private val colors: Map<Int, String>
init {
colors = generateTerrainColorMap()
}
fun palette(value: Double?): String {
if (value == null) return "#00000000"
val minH = range.start
val maxH = range.endInclusive
val normalized = ((value - minH) / (maxH - minH)).coerceIn(0.0, 1.0)
return colors[(normalized * 255).toInt()] ?: "#00000000"
}
fun palette1(value: Double?): String {
return if (value == null) "#00000000" else {
// 假设您已经知道高度范围,或者动态计算
val minH = range.start
val maxH = range.endInclusive
val normalized = ((value - minH) / (maxH - minH)).coerceIn(0.0, 1.0)
val alpha = (normalized * 255).toInt()
String.format("#%02X%02X%02X", alpha, 0, 0)
}.also {
Log.d("simplePalette", "$value -> $it")
}
}
fun generateGrayscaleColorMap2(): MutableMap<Int, String> {
val colorMap = mutableMapOf<Int, String>()
// 定义关键灰度点
val black = Color(0, 0, 0) // 低地势 - 黑色
val darkGray = Color(64, 64, 64) // 过渡
val midGray = Color(128, 128, 128) // 中间
val lightGray = Color(192, 192, 192) // 过渡
val white = Color(255, 255, 255) // 高地势 - 白色
for (i in 0..255) {
val position = i / 255.0
val color = when {
position < 0.25 -> interpolateColor(black, darkGray, position / 0.25)
position < 0.5 -> interpolateColor(darkGray, midGray, (position - 0.25) / 0.25)
position < 0.75 -> interpolateColor(midGray, lightGray, (position - 0.5) / 0.25)
else -> interpolateColor(lightGray, white, (position - 0.75) / 0.25)
}
colorMap[i] = color.toHex()
}
return colorMap
}
fun generateGrayscaleColorMap(): MutableMap<Int, String> {
val colorMap = mutableMapOf<Int, String>()
for (i in 0..255) {
// 从黑色到白色的线性渐变
val grayValue = i
val color = Color(grayValue, grayValue, grayValue)
colorMap[i] = color.toHex()
}
return colorMap
}
fun generateTerrainColorMap(): MutableMap<Int, String> {
val colorMap = mutableMapOf<Int, String>()
// 定义关键颜色点
val blue = Color(0, 0, 255) // 低地势 - 蓝色
val cyan = Color(0, 255, 255) // 中间过渡
val green = Color(0, 255, 0) // 中间过渡
val yellow = Color(255, 255, 0) // 中间过渡
val red = Color(255, 0, 0) // 高地势 - 红色
for (i in 0..255) {
val position = i / 255.0
val color = when {
position < 0.25 -> interpolateColor(blue, cyan, position / 0.25)
position < 0.5 -> interpolateColor(cyan, green, (position - 0.25) / 0.25)
position < 0.75 -> interpolateColor(green, yellow, (position - 0.5) / 0.25)
else -> interpolateColor(yellow, red, (position - 0.75) / 0.25)
}
colorMap[i] = color.toHex()
}
return colorMap
}
fun interpolateColor(start: Color, end: Color, fraction: Double): Color {
val r = (start.red + (end.red - start.red) * fraction).toInt()
val g = (start.green + (end.green - start.green) * fraction).toInt()
val b = (start.blue + (end.blue - start.blue) * fraction).toInt()
return Color(r, g, b)
}
// Color类简化实现
class Color(val red: Int, val green: Int, val blue: Int) {
fun toArgb(): Int {
return (0xFF shl 24) or (red shl 16) or (green shl 8) or blue
}
fun toHex(): String {
return String.format("#%06X", toArgb() and 0xFFFFFF)
}
}
}

View File

@@ -0,0 +1,135 @@
package com.icegps.orx.catmullrom
import com.icegps.math.geometry.Vector2D
import com.icegps.orx.marchingsquares.Segment2D
import com.icegps.orx.marchingsquares.ShapeContour
import kotlin.math.min
import kotlin.math.pow
private const val almostZero = 0.00000001
private const val almostOne = 0.99999999
/**
* Creates a 2D Catmull-Rom spline curve.
*
* Can be represented as a segment drawn between [p1] and [p2],
* while [p0] and [p3] are used as control points.
*
* Under some circumstances alpha can have
* no perceptible effect, for example,
* when creating closed shapes with the vertices
* forming a regular 2D polygon.
*
* @param p0 The first control point.
* @param p1 The starting anchor point.
* @param p2 The ending anchor point.
* @param p3 The second control point.
* @param alpha The *tension* of the curve.
* Use `0.0` for the uniform spline, `0.5` for the centripetal spline, `1.0` for the chordal spline.
*/
class CatmullRom2(val p0: Vector2D, val p1: Vector2D, val p2: Vector2D, val p3: Vector2D, val alpha: Double = 0.5) {
/** Value of t for p0. */
val t0: Double = 0.0
/** Value of t for p1. */
val t1: Double = calculateT(t0, p0, p1)
/** Value of t for p2. */
val t2: Double = calculateT(t1, p1, p2)
/** Value of t for p3. */
val t3: Double = calculateT(t2, p2, p3)
fun position(rt: Double): Vector2D {
val t = t1 + rt * (t2 - t1)
val a1 = p0 * ((t1 - t) / (t1 - t0)) + p1 * ((t - t0) / (t1 - t0))
val a2 = p1 * ((t2 - t) / (t2 - t1)) + p2 * ((t - t1) / (t2 - t1))
val a3 = p2 * ((t3 - t) / (t3 - t2)) + p3 * ((t - t2) / (t3 - t2))
val b1 = a1 * ((t2 - t) / (t2 - t0)) + a2 * ((t - t0) / (t2 - t0))
val b2 = a2 * ((t3 - t) / (t3 - t1)) + a3 * ((t - t1) / (t3 - t1))
val c = b1 * ((t2 - t) / (t2 - t1)) + b2 * ((t - t1) / (t2 - t1))
return c
}
private fun calculateT(t: Double, p0: Vector2D, p1: Vector2D): Double {
val a = (p1.x - p0.x).pow(2.0) + (p1.y - p0.y).pow(2.0)
val b = a.pow(0.5)
val c = b.pow(alpha)
return c + t
}
}
/**
* Calculates the 2D CatmullRom spline for a chain of points and returns the combined curve.
*
* For more details, see [CatmullRom2].
*
* @param points The [List] of 2D points where [CatmullRom2] is applied in groups of 4.
* @param alpha The *tension* of the curve.
* Use `0.0` for the uniform spline, `0.5` for the centripetal spline, `1.0` for the chordal spline.
* @param loop Whether to connect the first and last point, such that it forms a closed shape.
*/
class CatmullRomChain2(points: List<Vector2D>, alpha: Double = 0.5, val loop: Boolean = false) {
val segments = if (!loop) {
val startPoints = points.take(2)
val endPoints = points.takeLast(2)
val mirrorStart =
startPoints.first() - (startPoints.last() - startPoints.first()).normalized
val mirrorEnd = endPoints.last() + (endPoints.last() - endPoints.first()).normalized
(listOf(mirrorStart) + points + listOf(mirrorEnd)).windowed(4, 1).map {
CatmullRom2(it[0], it[1], it[2], it[3], alpha)
}
} else {
val cleanPoints = if (loop && points.first().distanceTo(points.last()) <= 1.0E-6) {
points.dropLast(1)
} else {
points
}
(cleanPoints + cleanPoints.take(3)).windowed(4, 1).map {
CatmullRom2(it[0], it[1], it[2], it[3], alpha)
}
}
fun positions(steps: Int = segments.size * 4): List<Vector2D> {
return (0..steps).map {
position(it.toDouble() / steps)
}
}
fun position(rt: Double): Vector2D {
val st = if (loop) rt.mod(1.0) else rt.coerceIn(0.0, 1.0)
val segmentIndex = (min(almostOne, st) * segments.size).toInt()
val t = (min(almostOne, st) * segments.size) - segmentIndex
return segments[segmentIndex].position(t)
}
}
fun List<Vector2D>.catmullRom(alpha: Double = 0.5, closed: Boolean) = CatmullRomChain2(this, alpha, closed)
/** Converts spline to a [Segment]. */
fun CatmullRom2.toSegment(): Segment2D {
val d1a2 = (p1 - p0).length.pow(2 * alpha)
val d2a2 = (p2 - p1).length.pow(2 * alpha)
val d3a2 = (p3 - p2).length.pow(2 * alpha)
val d1a = (p1 - p0).length.pow(alpha)
val d2a = (p2 - p1).length.pow(alpha)
val d3a = (p3 - p2).length.pow(alpha)
val b0 = p1
val b1 = (p2 * d1a2 - p0 * d2a2 + p1 * (2 * d1a2 + 3 * d1a * d2a + d2a2)) / (3 * d1a * (d1a + d2a))
val b2 = (p1 * d3a2 - p3 * d2a2 + p2 * (2 * d3a2 + 3 * d3a * d2a + d2a2)) / (3 * d3a * (d3a + d2a))
val b3 = p2
return Segment2D(b0, b1, b2, b3)
}
/**
* Converts chain to a [ShapeContour].
*/
@Suppress("unused")
fun CatmullRomChain2.toContour(): ShapeContour =
ShapeContour(segments.map { it.toSegment() }, this.loop)

View File

@@ -0,0 +1,427 @@
package com.icegps.orx.color
import com.icegps.math.geometry.Vector3D
import com.icegps.math.geometry.Vector4D
import kotlinx.serialization.Serializable
import kotlin.math.pow
@Serializable
enum class Linearity(val certainty: Int) {
/**
* Represents a linear color space.
*
* LINEAR typically signifies that the values in the color space are in a linear relationship,
* meaning there is no gamma correction or transformation applied to the data.
*/
LINEAR(1),
/**
* Represents a standard RGB (sRGB) color space.
*
* SRGB typically refers to a non-linear color space with gamma correction applied,
* designed for consistent color representation across devices.
*/
SRGB(1),
;
fun leastCertain(other: Linearity): Linearity {
return if (this.certainty <= other.certainty) {
this
} else {
other
}
}
fun isEquivalent(other: Linearity): Boolean {
return this == other
}
}
/**
* Represents a color in the RGBA color space. Each component, including red, green, blue, and alpha (opacity),
* is represented as a `Double` in the range `[0.0, 1.0]`. The color can be defined in either linear or sRGB space,
* determined by the `linearity` property.
*
* This class provides a wide variety of utility functions for manipulating and converting colors, such as shading,
* opacity adjustment, and format transformations. It also includes methods for parsing colors from hexadecimal
* notation or vectors.
*
* @property r Red component of the color as a value between `0.0` and `1.0`.
* @property g Green component of the color as a value between `0.0` and `1.0`.
* @property b Blue component of the color as a value between `0.0` and `1.0`.
* @property alpha Alpha (opacity) component of the color as a value between `0.0` and `1.0`. Defaults to `1.0`.
* @property linearity Indicates whether the color is defined in linear or sRGB space. Defaults to [Linearity.LINEAR].
*/
@Serializable
@Suppress("EqualsOrHashCode") // generated equals() is ok, only hashCode() needs to be overridden
data class ColorRGBa(
val r: Double,
val g: Double,
val b: Double,
val alpha: Double = 1.0,
val linearity: Linearity = Linearity.LINEAR
) {
enum class Component {
R,
G,
B
}
companion object {
/**
* Calculates a color from hexadecimal value. For values with transparency
* use the [String] variant of this function.
*/
fun fromHex(hex: Int): ColorRGBa {
val r = hex and (0xff0000) shr 16
val g = hex and (0x00ff00) shr 8
val b = hex and (0x0000ff)
return ColorRGBa(r / 255.0, g / 255.0, b / 255.0, 1.0, Linearity.SRGB)
}
/**
* Calculates a color from hexadecimal notation, like in CSS.
*
* Supports the following formats
* * `RGB`
* * `RGBA`
* * `RRGGBB`
* * `RRGGBBAA`
*
* where every character is a valid hex digit between `0..f` (case-insensitive).
* Supports leading "#" or "0x".
*/
fun fromHex(hex: String): ColorRGBa {
val pos = when {
hex.startsWith("#") -> 1
hex.startsWith("0x") -> 2
else -> 0
}
fun fromHex1(str: String, pos: Int): Double {
return 17 * str[pos].digitToInt(16) / 255.0
}
fun fromHex2(str: String, pos: Int): Double {
return (16 * str[pos].digitToInt(16) + str[pos + 1].digitToInt(16)) / 255.0
}
return when (hex.length - pos) {
3 -> ColorRGBa(fromHex1(hex, pos), fromHex1(hex, pos + 1), fromHex1(hex, pos + 2), 1.0, Linearity.SRGB)
4 -> ColorRGBa(
fromHex1(hex, pos),
fromHex1(hex, pos + 1),
fromHex1(hex, pos + 2),
fromHex1(hex, pos + 3),
Linearity.SRGB
)
6 -> ColorRGBa(fromHex2(hex, pos), fromHex2(hex, pos + 2), fromHex2(hex, pos + 4), 1.0, Linearity.SRGB)
8 -> ColorRGBa(
fromHex2(hex, pos),
fromHex2(hex, pos + 2),
fromHex2(hex, pos + 4),
fromHex2(hex, pos + 6),
Linearity.SRGB
)
else -> throw IllegalArgumentException("Invalid hex length/format for '$hex'")
}
}
/** @suppress */
val PINK = fromHex(0xffc0cb)
/** @suppress */
val BLACK = ColorRGBa(0.0, 0.0, 0.0, 1.0, Linearity.SRGB)
/** @suppress */
val WHITE = ColorRGBa(1.0, 1.0, 1.0, 1.0, Linearity.SRGB)
/** @suppress */
val RED = ColorRGBa(1.0, 0.0, 0.0, 1.0, Linearity.SRGB)
/** @suppress */
val BLUE = ColorRGBa(0.0, 0.0, 1.0, 1.0, Linearity.SRGB)
/** @suppress */
val GREEN = ColorRGBa(0.0, 1.0, 0.0, 1.0, Linearity.SRGB)
/** @suppress */
val YELLOW = ColorRGBa(1.0, 1.0, 0.0, 1.0, Linearity.SRGB)
/** @suppress */
val CYAN = ColorRGBa(0.0, 1.0, 1.0, 1.0, Linearity.SRGB)
/** @suppress */
val MAGENTA = ColorRGBa(1.0, 0.0, 1.0, 1.0, Linearity.SRGB)
/** @suppress */
val GRAY = ColorRGBa(0.5, 0.5, 0.5, 1.0, Linearity.SRGB)
/** @suppress */
val TRANSPARENT = ColorRGBa(0.0, 0.0, 0.0, 0.0, Linearity.LINEAR)
/**
* Create a ColorRGBa object from a [Vector3]
* @param vector input vector, `[x, y, z]` is mapped to `[r, g, b]`
* @param alpha optional alpha value, default is 1.0
*/
fun fromVector(vector: Vector3D, alpha: Double = 1.0, linearity: Linearity = Linearity.LINEAR): ColorRGBa {
return ColorRGBa(vector.x, vector.y, vector.z, alpha, linearity)
}
/**
* Create a ColorRGBa object from a [Vector4]
* @param vector input vector, `[x, y, z, w]` is mapped to `[r, g, b, a]`
*/
fun fromVector(vector: Vector4D, linearity: Linearity = Linearity.LINEAR): ColorRGBa {
return ColorRGBa(vector.x, vector.y, vector.z, vector.w, linearity)
}
}
@Deprecated("Legacy alpha parameter name", ReplaceWith("alpha"))
val a = alpha
/**
* Creates a copy of color with adjusted opacity
* @param factor a scaling factor used for the opacity
* @return A [ColorRGBa] with scaled opacity
* @see shade
*/
fun opacify(factor: Double): ColorRGBa = ColorRGBa(r, g, b, alpha * factor, linearity)
/**
* Creates a copy of color with adjusted color
* @param factor a scaling factor used for the opacity
* @return A [ColorRGBa] with scaled colors
* @see opacify
*/
fun shade(factor: Double): ColorRGBa = ColorRGBa(r * factor, g * factor, b * factor, alpha, linearity)
/**
* Copy of the color with all of its fields clamped to `[0, 1]`
*/
@Deprecated("Use clip() instead", replaceWith = ReplaceWith("clip()"))
val saturated: ColorRGBa
get() = clip()
/**
* Copy of the color with all of its fields clamped to `[0, 1]`
*/
fun clip(): ColorRGBa = copy(
r = r.coerceIn(0.0..1.0),
g = g.coerceIn(0.0..1.0),
b = b.coerceIn(0.0..1.0),
alpha = alpha.coerceIn(0.0..1.0)
)
/**
* Returns a new instance of [ColorRGBa] where the red, green, and blue components
* are multiplied by the alpha value of the original color. The alpha value and linearity
* remain unchanged.
*
* This computed property is commonly used for adjusting the color intensity based
* on its transparency.
*/
val alphaMultiplied: ColorRGBa
get() = ColorRGBa(r * alpha, g * alpha, b * alpha, alpha, linearity)
/**
* The minimum value over `r`, `g`, `b`
* @see maxValue
*/
val minValue get() = r.coerceAtMost(g).coerceAtMost(b)
/**
* The maximum value over `r`, `g`, `b`
* @see minValue
*/
val maxValue get() = r.coerceAtLeast(g).coerceAtLeast(b)
/**
* calculate luminance value
* luminance value is according to <a>https://www.w3.org/TR/2008/REC-WCAG20-20081211/#relativeluminancedef</a>
*/
val luminance: Double
get() = when (linearity) {
Linearity.SRGB -> toLinear().luminance
else -> 0.2126 * r + 0.7152 * g + 0.0722 * b
}
/**
* Converts this color to the specified linearity.
*
* @param linearity The target linearity to which the color should be converted.
* Supported values are [Linearity.SRGB] and [Linearity.LINEAR].
* @return A [ColorRGBa] instance in the specified linearity.
*/
fun toLinearity(linearity: Linearity): ColorRGBa {
return when (linearity) {
Linearity.SRGB -> toSRGB()
Linearity.LINEAR -> toLinear()
}
}
/**
* calculate the contrast value between this color and the given color
* contrast value is accordingo to <a>// see http://www.w3.org/TR/2008/REC-WCAG20-20081211/#contrast-ratiodef</a>
*/
fun getContrastRatio(other: ColorRGBa): Double {
val l1 = luminance
val l2 = other.luminance
return if (l1 > l2) (l1 + 0.05) / (l2 + 0.05) else (l2 + 0.05) / (l1 + 0.05)
}
fun toLinear(): ColorRGBa {
fun t(x: Double): Double {
return if (x <= 0.04045) x / 12.92 else ((x + 0.055) / (1 + 0.055)).pow(2.4)
}
return when (linearity) {
Linearity.SRGB -> ColorRGBa(t(r), t(g), t(b), alpha, Linearity.LINEAR)
else -> this
}
}
/**
* Convert to SRGB
* @see toLinear
*/
fun toSRGB(): ColorRGBa {
fun t(x: Double): Double {
return if (x <= 0.0031308) 12.92 * x else (1 + 0.055) * x.pow(1.0 / 2.4) - 0.055
}
return when (linearity) {
Linearity.LINEAR -> ColorRGBa(t(r), t(g), t(b), alpha, Linearity.SRGB)
else -> this
}
}
fun toRGBa(): ColorRGBa = this
// This is here because the default hashing of enums on the JVM is not stable.
override fun hashCode(): Int {
var result = r.hashCode()
result = 31 * result + g.hashCode()
result = 31 * result + b.hashCode()
result = 31 * result + alpha.hashCode()
// here we overcome the unstable hash by using the ordinal value
result = 31 * result + linearity.ordinal.hashCode()
return result
}
fun plus(right: ColorRGBa) = copy(
r = r + right.r,
g = g + right.g,
b = b + right.b,
alpha = alpha + right.alpha
)
fun minus(right: ColorRGBa) = copy(
r = r - right.r,
g = g - right.g,
b = b - right.b,
alpha = alpha - right.alpha
)
fun times(scale: Double) = copy(r = r * scale, g = g * scale, b = b * scale, alpha = alpha * scale)
fun mix(other: ColorRGBa, factor: Double): ColorRGBa {
return mix(this, other, factor)
}
fun toVector4(): Vector4D = Vector4D(r, g, b, alpha)
/**
* Retrieves the color's RGBA component value based on the specified index:
* [index] should be 0 for red, 1 for green, 2 for blue, 3 for alpha.
* Other index values throw an [IndexOutOfBoundsException].
*/
operator fun get(index: Int) = when (index) {
0 -> r
1 -> g
2 -> b
3 -> alpha
else -> throw IllegalArgumentException("unsupported index")
}
}
/**
* Weighted mix between two colors in the generic RGB color space.
* @param x the weighting of colors, a value 0.0 is equivalent to [left],
* 1.0 is equivalent to [right] and at 0.5 both colors contribute to the result equally
* @return a mix of [left] and [right] weighted by [x]
*/
fun mix(left: ColorRGBa, right: ColorRGBa, x: Double): ColorRGBa {
val sx = x.coerceIn(0.0, 1.0)
if (left.linearity.isEquivalent(right.linearity)) {
return ColorRGBa(
(1.0 - sx) * left.r + sx * right.r,
(1.0 - sx) * left.g + sx * right.g,
(1.0 - sx) * left.b + sx * right.b,
(1.0 - sx) * left.alpha + sx * right.alpha,
linearity = left.linearity.leastCertain(right.linearity)
)
} else {
return when (right.linearity) {
Linearity.LINEAR -> {
mix(left.toLinear(), right.toLinear(), x)
}
Linearity.SRGB -> {
mix(left.toSRGB(), right.toSRGB(), x)
}
}
}
}
/**
* Shorthand for calling [ColorRGBa].
* Specify only one value to obtain a shade of gray.
* @param r red in `[0,1]`
* @param g green in `[0,1]`
* @param b blue in `[0,1]`
* @param a alpha in `[0,1]`, defaults to `1.0`
*/
fun rgb(r: Double, g: Double, b: Double, a: Double = 1.0) = ColorRGBa(r, g, b, a, linearity = Linearity.LINEAR)
/**
* Shorthand for calling [ColorRGBa].
* @param gray shade of gray in `[0,1]`
* @param a alpha in `[0,1]`, defaults to `1.0`
*/
fun rgb(gray: Double, a: Double = 1.0) = ColorRGBa(gray, gray, gray, a, linearity = Linearity.LINEAR)
/**
* Create a color in RGBa space
* This function is a shorthand for using the ColorRGBa constructor
* @param r red in `[0,1]`
* @param g green in `[0,1]`
* @param b blue in `[0,1]`
* @param a alpha in `[0,1]`
*/
@Deprecated("Use rgb(r, g, b, a)", ReplaceWith("rgb(r, g, b, a)"), DeprecationLevel.WARNING)
fun rgba(r: Double, g: Double, b: Double, a: Double) = ColorRGBa(r, g, b, a, linearity = Linearity.LINEAR)
/**
* Shorthand for calling [ColorRGBa.fromHex].
* Creates a [ColorRGBa] with [Linearity.SRGB] from a hex string.
* @param hex string encoded hex value, for example `"ffc0cd"`
*/
fun rgb(hex: String) = ColorRGBa.fromHex(hex)
/**
* Converts RGB integer color values into a ColorRGBa object with sRGB linearity.
*
* @param red The red component of the color, in the range 0-255.
* @param green The green component of the color, in the range 0-255.
* @param blue The blue component of the color, in the range 0-255.
* @param alpha The alpha (transparency) component of the color, in the range 0-255. Default value is 255 (fully opaque).
*/
fun rgb(red: Int, green: Int, blue: Int, alpha: Int = 255) =
ColorRGBa(red / 255.0, green / 255.0, blue / 255.0, alpha / 255.0, Linearity.SRGB)

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,23 @@
package com.icegps.orx.ktx
import com.icegps.orx.color.ColorRGBa
/**
* @author tabidachinokaze
* @date 2025/11/25
*/
fun ColorRGBa.toColorInt(): Int {
val clampedR = r.coerceIn(0.0, 1.0)
val clampedG = g.coerceIn(0.0, 1.0)
val clampedB = b.coerceIn(0.0, 1.0)
val clampedAlpha = alpha.coerceIn(0.0, 1.0)
return ((clampedAlpha * 255).toInt() shl 24) or
((clampedR * 255).toInt() shl 16) or
((clampedG * 255).toInt() shl 8) or
((clampedB * 255).toInt())
}
fun ColorRGBa.toColorHex(): String {
return String.format("#%06X", 0xFFFFFF and toColorInt())
}

View File

@@ -0,0 +1,12 @@
package com.icegps.orx.ktx
import android.content.Context
import android.widget.Toast
/**
* @author tabidachinokaze
* @date 2025/11/25
*/
fun Context.toast(text: String, duration: Int = Toast.LENGTH_SHORT) {
Toast.makeText(this, text, duration).show()
}

View File

@@ -0,0 +1,24 @@
package com.icegps.orx.ktx
import com.icegps.common.helper.GeoHelper
import com.icegps.math.geometry.Vector2D
import com.mapbox.geojson.Point
/**
* @author tabidachinokaze
* @date 2025/11/26
*/
fun Vector2D.toMapboxPoint(): Point {
val geoHelper = GeoHelper.getSharedInstance()
val wgs84 = geoHelper.enuToWGS84Object(GeoHelper.ENU(x = x, y = y))
return Point.fromLngLat(wgs84.lon, wgs84.lat)
}
/**
* Interpolates between the current vector and the given vector `o` by the specified mixing factor.
*
* @param o The target vector to interpolate towards.
* @param mix A mixing factor between 0 and 1 where `0` results in the current vector and `1` results in the vector `o`.
* @return A new vector that is the result of the interpolation.
*/
fun Vector2D.mix(o: Vector2D, mix: Double): Vector2D = this * (1 - mix) + o * mix

View File

@@ -0,0 +1,32 @@
package com.icegps.orx.ktx
import com.icegps.common.helper.GeoHelper
import com.icegps.math.geometry.Rectangle
import com.icegps.math.geometry.Vector3D
import com.mapbox.geojson.Point
fun Vector3D.niceStr(): String {
return "[$x, $y, $z]".format(this)
}
fun List<Vector3D>.niceStr(): String {
return joinToString(", ", "[", "]") {
it.niceStr()
}
}
fun Vector3D.toMapboxPoint(): Point {
val geoHelper = GeoHelper.getSharedInstance()
return geoHelper.enuToWGS84Object(GeoHelper.ENU(x, y, z)).run {
Point.fromLngLat(lon, lat, hgt)
}
}
val List<Vector3D>.area: Rectangle
get() {
val minX = minOf { it.x }
val maxX = maxOf { it.x }
val minY = minOf { it.y }
val maxY = maxOf { it.y }
return Rectangle(x = minX, y = minY, width = maxX - minX, height = maxY - minY)
}

View File

@@ -0,0 +1,219 @@
package com.icegps.orx.marchingsquares
import com.icegps.math.geometry.Rectangle
import com.icegps.math.geometry.Vector2D
import com.icegps.math.geometry.Vector2I
import com.icegps.orx.ktx.mix
import kotlin.math.max
import kotlin.math.min
private const val closeEpsilon = 1E-6
data class Segment2D(
val start: Vector2D,
val control: List<Vector2D>,
val end: Vector2D,
val corner: Boolean = false
)
fun Segment2D(start: Vector2D, end: Vector2D, corner: Boolean = true) =
Segment2D(start, emptyList(), end, corner)
fun Segment2D(start: Vector2D, c0: Vector2D, c1: Vector2D, end: Vector2D, corner: Boolean = true) =
Segment2D(start, listOf(c0, c1), end, corner)
data class ShapeContour(
val segments: List<Segment2D>,
val closed: Boolean,
) {
companion object {
val EMPTY = ShapeContour(
segments = emptyList(),
closed = false,
)
/**
* Creates a ShapeContour from a list of points, specifying whether the contour is closed and its y-axis polarity.
*
* @param points A list of points (Vector2) defining the vertices of the contour.
* @param closed Boolean indicating whether the contour should be closed (forms a loop).
* @return A ShapeContour object representing the resulting contour.
*/
fun fromPoints(
points: List<Vector2D>,
closed: Boolean,
): ShapeContour = if (points.isEmpty()) {
EMPTY
} else {
if (!closed) {
ShapeContour((0 until points.size - 1).map {
Segment2D(
points[it],
points[it + 1]
)
}, false)
} else {
val d = (points.last() - points.first()).lengthSquared
val usePoints = if (d > closeEpsilon) points else points.dropLast(1)
ShapeContour((usePoints.indices).map {
Segment2D(
usePoints[it],
usePoints[(it + 1) % usePoints.size]
)
}, true)
}
}
}
}
data class LineSegment(val start: Vector2D, val end: Vector2D)
/**
* Find contours for a function [f] using the marching squares algorithm. A contour is found when f(x) crosses zero.
* @param f the function
* @param area a rectangular area in which the function should be evaluated
* @param cellSize the size of the cells, smaller size gives higher resolution
* @param useInterpolation intersection points will be interpolated if true, default true
* @return a list of [ShapeContour] instances
*/
fun findContours(
f: (Vector2D) -> Double,
area: Rectangle,
cellSize: Double,
useInterpolation: Boolean = true
): List<ShapeContour> {
val segments = mutableListOf<LineSegment>()
val values = mutableMapOf<Vector2I, Double>()
val segmentsMap = mutableMapOf<Vector2D, MutableList<LineSegment>>()
for (y in 0 until (area.height / cellSize).toInt()) {
for (x in 0 until (area.width / cellSize).toInt()) {
values[Vector2I(x, y)] = f(Vector2D(x * cellSize + area.x, y * cellSize + area.y))
}
}
val zero = 0.0
for (y in 0 until (area.height / cellSize).toInt()) {
for (x in 0 until (area.width / cellSize).toInt()) {
// Here we check if we are at a right or top border. This is to ensure we create closed contours
// later on in the process.
val v00 = if (x == 0 || y == 0) zero else (values[Vector2I(x, y)] ?: zero)
val v10 = if (y == 0) zero else (values[Vector2I(x + 1, y)] ?: zero)
val v01 = if (x == 0) zero else (values[Vector2I(x, y + 1)] ?: zero)
val v11 = (values[Vector2I(x + 1, y + 1)] ?: zero)
val p00 = Vector2D(x.toDouble(), y.toDouble()) * cellSize + area.topLeft
val p10 = Vector2D((x + 1).toDouble(), y.toDouble()) * cellSize + area.topLeft
val p01 = Vector2D(x.toDouble(), (y + 1).toDouble()) * cellSize + area.topLeft
val p11 = Vector2D((x + 1).toDouble(), (y + 1).toDouble()) * cellSize + area.topLeft
val index = (if (v00 >= 0.0) 1 else 0) +
(if (v10 >= 0.0) 2 else 0) +
(if (v01 >= 0.0) 4 else 0) +
(if (v11 >= 0.0) 8 else 0)
fun blend(v1: Double, v2: Double): Double {
if (useInterpolation) {
require(!v1.isNaN() && !v2.isNaN()) {
"Input values v1=$v1 or v2=$v2 are NaN, which is not allowed."
}
val f1 = min(v1, v2)
val f2 = max(v1, v2)
val v = (-f1) / (f2 - f1)
require(v == v && v in 0.0..1.0) {
"Invalid value calculated during interpolation: v=$v"
}
return if (f1 == v1) {
v
} else {
1.0 - v
}
} else {
return 0.5
}
}
fun emitLine(
p00: Vector2D, p01: Vector2D, v00: Double, v01: Double,
p10: Vector2D, p11: Vector2D, v10: Double, v11: Double
) {
val r0 = blend(v00, v01)
val r1 = blend(v10, v11)
val v0 = p00.mix(p01, r0)
val v1 = p10.mix(p11, r1)
val l0 = LineSegment(v0, v1)
segmentsMap.getOrPut(v1) { mutableListOf() }.add(l0)
segmentsMap.getOrPut(v0) { mutableListOf() }.add(l0)
segments.add(l0)
}
when (index) {
0, 15 -> {}
1, 15 xor 1 -> {
emitLine(p00, p01, v00, v01, p00, p10, v00, v10)
}
2, 15 xor 2 -> {
emitLine(p00, p10, v00, v10, p10, p11, v10, v11)
}
3, 15 xor 3 -> {
emitLine(p00, p01, v00, v01, p10, p11, v10, v11)
}
4, 15 xor 4 -> {
emitLine(p00, p01, v00, v01, p01, p11, v01, v11)
}
5, 15 xor 5 -> {
emitLine(p00, p10, v00, v10, p01, p11, v01, v11)
}
6, 15 xor 6 -> {
emitLine(p00, p01, v00, v01, p00, p10, v00, v10)
emitLine(p01, p11, v01, v11, p10, p11, v10, v11)
}
7, 15 xor 7 -> {
emitLine(p01, p11, v01, v11, p10, p11, v10, v11)
}
}
}
}
val processedSegments = mutableSetOf<LineSegment>()
val contours = mutableListOf<ShapeContour>()
for (segment in segments) {
if (segment in processedSegments) {
continue
} else {
val collected = mutableListOf<Vector2D>()
var current: LineSegment? = segment
var closed = true
var lastVertex = Vector2D.INFINITY
do {
current!!
if (lastVertex.squaredDistanceTo(current.start) > 1E-5) {
collected.add(current.start)
}
lastVertex = current.start
processedSegments.add(current)
if (segmentsMap[current.start]!!.size < 2) {
closed = false
}
val hold = current
current = segmentsMap[current.start]?.firstOrNull { it !in processedSegments }
if (current == null) {
current = segmentsMap[hold.end]?.firstOrNull { it !in processedSegments }
}
} while (current != segment && current != null)
contours.add(ShapeContour.fromPoints(collected, closed = closed))
}
}
return contours
}

View File

@@ -0,0 +1,183 @@
<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
xmlns:tools="http://schemas.android.com/tools"
android:id="@+id/main"
android:layout_width="match_parent"
android:layout_height="match_parent"
android:orientation="vertical"
tools:context=".MainActivity">
<com.mapbox.maps.MapView
android:id="@+id/map_view"
android:layout_width="match_parent"
android:layout_height="0dp"
android:layout_weight="3" />
<ScrollView
android:layout_width="match_parent"
android:layout_height="0dp"
android:layout_weight="1">
<LinearLayout
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:orientation="vertical">
<com.google.android.material.slider.Slider
android:id="@+id/slider_target_height"
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:value="0"
android:valueFrom="0"
android:valueTo="100" />
<LinearLayout
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:gravity="center_vertical"
android:orientation="horizontal">
<TextView
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="栅格大小:" />
<com.google.android.material.slider.Slider
android:id="@+id/cell_size"
android:layout_width="0dp"
android:layout_height="wrap_content"
android:layout_weight="1"
android:value="1"
android:valueFrom="1"
android:valueTo="100" />
</LinearLayout>
<LinearLayout
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:gravity="center_vertical"
android:orientation="horizontal">
<TextView
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="高度范围:" />
<com.google.android.material.slider.RangeSlider
android:id="@+id/height_range"
android:layout_width="0dp"
android:layout_height="wrap_content"
android:layout_weight="1"
android:valueFrom="0"
android:valueTo="100" />
</LinearLayout>
<Switch
android:id="@+id/switch_grid"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:switchPadding="16dp"
android:text="栅格网" />
<Switch
android:id="@+id/switch_triangle"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:switchPadding="16dp"
android:text="三角网" />
<LinearLayout
android:layout_width="match_parent"
android:layout_height="wrap_content">
<TextView
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="坐标数量:" />
<TextView
android:id="@+id/point_count"
android:layout_width="wrap_content"
android:layout_height="wrap_content" />
</LinearLayout>
<Button
android:id="@+id/update"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="刷新界面" />
<Button
android:id="@+id/clear_points"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="清除所有点" />
<LinearLayout
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:gravity="center_vertical"
android:orientation="horizontal">
<TextView
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="坡向(角度)" />
<com.google.android.material.slider.Slider
android:id="@+id/slope_direction"
android:layout_width="0dp"
android:layout_height="wrap_content"
android:layout_weight="1"
android:valueFrom="0"
android:valueTo="360" />
</LinearLayout>
<LinearLayout
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:gravity="center_vertical"
android:orientation="horizontal">
<TextView
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="坡度(%)" />
<com.google.android.material.slider.Slider
android:id="@+id/slope_percentage"
android:layout_width="0dp"
android:layout_height="wrap_content"
android:layout_weight="1"
android:valueFrom="0"
android:valueTo="100" />
</LinearLayout>
<LinearLayout
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:gravity="center_vertical">
<TextView
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="设计面高度(m)" />
<com.google.android.material.slider.Slider
android:id="@+id/design_height"
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:value="0"
android:valueFrom="-100"
android:valueTo="100" />
</LinearLayout>
<Switch
android:id="@+id/switch_design_surface"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:switchPadding="16dp"
android:text="显示设计面" />
</LinearLayout>
</ScrollView>
</LinearLayout>

View File

@@ -1,19 +1,179 @@
<?xml version="1.0" encoding="utf-8"?>
<androidx.constraintlayout.widget.ConstraintLayout xmlns:android="http://schemas.android.com/apk/res/android"
xmlns:app="http://schemas.android.com/apk/res-auto"
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
xmlns:tools="http://schemas.android.com/tools"
android:id="@+id/main"
android:layout_width="match_parent"
android:layout_height="match_parent"
android:orientation="horizontal"
tools:context=".MainActivity">
<LinearLayout
android:layout_width="0dp"
android:layout_height="match_parent"
android:layout_weight="1"
android:orientation="vertical"
android:paddingTop="32dp">
<com.google.android.material.slider.Slider
android:id="@+id/slider_target_height"
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:value="0"
android:valueFrom="0"
android:valueTo="100" />
<LinearLayout
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:gravity="center_vertical"
android:orientation="horizontal">
<TextView
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="Hello World!"
app:layout_constraintBottom_toBottomOf="parent"
app:layout_constraintEnd_toEndOf="parent"
app:layout_constraintStart_toStartOf="parent"
app:layout_constraintTop_toTopOf="parent" />
android:text="栅格大小:" />
</androidx.constraintlayout.widget.ConstraintLayout>
<com.google.android.material.slider.Slider
android:id="@+id/cell_size"
android:layout_width="0dp"
android:layout_height="wrap_content"
android:layout_weight="1"
android:value="1"
android:valueFrom="1"
android:valueTo="100" />
</LinearLayout>
<LinearLayout
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:gravity="center_vertical"
android:orientation="horizontal">
<TextView
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="高度范围:" />
<com.google.android.material.slider.RangeSlider
android:id="@+id/height_range"
android:layout_width="0dp"
android:layout_height="wrap_content"
android:layout_weight="1"
android:valueFrom="0"
android:valueTo="100" />
</LinearLayout>
<Switch
android:id="@+id/switch_grid"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:switchPadding="16dp"
android:text="栅格网" />
<Switch
android:id="@+id/switch_triangle"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:switchPadding="16dp"
android:text="三角网" />
<LinearLayout
android:layout_width="match_parent"
android:layout_height="wrap_content">
<TextView
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="坐标数量:" />
<TextView
android:id="@+id/point_count"
android:layout_width="wrap_content"
android:layout_height="wrap_content" />
</LinearLayout>
<Button
android:id="@+id/update"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="刷新界面" />
<Button
android:id="@+id/clear_points"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="清除所有点" />
<LinearLayout
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:gravity="center_vertical"
android:orientation="horizontal">
<TextView
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="坡向(角度)" />
<com.google.android.material.slider.Slider
android:id="@+id/slope_direction"
android:layout_width="0dp"
android:layout_height="wrap_content"
android:layout_weight="1"
android:valueFrom="0"
android:valueTo="360" />
</LinearLayout>
<LinearLayout
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:gravity="center_vertical"
android:orientation="horizontal">
<TextView
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="坡度(%)" />
<com.google.android.material.slider.Slider
android:id="@+id/slope_percentage"
android:layout_width="0dp"
android:layout_height="wrap_content"
android:layout_weight="1"
android:valueFrom="0"
android:valueTo="100" />
</LinearLayout>
<LinearLayout
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:gravity="center_vertical">
<TextView
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="设计面高度(m)" />
<com.google.android.material.slider.Slider
android:id="@+id/design_height"
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:value="0"
android:valueFrom="-100"
android:valueTo="100" />
</LinearLayout>
<Switch
android:id="@+id/switch_design_surface"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:switchPadding="16dp"
android:text="显示设计面" />
</LinearLayout>
<com.mapbox.maps.MapView
android:id="@+id/map_view"
android:layout_width="0dp"
android:layout_height="match_parent"
android:layout_weight="3" />
</LinearLayout>

View File

@@ -132,7 +132,7 @@ abstract class CollectScreenshotsTask @Inject constructor() : DefaultTask() {
val codeLines = ktFile.readLines()
val main = codeLines.indexOfFirst { it.startsWith("fun main") }
val head = codeLines.take(main)
val start = head.indexOfLast { it.startsWith("/**") }
val start = head.indexOfLast { it.startsWith("/*") }
val end = head.indexOfLast { it.endsWith("*/") }
if ((start < end) && (end < main)) {

View File

@@ -30,6 +30,7 @@ kotlin {
implementation(project(":orx-marching-squares"))
implementation(project(":orx-text-writer"))
implementation(project(":orx-obj-loader"))
implementation(project(":orx-palette"))
}
}
}

View File

@@ -0,0 +1,35 @@
import org.openrndr.application
import org.openrndr.shape.Rectangle
/**
* Demonstrates how to use a ColorBrewer2 palette.
* Finds the first available palette with 5 colors,
* then draws concentric circles filled with those colors.
*/
fun main() = application {
configure {
width = 720
height = 720
}
program {
val palette = colorBrewer2Palettes(
numberOfColors = 6,
paletteType = ColorBrewer2Type.Any
).first().colors
val cellSize = 50.0
extend {
palette.forEachIndexed { i, color ->
drawer.fill = color
drawer.rectangle(
Rectangle(
x = 0.0,
y = cellSize * i,
width = cellSize,
height = cellSize
)
)
// drawer.circle(drawer.bounds.center, 300.0 - i * 40.0)
}
}
}
}

View File

@@ -10,7 +10,6 @@ import org.openrndr.draw.loadFont
import org.openrndr.extra.camera.Camera2D
import org.openrndr.extra.marchingsquares.findContours
import org.openrndr.extra.noise.gradientPerturbFractal
import org.openrndr.extra.noise.simplex
import org.openrndr.extra.textwriter.writer
import org.openrndr.extra.triangulation.DelaunayTriangulation
import org.openrndr.math.Vector2
@@ -18,7 +17,6 @@ import org.openrndr.math.Vector3
import org.openrndr.shape.Segment2D
import org.openrndr.shape.Segment3D
import org.openrndr.shape.ShapeContour
import kotlin.math.absoluteValue
import kotlin.math.cos
import kotlin.math.sin
import kotlin.random.Random
@@ -30,7 +28,7 @@ import kotlin.random.Random
fun main() = application {
configure {
width = 720
height = 720
height = 480
title = "Delaunator"
}
program {
@@ -62,6 +60,10 @@ fun main() = application {
extend(Camera2D())
println("draw")
var targetHeight: Double = zs.average()
val step = zs.max() - zs.min() / 6
var heightList = (0..5).map { index ->
zs.min() + step * index
}
var logEnabled = true
var useInterpolation = false
var sampleLinear = false
@@ -171,12 +173,41 @@ fun main() = application {
cellSize = 4.0,
useInterpolation = useInterpolation
)
val associateWith: List<List<ShapeContour>> = heightList.map { height ->
findContours(
f = {
val triangle = triangles.firstOrNull { triangle ->
isPointInTriangle(it, listOf(triangle.x1, triangle.x2, triangle.x3))
}
triangle ?: return@findContours 0.0
val interpolate = interpolateHeight(
point = it,
triangle = listOf(
triangle.x1,
triangle.x2,
triangle.x3,
).map {
Vector3(it.x, it.y, associate[it]!!)
}
)
interpolate.z - height
},
area = drawer.bounds,
cellSize = 4.0,
useInterpolation = useInterpolation
)
}
if (logEnabled) println("useInterpolation = $useInterpolation")
drawer.stroke = null
contours.forEach {
if (true) contours.forEach {
drawer.fill = ColorRGBa.GREEN.opacify(0.1)
drawer.contour(if (sampleLinear) it.sampleLinear() else it)
}
if (false) associateWith.forEachIndexed { index, contours ->
contours.forEach {
drawer.fill = colorBrewer2[index].colors.first().opacify(0.1)
drawer.contour(it)
}
}
drawer.fontMap = loadFont("demo-data/fonts/IBMPlexMono-Regular.ttf", 24.0)
@@ -210,6 +241,24 @@ fun isPointInTriangle(point: Vector2, triangle: List<Vector2>): Boolean {
alpha <= 1 && beta <= 1 && gamma <= 1
}
fun isPointInTriangle3D(point: Vector2, triangle: List<Vector3>): Boolean {
require(triangle.size == 3) { "三角形必须有3个顶点" }
val (v1, v2, v3) = triangle
// 计算重心坐标
val denominator = (v2.y - v3.y) * (v1.x - v3.x) + (v3.x - v2.x) * (v1.y - v3.y)
if (denominator == 0.0) return false // 退化三角形
val alpha = ((v2.y - v3.y) * (point.x - v3.x) + (v3.x - v2.x) * (point.y - v3.y)) / denominator
val beta = ((v3.y - v1.y) * (point.x - v3.x) + (v1.x - v3.x) * (point.y - v3.y)) / denominator
val gamma = 1.0 - alpha - beta
// 点在三角形内当且仅当所有重心坐标都在[0,1]范围内
return alpha >= 0 && beta >= 0 && gamma >= 0 &&
alpha <= 1 && beta <= 1 && gamma <= 1
}
/**
* 使用重心坐标计算点在三角形上的高度
* @param point 二维点 (x, y)

View File

@@ -9,15 +9,14 @@ import org.openrndr.draw.loadFont
import org.openrndr.draw.shadeStyle
import org.openrndr.extra.camera.Orbital
import org.openrndr.extra.marchingsquares.findContours
import org.openrndr.extra.noise.gradientPerturbFractal
import org.openrndr.extra.objloader.loadOBJasVertexBuffer
import org.openrndr.extra.textwriter.writer
import org.openrndr.extra.triangulation.DelaunayTriangulation
import org.openrndr.extra.triangulation.DelaunayTriangulation3D
import org.openrndr.math.Vector2
import org.openrndr.math.Vector3
import org.openrndr.shape.Path3D
import org.openrndr.shape.Segment3D
import org.openrndr.shape.ShapeContour
/**
* @author tabidachinokaze
@@ -49,7 +48,7 @@ fun main() = application {
volcanoCount = 3
)*/
val points3D = coordinateGenerate(width, height).map {
it.copy(x = it.x - width / 2, y = it.y - height / 2)
it.copy(x = it.x - width / 2, y = it.y - height / 2, z = it.z * 10)
}
val zs = points3D.map { it.z }
println("zs = ${zs}")
@@ -57,6 +56,7 @@ fun main() = application {
Vector2(it.x, it.y) to it.z
}.toMutableMap()
val delaunay = DelaunayTriangulation(associate.map { it.key })
val delaunay3D = DelaunayTriangulation3D(points3D.map { Vector3(it.x, it.y, it.z) })
//println(points3D.niceStr())
//extend(Camera2D())
@@ -84,7 +84,7 @@ fun main() = application {
val vb = loadOBJasVertexBuffer("orx-obj-loader/test-data/non-planar.obj")
extend {
val triangles = delaunay.triangles()
val triangles = delaunay3D.triangles()
val segments = mutableListOf<Segment3D>()
drawer.clear(ColorRGBa.BLACK)
val indexDiff = (frameCount / 1000) % triangles.size
@@ -95,10 +95,12 @@ fun main() = application {
}
drawer.vertexBuffer(vb, DrawPrimitive.TRIANGLES)
// 绘制等高线段区域
for ((i, triangle) in triangles.withIndex()) {
val segment2DS = triangle.contour.segments.filter {
val startZ = associate[it.start]!!
val endZ = associate[it.end]!!
val segment2DS = triangle.segments.filter {
val startZ = it.start.z
val endZ = it.end.z
if (startZ < endZ) {
targetHeight in startZ..endZ
} else {
@@ -108,8 +110,8 @@ fun main() = application {
if (segment2DS.size == 2) {
val vector2s = segment2DS.map {
val startZ = associate[it.start]!!
val endZ = associate[it.end]!!
val startZ = it.start.z
val endZ = it.end.z
val start = Vector3(it.start.x, it.start.y, startZ)
val end = Vector3(it.end.x, it.end.y, endZ)
if (startZ < endZ) {
@@ -130,14 +132,8 @@ fun main() = application {
}
drawer.strokeWeight = 20.0
drawer.stroke = ColorRGBa.PINK
val segment3DS = triangle.contour.segments.map {
val startZ = associate[it.start]!!
val endZ = associate[it.end]!!
Segment3D(it.start.vector3(z = startZ), it.end.vector3(z = endZ))
}
//drawer.contour(triangle.contour)
drawer.path(Path3D.fromSegments(segment3DS, closed = true))
drawer.path(triangle.path)
}
val sorted = connectAllSegments(segments)
@@ -161,6 +157,7 @@ fun main() = application {
drawer.fill = ColorRGBa.YELLOW
// if (false) drawer.contour(ShapeContour.fromSegments(it, closed = true))
}
// 结束绘制等高线
/*for (y in 0 until (area.height / cellSize).toInt()) {
for (x in 0 until (area.width / cellSize).toInt()) {
values[IntVector2(x, y)] = f(Vector2(x * cellSize + area.x, y * cellSize + area.y))
@@ -169,7 +166,7 @@ fun main() = application {
val contours = findContours(
f = {
val triangle = triangles.firstOrNull { triangle ->
isPointInTriangle(it, listOf(triangle.x1, triangle.x2, triangle.x3))
isPointInTriangle3D(it, listOf(triangle.x1, triangle.x2, triangle.x3))
}
triangle ?: return@findContours 0.0
val interpolate = interpolateHeight(
@@ -178,9 +175,7 @@ fun main() = application {
triangle.x1,
triangle.x2,
triangle.x3,
).map {
Vector3(it.x, it.y, associate[it]!!)
}
)
)
interpolate.z - targetHeight
},
@@ -191,6 +186,7 @@ fun main() = application {
if (logEnabled) println("useInterpolation = $useInterpolation")
drawer.stroke = null
contours.map {
if (false) drawer.contour(it)
it.segments.map {
Segment3D(
it.start.vector3(),

1
icegps-triangulation/.gitignore vendored Normal file
View File

@@ -0,0 +1 @@
/build

View File

@@ -0,0 +1,16 @@
plugins {
id("java-library")
alias(libs.plugins.kotlin.jvm)
}
java {
sourceCompatibility = JavaVersion.VERSION_17
targetCompatibility = JavaVersion.VERSION_17
}
kotlin {
compilerOptions {
jvmTarget = org.jetbrains.kotlin.gradle.dsl.JvmTarget.JVM_17
}
}
dependencies {
implementation(project(":math"))
}

View File

@@ -0,0 +1,596 @@
package com.icegps.triangulation
import kotlin.math.*
val EPSILON: Double = 2.0.pow(-52)
/**
* A Kotlin port of Mapbox's Delaunator incredibly fast JavaScript library for Delaunay triangulation of 2D points.
*
* @description Port of Mapbox's Delaunator (JavaScript) library - https://github.com/mapbox/delaunator
* @property coords flat positions' array - [x0, y0, x1, y1..]
*
* @since f0ed80d - commit
* @author Ricardo Matias
*/
@Suppress("unused")
class Delaunator(val coords: DoubleArray) {
val EDGE_STACK = IntArray(512)
private var count = coords.size shr 1
// arrays that will store the triangulation graph
val maxTriangles = (2 * count - 5).coerceAtLeast(0)
private val _triangles = IntArray(maxTriangles * 3)
private val _halfedges = IntArray(maxTriangles * 3)
lateinit var triangles: IntArray
lateinit var halfedges: IntArray
// temporary arrays for tracking the edges of the advancing convex hull
private var hashSize = ceil(sqrt(count * 1.0)).toInt()
private var hullPrev = IntArray(count) // edge to prev edge
private var hullNext = IntArray(count) // edge to next edge
private var hullTri = IntArray(count) // edge to adjacent triangle
private var hullHash = IntArray(hashSize) // angular edge hash
private var hullStart: Int = -1
// temporary arrays for sorting points
private var ids = IntArray(count)
private var dists = DoubleArray(count)
private var cx: Double = Double.NaN
private var cy: Double = Double.NaN
private var trianglesLen: Int = -1
lateinit var hull: IntArray
init {
update()
}
fun update() {
if (coords.size <= 2) {
halfedges = IntArray(0)
triangles = IntArray(0)
hull = IntArray(0)
return
}
// populate an array of point indices calculate input data bbox
var minX = Double.POSITIVE_INFINITY
var minY = Double.POSITIVE_INFINITY
var maxX = Double.NEGATIVE_INFINITY
var maxY = Double.NEGATIVE_INFINITY
// points -> points
// minX, minY, maxX, maxY
for (i in 0 until count) {
val x = coords[2 * i]
val y = coords[2 * i + 1]
if (x < minX) minX = x
if (y < minY) minY = y
if (x > maxX) maxX = x
if (y > maxY) maxY = y
ids[i] = i
}
val cx = (minX + maxX) / 2
val cy = (minY + maxY) / 2
var minDist = Double.POSITIVE_INFINITY
var i0: Int = -1
var i1: Int = -1
var i2: Int = -1
// pick a seed point close to the center
for (i in 0 until count) {
val d = dist(cx, cy, coords[2 * i], coords[2 * i + 1])
if (d < minDist) {
i0 = i
minDist = d
}
}
val i0x = coords[2 * i0]
val i0y = coords[2 * i0 + 1]
minDist = Double.POSITIVE_INFINITY
// Find the point closest to the seed
for(i in 0 until count) {
if (i == i0) continue
val d = dist(i0x, i0y, coords[2 * i], coords[2 * i + 1])
if (d < minDist && d > 0) {
i1 = i
minDist = d
}
}
var i1x = coords[2 * i1]
var i1y = coords[2 * i1 + 1]
var minRadius = Double.POSITIVE_INFINITY
// Find the third point which forms the smallest circumcircle with the first two
for (i in 0 until count) {
if(i == i0 || i == i1) continue
val r = circumradius(i0x, i0y, i1x, i1y, coords[2 * i], coords[2 * i + 1])
if(r < minRadius) {
i2 = i
minRadius = r
}
}
if (minRadius == Double.POSITIVE_INFINITY) {
// order collinear points by dx (or dy if all x are identical)
// and return the list as a hull
for (i in 0 until count) {
val a = (coords[2 * i] - coords[0])
val b = (coords[2 * i + 1] - coords[1])
dists[i] = if (a == 0.0) b else a
}
quicksort(ids, dists, 0, count - 1)
val nhull = IntArray(count)
var j = 0
var d0 = Double.NEGATIVE_INFINITY
for (i in 0 until count) {
val id = ids[i]
if (dists[id] > d0) {
nhull[j++] = id
d0 = dists[id]
}
}
hull = nhull.copyOf(j)
triangles = IntArray(0)
halfedges = IntArray(0)
return
}
var i2x = coords[2 * i2]
var i2y = coords[2 * i2 + 1]
// swap the order of the seed points for counter-clockwise orientation
if (orient2d(i0x, i0y, i1x, i1y, i2x, i2y) < 0.0) {
val i = i1
val x = i1x
val y = i1y
i1 = i2
i1x = i2x
i1y = i2y
i2 = i
i2x = x
i2y = y
}
val center = circumcenter(i0x, i0y, i1x, i1y, i2x, i2y)
this.cx = center[0]
this.cy = center[1]
for (i in 0 until count) {
dists[i] = dist(coords[2 * i], coords[2 * i + 1], center[0], center[1])
}
// sort the points by distance from the seed triangle circumcenter
quicksort(ids, dists, 0, count - 1)
// set up the seed triangle as the starting hull
hullStart = i0
var hullSize = 3
hullNext[i0] = i1
hullNext[i1] = i2
hullNext[i2] = i0
hullPrev[i2] = i1
hullPrev[i0] = i2
hullPrev[i1] = i0
hullTri[i0] = 0
hullTri[i1] = 1
hullTri[i2] = 2
hullHash.fill(-1)
hullHash[hashKey(i0x, i0y)] = i0
hullHash[hashKey(i1x, i1y)] = i1
hullHash[hashKey(i2x, i2y)] = i2
trianglesLen = 0
addTriangle(i0, i1, i2, -1, -1, -1)
var xp = 0.0
var yp = 0.0
for (k in ids.indices) {
val i = ids[k]
val x = coords[2 * i]
val y = coords[2 * i + 1]
// skip near-duplicate points
if (k > 0 && abs(x - xp) <= EPSILON && abs(y - yp) <= EPSILON) continue
xp = x
yp = y
// skip seed triangle points
if (i == i0 || i == i1 || i == i2) continue
// find a visible edge on the convex hull using edge hash
var start = 0
val key = hashKey(x, y)
for (j in 0 until hashSize) {
start = hullHash[(key + j) % hashSize]
if (start != -1 && start != hullNext[start]) break
}
start = hullPrev[start]
var e = start
var q = hullNext[e]
while (orient2d(x, y, coords[2 * e], coords[2 * e + 1], coords[2 * q], coords[2 * q + 1]) >= 0) {
e = q
if (e == start) {
e = -1
break
}
q = hullNext[e]
}
if (e == -1) continue // likely a near-duplicate point skip it
// add the first triangle from the point
var t = addTriangle(e, i, hullNext[e], -1, -1, hullTri[e])
// recursively flip triangles from the point until they satisfy the Delaunay condition
hullTri[i] = legalize(t + 2)
hullTri[e] = t // keep track of boundary triangles on the hull
hullSize++
// walk forward through the hull, adding more triangles and flipping recursively
var next = hullNext[e]
q = hullNext[next]
while (orient2d(x, y, coords[2 * next], coords[2 * next + 1], coords[2 * q], coords[2 * q + 1]) < 0) {
t = addTriangle(next, i, q, hullTri[i], -1, hullTri[next])
hullTri[i] = legalize(t + 2)
hullNext[next] = next // mark as removed
hullSize--
next = q
q = hullNext[next]
}
// walk backward from the other side, adding more triangles and flipping
if (e == start) {
q = hullPrev[e]
while (orient2d(x, y, coords[2 * q], coords[2 * q + 1], coords[2 * e], coords[2 * e + 1]) < 0) {
t = addTriangle(q, i, e, -1, hullTri[e], hullTri[q])
legalize(t + 2)
hullTri[q] = t
hullNext[e] = e // mark as removed
hullSize--
e = q
q = hullPrev[e]
}
}
// update the hull indices
hullStart = e
hullPrev[i] = e
hullNext[e] = i
hullPrev[next] = i
hullNext[i] = next
// save the two new edges in the hash table
hullHash[hashKey(x, y)] = i
hullHash[hashKey(coords[2 * e], coords[2 * e + 1])] = e
}
hull = IntArray(hullSize)
var e = hullStart
for (i in 0 until hullSize) {
hull[i] = e
e = hullNext[e]
}
// trim typed triangle mesh arrays
triangles = _triangles.copyOf(trianglesLen)
halfedges = _halfedges.copyOf(trianglesLen)
}
private fun legalize(a: Int): Int {
var i = 0
var na = a
var ar: Int
// recursion eliminated with a fixed-size stack
while (true) {
val b = _halfedges[na]
/* if the pair of triangles doesn't satisfy the Delaunay condition
* (p1 is inside the circumcircle of [p0, pl, pr]), flip them,
* then do the same check/flip recursively for the new pair of triangles
*
* pl pl
* /||\ / \
* al/ || \bl al/ \a
* / || \ / \
* / a||b \ flip /___ar___\
* p0\ || /p1 => p0\---bl---/p1
* \ || / \ /
* ar\ || /br b\ /br
* \||/ \ /
* pr pr
*/
val a0 = na - na % 3
ar = a0 + (na + 2) % 3
if (b == -1) { // convex hull edge
if (i == 0) break
na = EDGE_STACK[--i]
continue
}
val b0 = b - b % 3
val al = a0 + (na + 1) % 3
val bl = b0 + (b + 2) % 3
val p0 = _triangles[ar]
val pr = _triangles[na]
val pl = _triangles[al]
val p1 = _triangles[bl]
val illegal = inCircleRobust(
coords[2 * p0], coords[2 * p0 + 1],
coords[2 * pr], coords[2 * pr + 1],
coords[2 * pl], coords[2 * pl + 1],
coords[2 * p1], coords[2 * p1 + 1])
if (illegal) {
_triangles[na] = p1
_triangles[b] = p0
val hbl = _halfedges[bl]
// edge swapped on the other side of the hull (rare) fix the halfedge reference
if (hbl == -1) {
var e = hullStart
do {
if (hullTri[e] == bl) {
hullTri[e] = na
break
}
e = hullPrev[e]
} while (e != hullStart)
}
link(na, hbl)
link(b, _halfedges[ar])
link(ar, bl)
val br = b0 + (b + 1) % 3
// don't worry about hitting the cap: it can only happen on extremely degenerate input
if (i < EDGE_STACK.size) {
EDGE_STACK[i++] = br
}
} else {
if (i == 0) break
na = EDGE_STACK[--i]
}
}
return ar
}
private fun link(a:Int, b:Int) {
_halfedges[a] = b
if (b != -1) _halfedges[b] = a
}
// add a new triangle given vertex indices and adjacent half-edge ids
private fun addTriangle(i0: Int, i1: Int, i2: Int, a: Int, b: Int, c: Int): Int {
val t = trianglesLen
_triangles[t] = i0
_triangles[t + 1] = i1
_triangles[t + 2] = i2
link(t, a)
link(t + 1, b)
link(t + 2, c)
trianglesLen += 3
return t
}
private fun hashKey(x: Double, y: Double): Int {
return (floor(pseudoAngle(x - cx, y - cy) * hashSize) % hashSize).toInt()
}
}
fun circumradius(ax: Double, ay: Double,
bx: Double, by: Double,
cx: Double, cy: Double): Double {
val dx = bx - ax
val dy = by - ay
val ex = cx - ax
val ey = cy - ay
val bl = dx * dx + dy * dy
val cl = ex * ex + ey * ey
val d = 0.5 / (dx * ey - dy * ex)
val x = (ey * bl - dy * cl) * d
val y = (dx * cl - ex * bl) * d
return x * x + y * y
}
fun circumcenter(ax: Double, ay: Double,
bx: Double, by: Double,
cx: Double, cy: Double): DoubleArray {
val dx = bx - ax
val dy = by - ay
val ex = cx - ax
val ey = cy - ay
val bl = dx * dx + dy * dy
val cl = ex * ex + ey * ey
val d = 0.5 / (dx * ey - dy * ex)
val x = ax + (ey * bl - dy * cl) * d
val y = ay + (dx * cl - ex * bl) * d
return doubleArrayOf(x, y)
}
fun quicksort(ids: IntArray, dists: DoubleArray, left: Int, right: Int) {
if (right - left <= 20) {
for (i in (left + 1)..right) {
val temp = ids[i]
val tempDist = dists[temp]
var j = i - 1
while (j >= left && dists[ids[j]] > tempDist) ids[j + 1] = ids[j--]
ids[j + 1] = temp
}
} else {
val median = (left + right) shr 1
var i = left + 1
var j = right
swap(ids, median, i)
if (dists[ids[left]] > dists[ids[right]]) swap(ids, left, right)
if (dists[ids[i]] > dists[ids[right]]) swap(ids, i, right)
if (dists[ids[left]] > dists[ids[i]]) swap(ids, left, i)
val temp = ids[i]
val tempDist = dists[temp]
while (true) {
do i++ while (dists[ids[i]] < tempDist)
do j-- while (dists[ids[j]] > tempDist)
if (j < i) break
swap(ids, i, j)
}
ids[left + 1] = ids[j]
ids[j] = temp
if (right - i + 1 >= j - left) {
quicksort(ids, dists, i, right)
quicksort(ids, dists, left, j - 1)
} else {
quicksort(ids, dists, left, j - 1)
quicksort(ids, dists, i, right)
}
}
}
private fun swap(arr: IntArray, i: Int, j: Int) {
val tmp = arr[i]
arr[i] = arr[j]
arr[j] = tmp
}
// monotonically increases with real angle, but doesn't need expensive trigonometry
private fun pseudoAngle(dx: Double, dy: Double): Double {
val p = dx / (abs(dx) + abs(dy))
val a = if (dy > 0.0) 3.0 - p else 1.0 + p
return a / 4.0 // [0..1]
}
private fun inCircle(ax: Double, ay: Double,
bx: Double, by: Double,
cx: Double, cy: Double,
px: Double, py: Double): Boolean {
val dx = ax - px
val dy = ay - py
val ex = bx - px
val ey = by - py
val fx = cx - px
val fy = cy - py
val ap = dx * dx + dy * dy
val bp = ex * ex + ey * ey
val cp = fx * fx + fy * fy
return dx * (ey * cp - bp * fy) -
dy * (ex * cp - bp * fx) +
ap * (ex * fy - ey * fx) < 0
}
private fun inCircleRobust(
ax: Double, ay: Double,
bx: Double, by: Double,
cx: Double, cy: Double,
px: Double, py: Double
): Boolean {
val dx = twoDiff(ax, px)
val dy = twoDiff(ay, py)
val ex = twoDiff(bx, px)
val ey = twoDiff(by, py)
val fx = twoDiff(cx, px)
val fy = twoDiff(cy, py)
val ap = ddAddDd(ddMultDd(dx, dx), ddMultDd(dy, dy))
val bp = ddAddDd(ddMultDd(ex, ex), ddMultDd(ey, ey))
val cp = ddAddDd(ddMultDd(fx, fx), ddMultDd(fy, fy))
val dd = ddAddDd(
ddDiffDd(
ddMultDd(dx, ddDiffDd(ddMultDd(ey, cp), ddMultDd(bp, fy))),
ddMultDd(dy, ddDiffDd(ddMultDd(ex, cp), ddMultDd(bp, fx)))
),
ddMultDd(ap, ddDiffDd(ddMultDd(ex, fy), ddMultDd(ey, fx)))
)
return (dd[1]) <= 0
}
private fun dist(ax: Double, ay: Double, bx: Double, by: Double): Double {
//val dx = ax - bx
//val dy = ay - by
//return dx * dx + dy * dy
// double-double implementation but I think it is overkill.
val dx = twoDiff(ax, bx)
val dy = twoDiff(ay, by)
val dx2 = ddMultDd(dx, dx)
val dy2 = ddMultDd(dy, dy)
val d2 = ddAddDd(dx2, dy2)
return d2[0] + d2[1]
}

View File

@@ -0,0 +1,225 @@
package com.icegps.triangulation
import com.icegps.math.geometry.Vector2D
import com.icegps.triangulation.Delaunay.Companion.from
import kotlin.math.cos
import kotlin.math.pow
import kotlin.math.sin
/*
ISC License
Copyright 2021 Ricardo Matias.
Permission to use, copy, modify, and/or distribute this software for any purpose
with or without fee is hereby granted, provided that the above copyright notice
and this permission notice appear in all copies.
THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES WITH
REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT,
INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS
OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF
THIS SOFTWARE.
*/
/**
* Use [from] static method to use the delaunay triangulation
*
* @description Port of d3-delaunay (JavaScript) library - https://github.com/d3/d3-delaunay
* @property points flat positions' array - [x0, y0, x1, y1..]
*
* @since 9258fa3 - commit
* @author Ricardo Matias
*/
@Suppress("unused")
class Delaunay(val points: DoubleArray) {
companion object {
/**
* Entry point for the delaunay triangulation
*
* @property points a list of 2D points
*/
fun from(points: List<Vector2D>): Delaunay {
val n = points.size
val coords = DoubleArray(n * 2)
for (i in points.indices) {
val p = points[i]
coords[2 * i] = p.x
coords[2 * i + 1] = p.y
}
return Delaunay(coords)
}
}
private var delaunator: Delaunator = Delaunator(points)
val inedges = IntArray(points.size / 2)
private val hullIndex = IntArray(points.size / 2)
var halfedges: IntArray = delaunator.halfedges
var hull: IntArray = delaunator.hull
var triangles: IntArray = delaunator.triangles
init {
init()
}
fun update() {
delaunator.update()
init()
}
fun neighbors(i: Int) = sequence<Int> {
val e0 = inedges[i]
if (e0 != -1) {
var e = e0
var p0 = -1
loop@ do {
p0 = triangles[e]
yield(p0)
e = if (e % 3 == 2) e - 2 else e + 1
if (e == -1) {
break@loop
}
if (triangles[e] != i) {
break@loop
//error("bad triangulation")
}
e = halfedges[e]
if (e == -1) {
val p = hull[(hullIndex[i] + 1) % hull.size]
if (p != p0) {
yield(p)
}
break@loop
}
} while (e != e0)
}
}
fun collinear(): Boolean {
for (i in 0 until triangles.size step 3) {
val a = 2 * triangles[i]
val b = 2 * triangles[i + 1]
val c = 2 * triangles[i + 2]
val coords = points
val cross = (coords[c] - coords[a]) * (coords[b + 1] - coords[a + 1])
-(coords[b] - coords[a]) * (coords[c + 1] - coords[a + 1])
if (cross > 1e-10) return false;
}
return true
}
private fun jitter(x: Double, y: Double, r: Double): DoubleArray {
return doubleArrayOf(x + sin(x + y) * r, y + cos(x - y) * r)
}
fun init() {
if (hull.size > 2 && collinear()) {
println("warning: triangulation is collinear")
val r = 1E-8
for (i in 0 until points.size step 2) {
val p = jitter(points[i], points[i + 1], r)
points[i] = p[0]
points[i + 1] = p[1]
}
delaunator = Delaunator(points)
halfedges = delaunator.halfedges
hull = delaunator.hull
triangles = delaunator.triangles
}
inedges.fill(-1)
hullIndex.fill(-1)
// Compute an index from each point to an (arbitrary) incoming halfedge
// Used to give the first neighbor of each point for this reason,
// on the hull we give priority to exterior halfedges
for (e in halfedges.indices) {
val p = triangles[nextHalfedge(e)]
if (halfedges[e] == -1 || inedges[p] == -1) inedges[p] = e
}
for (i in hull.indices) {
hullIndex[hull[i]] = i
}
// degenerate case: 1 or 2 (distinct) points
if (hull.size in 1..2) {
triangles = IntArray(3) { -1 }
halfedges = IntArray(3) { -1 }
triangles[0] = hull[0]
inedges[hull[0]] = 1
if (hull.size == 2) {
inedges[hull[1]] = 0
triangles[1] = hull[1]
triangles[2] = hull[1]
}
}
}
fun find(x: Double, y: Double, i: Int = 0): Int {
var i1 = i
var c = step(i, x, y)
while (c >= 0 && c != i && c != i1) {
i1 = c
c = step(i1, x, y)
}
return c
}
fun nextHalfedge(e: Int) = if (e % 3 == 2) e - 2 else e + 1
fun prevHalfedge(e: Int) = if (e % 3 == 0) e + 2 else e - 1
fun step(i: Int, x: Double, y: Double): Int {
if (inedges[i] == -1 || points.isEmpty()) return (i + 1) % (points.size shr 1)
var c = i
var dc = (x - points[i * 2]).pow(2) + (y - points[i * 2 + 1]).pow(2)
val e0 = inedges[i]
var e = e0
do {
val t = triangles[e]
val dt = (x - points[t * 2]).pow(2) + (y - points[t * 2 + 1]).pow(2)
if (dt < dc) {
dc = dt
c = t
}
e = if (e % 3 == 2) e - 2 else e + 1
if (triangles[e] != i) {
//error("bad triangulation")
break
} // bad triangulation
e = halfedges[e]
if (e == -1) {
e = hull[(hullIndex[i] + 1) % hull.size]
if (e != t) {
if ((x - points[e * 2]).pow(2) + (y - points[e * 2 + 1]).pow(2) < dc) return e
}
break
}
} while (e != e0)
return c
}
}

View File

@@ -0,0 +1,69 @@
package com.icegps.triangulation
import com.icegps.math.geometry.Vector3D
import com.icegps.math.geometry.toVector2D
/**
* Kotlin/OPENRNDR idiomatic interface to `Delaunay`
*/
class DelaunayTriangulation(val points: List<Vector3D>) {
val delaunay: Delaunay = Delaunay.from(points.map { it.toVector2D() })
fun neighbors(pointIndex: Int): Sequence<Int> {
return delaunay.neighbors(pointIndex)
}
fun neighborPoints(pointIndex: Int): List<Vector3D> {
return neighbors(pointIndex).map { points[it] }.toList()
}
fun triangleIndices(): List<IntArray> {
val list = mutableListOf<IntArray>()
for (i in delaunay.triangles.indices step 3) {
list.add(
intArrayOf(
delaunay.triangles[i],
delaunay.triangles[i + 1],
delaunay.triangles[i + 2]
)
)
}
return list
}
fun triangles(filterPredicate: (Int, Int, Int) -> Boolean = { _, _, _ -> true }): List<Triangle> {
val list = mutableListOf<Triangle>()
for (i in delaunay.triangles.indices step 3) {
val t0 = delaunay.triangles[i]
val t1 = delaunay.triangles[i + 1]
val t2 = delaunay.triangles[i + 2]
// originally they are defined *counterclockwise*
if (filterPredicate(t2, t1, t0)) {
val p1 = points[t0]
val p2 = points[t1]
val p3 = points[t2]
list.add(Triangle(p3, p2, p1))
}
}
return list
}
fun nearest(query: Vector3D): Int = delaunay.find(query.x, query.y)
fun nearestPoint(query: Vector3D): Vector3D = points[nearest(query)]
}
/**
* Computes the Delaunay triangulation for the list of 2D points.
*
* The Delaunay triangulation is a triangulation of a set of points such that
* no point is inside the circumcircle of any triangle. It maximizes the minimum
* angle of all the angles in the triangles, avoiding skinny triangles.
*
* @return A DelaunayTriangulation object representing the triangulation of the given points.
*/
fun List<Vector3D>.delaunayTriangulation(): DelaunayTriangulation {
return DelaunayTriangulation(this)
}

View File

@@ -0,0 +1,340 @@
package com.icegps.triangulation
import kotlin.math.pow
// original code: https://github.com/FlorisSteenkamp/double-double/
/**
* Returns the difference and exact error of subtracting two floating point
* numbers.
* Uses an EFT (error-free transformation), i.e. `a-b === x+y` exactly.
* The returned result is a non-overlapping expansion (smallest value first!).
*
* * **precondition:** `abs(a) >= abs(b)` - A fast test that can be used is
* `(a > b) === (a > -b)`
*
* See https://people.eecs.berkeley.edu/~jrs/papers/robustr.pdf
*/
fun fastTwoDiff(a: Double, b: Double): DoubleArray {
val x = a - b;
val y = (a - x) - b;
return doubleArrayOf(y, x)
}
/**
* Returns the sum and exact error of adding two floating point numbers.
* Uses an EFT (error-free transformation), i.e. a+b === x+y exactly.
* The returned sum is a non-overlapping expansion (smallest value first!).
*
* Precondition: abs(a) >= abs(b) - A fast test that can be used is
* (a > b) === (a > -b)
*
* See https://people.eecs.berkeley.edu/~jrs/papers/robustr.pdf
*/
fun fastTwoSum(a: Double, b: Double): DoubleArray {
val x = a + b;
return doubleArrayOf(b - (x - a), x)
}
/**
* Truncates a floating point value's significand and returns the result.
* Similar to split, but with the ability to specify the number of bits to keep.
*
* **Theorem 17 (Veltkamp-Dekker)**: Let a be a p-bit floating-point number, where
* p >= 3. Choose a splitting point s such that p/2 <= s <= p-1. Then the
* following algorithm will produce a (p-s)-bit value a_hi and a
* nonoverlapping (s-1)-bit value a_lo such that abs(a_hi) >= abs(a_lo) and
* a = a_hi + a_lo.
*
* * see [Shewchuk](https://people.eecs.berkeley.edu/~jrs/papers/robustr.pdf)
*
* @param a a double
* @param bits the number of significand bits to leave intact
*/
fun reduceSignificand(
a: Double,
bits: Int
): Double {
val s = 53 - bits;
val f = 2.0.pow(s) + 1;
val c = f * a;
val r = c - (c - a);
return r;
}
/**
* === 2^Math.ceil(p/2) + 1 where p is the # of significand bits in a double === 53.
* @internal
*/
const val f = 134217729; // 2**27 + 1;
/**
* Returns the result of splitting a double into 2 26-bit doubles.
*
* Theorem 17 (Veltkamp-Dekker): Let a be a p-bit floating-point number, where
* p >= 3. Choose a splitting point s such that p/2 <= s <= p-1. Then the
* following algorithm will produce a (p-s)-bit value a_hi and a
* nonoverlapping (s-1)-bit value a_lo such that abs(a_hi) >= abs(a_lo) and
* a = a_hi + a_lo.
*
* see e.g. [Shewchuk](https://people.eecs.berkeley.edu/~jrs/papers/robustr.pdf)
* @param a A double floating point number
*/
fun split(a: Double): DoubleArray {
val c = f * a;
val a_h = c - (c - a);
val a_l = a - a_h;
return doubleArrayOf(a_h, a_l)
}
/**
* Returns the exact result of subtracting b from a.
*
* @param a minuend - a double-double precision floating point number
* @param b subtrahend - a double-double precision floating point number
*/
fun twoDiff(a: Double, b: Double): DoubleArray {
val x = a - b;
val bvirt = a - x;
val y = (a - (x + bvirt)) + (bvirt - b);
return doubleArrayOf(y, x)
}
/**
* Returns the exact result of multiplying two doubles.
*
* * the resulting array is the reverse of the standard twoSum in the literature.
*
* Theorem 18 (Shewchuk): Let a and b be p-bit floating-point numbers, where
* p >= 6. Then the following algorithm will produce a nonoverlapping expansion
* x + y such that ab = x + y, where x is an approximation to ab and y
* represents the roundoff error in the calculation of x. Furthermore, if
* round-to-even tiebreaking is used, x and y are non-adjacent.
*
* See https://people.eecs.berkeley.edu/~jrs/papers/robustr.pdf
* @param a A double
* @param b Another double
*/
fun twoProduct(a: Double, b: Double): DoubleArray {
val x = a * b;
//const [ah, al] = split(a);
val c = f * a;
val ah = c - (c - a);
val al = a - ah;
//const [bh, bl] = split(b);
val d = f * b;
val bh = d - (d - b);
val bl = b - bh;
val y = (al * bl) - ((x - (ah * bh)) - (al * bh) - (ah * bl));
//const err1 = x - (ah * bh);
//const err2 = err1 - (al * bh);
//const err3 = err2 - (ah * bl);
//const y = (al * bl) - err3;
return doubleArrayOf(y, x)
}
fun twoSquare(a: Double): DoubleArray {
val x = a * a;
//const [ah, al] = split(a);
val c = f * a;
val ah = c - (c - a);
val al = a - ah;
val y = (al * al) - ((x - (ah * ah)) - 2 * (ah * al));
return doubleArrayOf(y, x)
}
/**
* Returns the exact result of adding two doubles.
*
* * the resulting array is the reverse of the standard twoSum in the literature.
*
* Theorem 7 (Knuth): Let a and b be p-bit floating-point numbers. Then the
* following algorithm will produce a nonoverlapping expansion x + y such that
* a + b = x + y, where x is an approximation to a + b and y is the roundoff
* error in the calculation of x.
*
* See https://people.eecs.berkeley.edu/~jrs/papers/robustr.pdf
*/
fun twoSum(a: Double, b: Double): DoubleArray {
val x = a + b;
val bv = x - a;
return doubleArrayOf((a - (x - bv)) + (b - bv), x)
}
/**
* Returns the result of subtracting the second given double-double-precision
* floating point number from the first.
*
* * relative error bound: 3u^2 + 13u^3, i.e. fl(a-b) = (a-b)(1+ϵ),
* where ϵ <= 3u^2 + 13u^3, u = 0.5 * Number.EPSILON
* * the error bound is not sharp - the worst case that could be found by the
* authors were 2.25u^2
*
* ALGORITHM 6 of https://hal.archives-ouvertes.fr/hal-01351529v3/document
* @param x a double-double precision floating point number
* @param y another double-double precision floating point number
*/
fun ddDiffDd(x: DoubleArray, y: DoubleArray): DoubleArray {
val xl = x[0];
val xh = x[1];
val yl = y[0];
val yh = y[1];
//const [sl,sh] = twoSum(xh,yh);
val sh = xh - yh;
val _1 = sh - xh;
val sl = (xh - (sh - _1)) + (-yh - _1);
//const [tl,th] = twoSum(xl,yl);
val th = xl - yl;
val _2 = th - xl;
val tl = (xl - (th - _2)) + (-yl - _2);
val c = sl + th;
//const [vl,vh] = fastTwoSum(sh,c)
val vh = sh + c;
val vl = c - (vh - sh);
val w = tl + vl
//const [zl,zh] = fastTwoSum(vh,w)
val zh = vh + w;
val zl = w - (zh - vh);
return doubleArrayOf(zl, zh)
}
/**
* Returns the product of two double-double-precision floating point numbers.
*
* * relative error bound: 7u^2, i.e. fl(a+b) = (a+b)(1+ϵ),
* where ϵ <= 7u^2, u = 0.5 * Number.EPSILON
* the error bound is not sharp - the worst case that could be found by the
* authors were 5u^2
*
* * ALGORITHM 10 of https://hal.archives-ouvertes.fr/hal-01351529v3/document
* @param x a double-double precision floating point number
* @param y another double-double precision floating point number
*/
fun ddMultDd(x: DoubleArray, y: DoubleArray): DoubleArray {
//const xl = x[0];
val xh = x[1];
//const yl = y[0];
val yh = y[1];
//const [cl1,ch] = twoProduct(xh,yh);
val ch = xh * yh;
val c = f * xh;
val ah = c - (c - xh);
val al = xh - ah;
val d = f * yh;
val bh = d - (d - yh);
val bl = yh - bh;
val cl1 = (al * bl) - ((ch - (ah * bh)) - (al * bh) - (ah * bl));
//return fastTwoSum(ch,cl1 + (xh*yl + xl*yh));
val b = cl1 + (xh * y[0] + x[0] * yh);
val xx = ch + b;
return doubleArrayOf(b - (xx - ch), xx)
}
/**
* Returns the result of adding two double-double-precision floating point
* numbers.
*
* * relative error bound: 3u^2 + 13u^3, i.e. fl(a+b) = (a+b)(1+ϵ),
* where ϵ <= 3u^2 + 13u^3, u = 0.5 * Number.EPSILON
* * the error bound is not sharp - the worst case that could be found by the
* authors were 2.25u^2
*
* ALGORITHM 6 of https://hal.archives-ouvertes.fr/hal-01351529v3/document
* @param x a double-double precision floating point number
* @param y another double-double precision floating point number
*/
fun ddAddDd(x: DoubleArray, y: DoubleArray): DoubleArray {
val xl = x[0];
val xh = x[1];
val yl = y[0];
val yh = y[1];
//const [sl,sh] = twoSum(xh,yh);
val sh = xh + yh;
val _1 = sh - xh;
val sl = (xh - (sh - _1)) + (yh - _1);
//val [tl,th] = twoSum(xl,yl);
val th = xl + yl;
val _2 = th - xl;
val tl = (xl - (th - _2)) + (yl - _2);
val c = sl + th;
//val [vl,vh] = fastTwoSum(sh,c)
val vh = sh + c;
val vl = c - (vh - sh);
val w = tl + vl
//val [zl,zh] = fastTwoSum(vh,w)
val zh = vh + w;
val zl = w - (zh - vh);
return doubleArrayOf(zl, zh)
}
/**
* Returns the product of a double-double-precision floating point number and a
* double.
*
* * slower than ALGORITHM 8 (one call to fastTwoSum more) but about 2x more
* accurate
* * relative error bound: 1.5u^2 + 4u^3, i.e. fl(a+b) = (a+b)(1+ϵ),
* where ϵ <= 1.5u^2 + 4u^3, u = 0.5 * Number.EPSILON
* * the bound is very sharp
* * probably prefer `ddMultDouble2` due to extra speed
*
* * ALGORITHM 7 of https://hal.archives-ouvertes.fr/hal-01351529v3/document
* @param y a double
* @param x a double-double precision floating point number
*/
fun ddMultDouble1(y: Double, x: DoubleArray): DoubleArray {
val xl = x[0];
val xh = x[1];
//val [cl1,ch] = twoProduct(xh,y);
val ch = xh * y;
val c = f * xh;
val ah = c - (c - xh);
val al = xh - ah;
val d = f * y;
val bh = d - (d - y);
val bl = y - bh;
val cl1 = (al * bl) - ((ch - (ah * bh)) - (al * bh) - (ah * bl));
val cl2 = xl * y;
//val [tl1,th] = fastTwoSum(ch,cl2);
val th = ch + cl2;
val tl1 = cl2 - (th - ch);
val tl2 = tl1 + cl1;
//val [zl,zh] = fastTwoSum(th,tl2);
val zh = th + tl2;
val zl = tl2 - (zh - th);
return doubleArrayOf(zl, zh);
}

View File

@@ -0,0 +1,19 @@
package com.icegps.triangulation
fun orient2d(bx: Double, by: Double, ax: Double, ay: Double, cx: Double, cy: Double): Double {
// (ax,ay) (bx,by) are swapped such that the sign of the determinant is flipped. which is what Delaunator.kt expects.
/*
| a b | = | ax - cx ay - cy |
| c d | | bx - cx by - cy |
*/
val a = twoDiff(ax, cx)
val b = twoDiff(ay, cy)
val c = twoDiff(bx, cx)
val d = twoDiff(by, cy)
val determinant = ddDiffDd(ddMultDd(a, d), ddMultDd(b, c))
return determinant[1]
}

View File

@@ -0,0 +1,13 @@
package com.icegps.triangulation
import com.icegps.math.geometry.Vector3D
/**
* @author tabidachinokaze
* @date 2025/11/26
*/
data class Triangle(
val x1: Vector3D,
val x2: Vector3D,
val x3: Vector3D,
)

View File

@@ -121,6 +121,13 @@ data class Vector2D(val x: Double, val y: Double) : IsAlmostEquals<Vector2D> {
fun distanceTo(x: Int, y: Int): Double = this.distanceTo(x.toDouble(), y.toDouble())
fun distanceTo(that: Vector2D): Double = distanceTo(that.x, that.y)
/** Calculates the squared Euclidean distance to [other]. */
fun squaredDistanceTo(other: Vector2D): Double {
val dx = other.x - x
val dy = other.y - y
return dx * dx + dy * dy
}
infix fun cross(that: Vector2D): Double = crossProduct(this, that)
infix fun dot(that: Vector2D): Double = ((this.x * that.x) + (this.y * that.y))
@@ -195,6 +202,8 @@ data class Vector2D(val x: Double, val y: Double) : IsAlmostEquals<Vector2D> {
/** DOWN using screen coordinates as reference (0, +1) */
val DOWN_SCREEN = Vector2D(0.0, +1.0)
val INFINITY = Vector2D(Double.POSITIVE_INFINITY, Double.POSITIVE_INFINITY)
inline operator fun invoke(x: Number, y: Number): Vector2D = Vector2D(x.toDouble(), y.toDouble())
//inline operator fun invoke(x: Float, y: Float): Vector2D = Vector2D(x.toDouble(), y.toDouble())

View File

@@ -51,7 +51,12 @@ Two color spaces are added: `ColorHSLUVa` and `ColorHPLUVa`, they are an impleme
## Demos
### colormap/DemoSpectralZucconiColormap
This program demonstrates the `spectralZucconi6()` function, which
takes a normalized value and returns a `ColorRGBa` using the
accurate spectral colormap developed by Alan Zucconi.
It draws a varying number of vertical bands (between 16 and 48)
filled with various hues.
![colormap-DemoSpectralZucconiColormapKt](https://raw.githubusercontent.com/openrndr/orx/media/orx-color/images/colormap-DemoSpectralZucconiColormapKt.png)
@@ -59,7 +64,13 @@ Two color spaces are added: `ColorHSLUVa` and `ColorHPLUVa`, they are an impleme
### colormap/DemoSpectralZucconiColormapPhrase
This program demonstrates how to use the shader-based version of
the `spectral_zucconi6()` function, which
takes a normalized value and returns an `rgb` color using the
accurate spectral colormap developed by Alan Zucconi.
It shades a full-window rectangle using its normalized `x` coordinate
in a `ShadeStyle` to choose pixel colors.
![colormap-DemoSpectralZucconiColormapPhraseKt](https://raw.githubusercontent.com/openrndr/orx/media/orx-color/images/colormap-DemoSpectralZucconiColormapPhraseKt.png)
@@ -67,7 +78,11 @@ Two color spaces are added: `ColorHSLUVa` and `ColorHPLUVa`, they are an impleme
### colormap/DemoSpectralZucconiColormapPlot
This demo uses the shader based `spectral_zucconi6()` function to fill the background,
then visualizes the red, green and blue components of the colors used in the background
as red, green and blue line strips.
The Vector2 points for the line strips are calculated only once when the program starts.
![colormap-DemoSpectralZucconiColormapPlotKt](https://raw.githubusercontent.com/openrndr/orx/media/orx-color/images/colormap-DemoSpectralZucconiColormapPlotKt.png)
@@ -75,7 +90,12 @@ Two color spaces are added: `ColorHSLUVa` and `ColorHPLUVa`, they are an impleme
### colormap/DemoTurboColormap
This program demonstrates the `turboColormap()` function, which
takes a normalized value and returns a `ColorRGBa` using the
Turbo colormap developed by Google.
It draws a varying number of vertical bands (between 16 and 48)
filled with various hues.
![colormap-DemoTurboColormapKt](https://raw.githubusercontent.com/openrndr/orx/media/orx-color/images/colormap-DemoTurboColormapKt.png)
@@ -83,7 +103,13 @@ Two color spaces are added: `ColorHSLUVa` and `ColorHPLUVa`, they are an impleme
### colormap/DemoTurboColormapPhrase
This program demonstrates how to use the shader-based version of
the `turbo_colormap()` function, which
takes a normalized value and returns an `rgb` color using the
Turbo colormap developed by Google.
It shades a full-window rectangle using its normalized `x` coordinate
in a `ShadeStyle` to choose pixel colors.
![colormap-DemoTurboColormapPhraseKt](https://raw.githubusercontent.com/openrndr/orx/media/orx-color/images/colormap-DemoTurboColormapPhraseKt.png)
@@ -91,7 +117,11 @@ Two color spaces are added: `ColorHSLUVa` and `ColorHPLUVa`, they are an impleme
### colormap/DemoTurboColormapPlot
This demo uses the shader based `turbo_colormap()` function to fill the background,
then visualizes the red, green and blue components of the colors used in the background
as red, green and blue line strips.
The Vector2 points for the line strips are calculated only once when the program starts.
![colormap-DemoTurboColormapPlotKt](https://raw.githubusercontent.com/openrndr/orx/media/orx-color/images/colormap-DemoTurboColormapPlotKt.png)
@@ -171,7 +201,8 @@ to position the images dynamically based on their index within the grid.
### colorRange/DemoColorRange01
Comparison of color lists generated by interpolating from
`PINK` to `BLUE` in six different color spaces.
![colorRange-DemoColorRange01Kt](https://raw.githubusercontent.com/openrndr/orx/media/orx-color/images/colorRange-DemoColorRange01Kt.png)
@@ -179,7 +210,13 @@ to position the images dynamically based on their index within the grid.
### colorRange/DemoColorRange02
Demonstrates how to create a `ColorSequence` containing three colors, one of them in the HSLUV color space.
Each color in the sequence is assigned a normalized position: in this program, one at the start (0.0),
one in the middle (0.5) and one at the end (1.0).
The `ColorSpace.blend()` method is used to get a list with 18 interpolated `ColorRGBa` colors,
then those colors are drawn as vertical rectangles covering the whole window.
![colorRange-DemoColorRange02Kt](https://raw.githubusercontent.com/openrndr/orx/media/orx-color/images/colorRange-DemoColorRange02Kt.png)
@@ -187,7 +224,13 @@ to position the images dynamically based on their index within the grid.
### colorRange/DemoColorRange03
This program creates color interpolations from `ColorRGBa.BLUE` to
`ColorRGBa.PINK` in 25 steps in multiple color spaces.
The window height is adjusted based on the number of interpolations to show.
The resulting gradients differ in saturation and brightness and apparently include more
`BLUE` or more `PINK` depending on the chosen color space.
![colorRange-DemoColorRange03Kt](https://raw.githubusercontent.com/openrndr/orx/media/orx-color/images/colorRange-DemoColorRange03Kt.png)
@@ -195,6 +238,17 @@ to position the images dynamically based on their index within the grid.
### colorRange/DemoColorRange04
A visualization of color interpolations inside a 3D RGB cube with an interactive 3D `Orbital` camera.
The hues of the source and target colors are animated over time.
The color interpolations are shown simultaneously in nine different color spaces, revealing how in
each case they share common starting and ending points in 3D, but have unique paths going from
start to end.
By rotating the cube 90 degrees towards the left and slightly zooming out, one can appreciate how
one of the points moves along the edges of the cube, while the other moves on the edges of a
smaller, invisible cube.
![colorRange-DemoColorRange04Kt](https://raw.githubusercontent.com/openrndr/orx/media/orx-color/images/colorRange-DemoColorRange04Kt.png)
@@ -337,13 +391,6 @@ The rendering process includes:
### histogram/DemoHistogram01
package histogram
import org.openrndr.application
import org.openrndr.draw.loadImage
import org.openrndr.extra.color.statistics.calculateHistogramRGB
/*
Demonstrates how to generate a palette with the top 32 colors
of a loaded image, sorted by luminosity. The colors are displayed
as rectangles overlayed on top of the image.
@@ -354,14 +401,6 @@ as rectangles overlayed on top of the image.
### histogram/DemoHistogram02
package histogram
import org.openrndr.application
import org.openrndr.draw.loadImage
import org.openrndr.extra.color.statistics.calculateHistogramRGB
import kotlin.math.pow
/*
Show the color histogram of an image using non-uniform weighting,
prioritizing bright colors.
@@ -371,13 +410,6 @@ prioritizing bright colors.
### histogram/DemoHistogram03
package histogram
import org.openrndr.application
import org.openrndr.draw.loadImage
import org.openrndr.extra.color.statistics.calculateHistogramRGB
/*
Create a simple grid-like composition based on colors sampled from image.
The cells are 32 by 32 pixels in size and are filled with a random sample
taken from the color histogram of the image.

View File

@@ -1,8 +1,5 @@
package colorRange
// Comparison of color lists generated by interpolating from
// PINK to BLUE in different color models
import org.openrndr.application
import org.openrndr.color.ColorRGBa
import org.openrndr.extra.color.palettes.rangeTo
@@ -11,6 +8,10 @@ import org.openrndr.math.Vector2
import org.openrndr.math.map
import org.openrndr.shape.Rectangle
/**
* Comparison of color lists generated by interpolating from
* `PINK` to `BLUE` in six different color spaces.
*/
fun main() = application {
configure {
width = 720

View File

@@ -1,12 +1,19 @@
package colorRange
// Create a colorSequence with multiple color models
import org.openrndr.application
import org.openrndr.color.ColorRGBa
import org.openrndr.extra.color.palettes.colorSequence
import org.openrndr.extra.color.spaces.toHSLUVa
/**
* Demonstrates how to create a `ColorSequence` containing three colors, one of them in the HSLUV color space.
*
* Each color in the sequence is assigned a normalized position: in this program, one at the start (0.0),
* one in the middle (0.5) and one at the end (1.0).
*
* The `ColorSpace.blend()` method is used to get a list with 18 interpolated `ColorRGBa` colors,
* then those colors are drawn as vertical rectangles covering the whole window.
*/
fun main() = application {
configure {
width = 720
@@ -14,9 +21,11 @@ fun main() = application {
}
program {
extend {
val cs = colorSequence(0.0 to ColorRGBa.PINK,
val cs = colorSequence(
0.0 to ColorRGBa.PINK,
0.5 to ColorRGBa.BLUE,
1.0 to ColorRGBa.PINK.toHSLUVa()) // <-- note this one is in hsluv
1.0 to ColorRGBa.PINK.toHSLUVa() // <-- note this color is in HSLUV
)
for (c in cs blend (width / 40)) {
drawer.fill = c

View File

@@ -6,15 +6,16 @@ import org.openrndr.draw.loadFont
import org.openrndr.extra.color.palettes.rangeTo
import org.openrndr.extra.color.spaces.*
/**
* This program creates color interpolations from `ColorRGBa.BLUE` to
* `ColorRGBa.PINK` in 25 steps in multiple color spaces.
*
* The window height is adjusted based on the number of interpolations to show.
*
* The resulting gradients differ in saturation and brightness and apparently include more
* `BLUE` or more `PINK` depending on the chosen color space.
*/
fun main() = application {
configure {
width = 720
height = 30 + 50 * 11 // row count
}
program {
extend {
drawer.clear(ColorRGBa.WHITE)
val colorA = ColorRGBa.BLUE
val colorB = ColorRGBa.PINK
@@ -34,8 +35,14 @@ fun main() = application {
"XSLUV" to (colorA.toXSLUVa()..colorB.toXSLUVa() blend stepCount),
)
configure {
width = 720
height = 30 + 50 * allSteps.size
}
program {
extend {
drawer.clear(ColorRGBa.WHITE)
drawer.stroke = null
drawer.fontMap = loadFont("demo-data/fonts/IBMPlexMono-Regular.ttf", 16.0)
drawer.translate(20.0, 20.0)
for ((label, steps) in allSteps) {

View File

@@ -14,6 +14,20 @@ import org.openrndr.extra.color.spaces.toXSLUVa
import org.openrndr.extra.meshgenerators.sphereMesh
import org.openrndr.math.Vector3
/**
* A visualization of color interpolations inside a 3D RGB cube with an interactive 3D `Orbital` camera.
*
* The hues of the source and target colors are animated over time.
*
* The color interpolations are shown simultaneously in nine different color spaces, revealing how in
* each case they share common starting and ending points in 3D, but have unique paths going from
* start to end.
*
* By rotating the cube 90 degrees towards the left and slightly zooming out, one can appreciate how
* one of the points moves along the edges of the cube, while the other moves on the edges of a
* smaller, invisible cube.
*
*/
fun main() = application {
configure {
width = 720
@@ -44,9 +58,6 @@ fun main() = application {
"XSLUV" to (colorA.toXSLUVa()..colorB.toXSLUVa() blend stepCount),
)
drawer.stroke = null
drawer.fontMap = loadFont("demo-data/fonts/IBMPlexMono-Regular.ttf", 16.0)
for ((_, steps) in allSteps) {
for (i in steps.indices) {
val srgb = steps[i].toSRGB().clip()

View File

@@ -5,6 +5,14 @@ import org.openrndr.extra.color.colormaps.spectralZucconi6
import org.openrndr.extra.noise.fastFloor
import kotlin.math.sin
/**
* This program demonstrates the `spectralZucconi6()` function, which
* takes a normalized value and returns a `ColorRGBa` using the
* accurate spectral colormap developed by Alan Zucconi.
*
* It draws a varying number of vertical bands (between 16 and 48)
* filled with various hues.
*/
fun main() = application {
configure {
width = 720
@@ -14,12 +22,13 @@ fun main() = application {
extend {
drawer.stroke = null
val stripeCount = 32 + (sin(seconds) * 16.0).fastFloor()
val bandWidth = width / stripeCount.toDouble()
repeat(stripeCount) { i ->
drawer.fill = spectralZucconi6(i / stripeCount.toDouble())
drawer.rectangle(
x = i * width / stripeCount.toDouble(),
x = i * bandWidth,
y = 0.0,
width = width / stripeCount.toDouble(),
width = bandWidth,
height = height.toDouble(),
)
}

View File

@@ -5,6 +5,15 @@ import org.openrndr.draw.shadeStyle
import org.openrndr.extra.color.colormaps.ColormapPhraseBook
import org.openrndr.extra.shaderphrases.preprocess
/**
* This program demonstrates how to use the shader-based version of
* the `spectral_zucconi6()` function, which
* takes a normalized value and returns an `rgb` color using the
* accurate spectral colormap developed by Alan Zucconi.
*
* It shades a full-window rectangle using its normalized `x` coordinate
* in a `ShadeStyle` to choose pixel colors.
*/
fun main() = application {
configure {
width = 720

View File

@@ -8,6 +8,13 @@ import org.openrndr.extra.color.colormaps.spectralZucconi6
import org.openrndr.extra.shaderphrases.preprocess
import org.openrndr.math.Vector2
/**
* This demo uses the shader based `spectral_zucconi6()` function to fill the background,
* then visualizes the red, green and blue components of the colors used in the background
* as red, green and blue line strips.
*
* The Vector2 points for the line strips are calculated only once when the program starts.
*/
fun main() = application {
configure {
width = 720
@@ -20,14 +27,14 @@ fun main() = application {
fragmentTransform = "x_fill.rgb = spectral_zucconi6(c_boundsPosition.x);"
}
// Function that expects as an argument a function to convert a ColorRGBa into a Double,
// and returns a list of Vector2 coordinates.
fun getColormapPoints(
block: ColorRGBa.() -> Double
) = List(width) { x ->
Vector2(
x.toDouble(),
height.toDouble()
- block(spectralZucconi6(x / width.toDouble()))
* height.toDouble()
(1.0 - block(spectralZucconi6(x / width.toDouble()))) * height
)
}
@@ -39,11 +46,13 @@ fun main() = application {
shadeStyle = backgroundStyle
rectangle(bounds)
shadeStyle = null
strokeWeight = 1.0
stroke = ColorRGBa.RED
lineStrip(redPoints)
stroke = ColorRGBa.GREEN
lineStrip(greenPoints)
stroke = ColorRGBa.BLUE
lineStrip(bluePoints)
}

View File

@@ -5,6 +5,15 @@ import org.openrndr.extra.color.colormaps.turboColormap
import org.openrndr.extra.noise.fastFloor
import kotlin.math.sin
/**
* This program demonstrates the `turboColormap()` function, which
* takes a normalized value and returns a `ColorRGBa` using the
* Turbo colormap developed by Google.
*
* It draws a varying number of vertical bands (between 16 and 48)
* filled with various hues.
*/
fun main() = application {
configure {
width = 720

View File

@@ -5,6 +5,15 @@ import org.openrndr.draw.shadeStyle
import org.openrndr.extra.color.colormaps.ColormapPhraseBook
import org.openrndr.extra.shaderphrases.preprocess
/**
* This program demonstrates how to use the shader-based version of
* the `turbo_colormap()` function, which
* takes a normalized value and returns an `rgb` color using the
* Turbo colormap developed by Google.
*
* It shades a full-window rectangle using its normalized `x` coordinate
* in a `ShadeStyle` to choose pixel colors.
*/
fun main() = application {
configure {
width = 720

View File

@@ -8,6 +8,13 @@ import org.openrndr.extra.color.colormaps.turboColormap
import org.openrndr.extra.shaderphrases.preprocess
import org.openrndr.math.Vector2
/**
* This demo uses the shader based `turbo_colormap()` function to fill the background,
* then visualizes the red, green and blue components of the colors used in the background
* as red, green and blue line strips.
*
* The Vector2 points for the line strips are calculated only once when the program starts.
*/
fun main() = application {
configure {
width = 720
@@ -23,10 +30,8 @@ fun main() = application {
block: ColorRGBa.() -> Double
) = List(width) { x ->
Vector2(
x = x.toDouble(),
y = height.toDouble()
- block(turboColormap(x / width.toDouble()))
* height.toDouble()
x.toDouble(),
(1.0 - block(turboColormap(x / width.toDouble()))) * height
)
}
val redPoints = getColormapPoints { r }
@@ -37,11 +42,13 @@ fun main() = application {
shadeStyle = backgroundStyle
rectangle(bounds)
shadeStyle = null
strokeWeight = 1.0
stroke = ColorRGBa.RED
lineStrip(redPoints)
stroke = ColorRGBa.GREEN
lineStrip(greenPoints)
stroke = ColorRGBa.BLUE
lineStrip(bluePoints)
}

View File

@@ -26,7 +26,16 @@ this addon provides some helper functions to convert them to OPENRNDR types:
## Demos
### DemoContours01
Demonstrates how to convert a PNG image into `ShapeContour`s using BoofCV.
Two helper methods help convert data types between BoofCV and OPENRNDR.
The `ColorBuffer.toGrayF32()` method converts an OPENRNDR `ColorBuffer` to `GrayF32` format,
required by BoofCV.
The `.toShapeContours()` converts BoofCV contours to OPENRNDR `ShapeContour` instances.
The resulting contours are animated zooming in and out while their colors change slowly.
![DemoContours01Kt](https://raw.githubusercontent.com/openrndr/orx/media/orx-jvm/orx-boofcv/images/DemoContours01Kt.png)
@@ -34,7 +43,8 @@ this addon provides some helper functions to convert them to OPENRNDR types:
### DemoResize01
Demonstrates how to scale down images using the `resizeBy` BoofCV-based
method.
![DemoResize01Kt](https://raw.githubusercontent.com/openrndr/orx/media/orx-jvm/orx-boofcv/images/DemoResize01Kt.png)
@@ -42,7 +52,11 @@ this addon provides some helper functions to convert them to OPENRNDR types:
### DemoResize02
Demonstrates how to scale down images using the `resizeTo` BoofCV-based
method.
If only the `newWidth` or the `newHeight` arguments are specified,
the resizing happens maintaining the original aspect ratio.
![DemoResize02Kt](https://raw.githubusercontent.com/openrndr/orx/media/orx-jvm/orx-boofcv/images/DemoResize02Kt.png)
@@ -50,7 +64,16 @@ this addon provides some helper functions to convert them to OPENRNDR types:
### DemoSimplified01
When converting a `ColorBuffer` to `ShapeContour` instances using
`BoofCV`, simple shapes can have hundreds of segments and vertices.
This demo shows how to use the `simplify()` method to greatly
reduce the number of vertices.
Then it uses the simplified vertex lists to create smooth curves
(using `CatmullRomChain2`) and polygonal curves (using `ShapeContour.fromPoints`).
Study the console to learn about the number of segments before and after simplification.
![DemoSimplified01Kt](https://raw.githubusercontent.com/openrndr/orx/media/orx-jvm/orx-boofcv/images/DemoSimplified01Kt.png)

View File

@@ -12,6 +12,18 @@ import org.openrndr.draw.loadImage
import kotlin.math.cos
import kotlin.math.sin
/**
* Demonstrates how to convert a PNG image into `ShapeContour`s using BoofCV.
*
* Two helper methods help convert data types between BoofCV and OPENRNDR.
*
* The `ColorBuffer.toGrayF32()` method converts an OPENRNDR `ColorBuffer` to `GrayF32` format,
* required by BoofCV.
*
* The `.toShapeContours()` converts BoofCV contours to OPENRNDR `ShapeContour` instances.
*
* The resulting contours are animated zooming in and out while their colors change slowly.
*/
fun main() = application {
program {
// Load an image, convert to BoofCV format using orx-boofcv

View File

@@ -2,19 +2,31 @@ import org.openrndr.application
import org.openrndr.boofcv.binding.resizeBy
import org.openrndr.color.ColorRGBa
import org.openrndr.draw.loadImage
import org.openrndr.math.Vector2
/**
* Demonstrates how to scale down images using the `resizeBy` BoofCV-based
* method.
*/
fun main() = application {
program {
// Load an image, convert to BoofCV format using orx-boofcv
val input = loadImage("demo-data/images/image-001.png")
val scaled = input.resizeBy(0.5)
val scaled2 = input.resizeBy(0.25, convertToGray = true)
val scaled3 = input.resizeBy(0.1)
println("${input.width} x ${input.height}")
println("${scaled.width} x ${scaled.height}")
extend {
drawer.clear(ColorRGBa.BLACK)
drawer.translate(0.0, (height - scaled.bounds.height) / 2.0)
// Display the loaded image to the right of `scaled` matching its size
drawer.image(input, scaled.bounds.movedBy(Vector2.UNIT_X * scaled.bounds.width))
// Display actually scaled down versions of the loaded image
drawer.image(scaled)
drawer.image(scaled2, scaled.bounds.width, scaled.bounds.height - scaled2.height)
drawer.image(scaled3, scaled.bounds.width + scaled2.bounds.width, scaled.bounds.height - scaled3.height)

View File

@@ -3,17 +3,29 @@ import org.openrndr.boofcv.binding.resizeTo
import org.openrndr.color.ColorRGBa
import org.openrndr.draw.loadImage
/**
* Demonstrates how to scale down images using the `resizeTo` BoofCV-based
* method.
*
* If only the `newWidth` or the `newHeight` arguments are specified,
* the resizing happens maintaining the original aspect ratio.
*/
fun main() = application {
program {
// Load an image, convert to BoofCV format using orx-boofcv
val input = loadImage("demo-data/images/image-001.png")
val scaled = input.resizeTo(input.width / 3)
val scaled2 = input.resizeTo(newHeight = input.height / 4, convertToGray = true)
val scaled3 = input.resizeTo(input.width / 5, input.height / 5)
println("${input.width} x ${input.height}")
println("${scaled.width} x ${scaled.height}")
extend {
drawer.clear(ColorRGBa.BLACK)
drawer.translate(0.0, (height - scaled.bounds.height) / 2.0)
// Display actually scaled down versions of the loaded image
drawer.image(scaled)
drawer.image(scaled2, scaled.bounds.width, scaled.bounds.height - scaled2.height)
drawer.image(scaled3, scaled.bounds.width + scaled2.bounds.width, scaled.bounds.height - scaled3.height)

View File

@@ -17,6 +17,18 @@ import org.openrndr.math.Vector2
import org.openrndr.shape.Rectangle
import org.openrndr.shape.ShapeContour
/**
* When converting a `ColorBuffer` to `ShapeContour` instances using
* `BoofCV`, simple shapes can have hundreds of segments and vertices.
*
* This demo shows how to use the `simplify()` method to greatly
* reduce the number of vertices.
*
* Then it uses the simplified vertex lists to create smooth curves
* (using `CatmullRomChain2`) and polygonal curves (using `ShapeContour.fromPoints`).
*
* Study the console to learn about the number of segments before and after simplification.
*/
fun main() = application {
program {
// Create a buffer where to draw something for boofcv
@@ -41,6 +53,7 @@ fun main() = application {
rectangle(0.0, -200.0, 60.0, 60.0)
circle(0.0, 190.0, 60.0)
}
// Convert the bitmap buffer into ShapeContours
val vectorized = imageToContours(rt.colorBuffer(0))
@@ -73,8 +86,11 @@ fun main() = application {
extend {
drawer.run {
fill = null // ColorRGBa.PINK.opacify(0.15)
stroke = ColorRGBa.PINK.opacify(0.7)
contours(polygonal)
stroke = ColorRGBa.GREEN.opacify(0.7)
contours(smooth)
}
}

View File

@@ -178,7 +178,10 @@ import org.openrndr.extra.parameters.DoubleParameter
## Demos
### DemoAppearance01
A simple demonstration of a GUI for drawing some circles
Demonstrates how to customize the appearance of the GUI by using
`GUIAppearance()`.
In this demo, we make the GUI wider (400 pixels) and translucent.
![DemoAppearance01Kt](https://raw.githubusercontent.com/openrndr/orx/media/orx-jvm/orx-gui/images/DemoAppearance01Kt.png)
@@ -186,7 +189,7 @@ A simple demonstration of a GUI for drawing some circles
### DemoHide01
A simple demonstration of a GUI for drawing some circles
Demonstrates how to hide the GUI when the mouse pointer is outside of it.
![DemoHide01Kt](https://raw.githubusercontent.com/openrndr/orx/media/orx-jvm/orx-gui/images/DemoHide01Kt.png)
@@ -194,15 +197,38 @@ A simple demonstration of a GUI for drawing some circles
### DemoOptions01
A simple demonstration of a GUI with a drop down menu
A simple demonstration of a GUI with a drop-down menu.
The entries in the drop-down menu are taken from an `enum class`.
![DemoOptions01Kt](https://raw.githubusercontent.com/openrndr/orx/media/orx-jvm/orx-gui/images/DemoOptions01Kt.png)
[source code](src/demo/kotlin/DemoOptions01.kt)
### DemoOptions02
A simple demonstration of a GUI with a drop-down menu.
The entries in the drop-down menu are taken from an `enum class`.
The `enum class` entries contain both a name (used in the drop-down)
and a `ColorRGBa` instance (used for rendering).
![DemoOptions02Kt](https://raw.githubusercontent.com/openrndr/orx/media/orx-jvm/orx-gui/images/DemoOptions02Kt.png)
[source code](src/demo/kotlin/DemoOptions02.kt)
### DemoPath01
Demonstrates how to include a button for loading images in a GUI, and how to display
the loaded image.
The program applies the `@PathParameter` annotation to a `String` variable, which gets
rendered by the GUI as an image-picker button. Note the allowed file `extensions`.
This mechanism only updates the `String` containing the path of an image file.
The `watchingImagePath()` delegate property is used to automatically load an image
when its `String` argument changes.
![DemoPath01Kt](https://raw.githubusercontent.com/openrndr/orx/media/orx-jvm/orx-gui/images/DemoPath01Kt.png)
@@ -210,9 +236,11 @@ A simple demonstration of a GUI with a drop down menu
### DemoPresets01
Shows how to store and retrieve in-memory gui presets.
Shows how to store and retrieve in-memory GUI presets,
each containing two integer values and two colors.
Keyboard controls:
[Left Shift] + [0]..[9] => store current gui values to a preset
[Left Shift] + [0]..[9] => store current GUI values to a preset
[0]..[9] => recall a preset
![DemoPresets01Kt](https://raw.githubusercontent.com/openrndr/orx/media/orx-jvm/orx-gui/images/DemoPresets01Kt.png)
@@ -221,7 +249,17 @@ Keyboard controls:
### DemoSideCanvas01
A simple demonstration of a GUI for drawing some circles
Demonstrates the `GUI.enableSideCanvas` feature.
When set to true, the `GUI` provides a `canvas` property where one can draw.
The size of this canvas is the window size minus the GUI size.
That's why if we draw a circle at `drawer.width / 2.0` it is centered
on the `canvas`, not on the window.
This demo sets the window to resizable, so if you resize the window
you should see tha the circle stays at the center of the canvas.
![DemoSideCanvas01Kt](https://raw.githubusercontent.com/openrndr/orx/media/orx-jvm/orx-gui/images/DemoSideCanvas01Kt.png)
@@ -229,7 +267,15 @@ A simple demonstration of a GUI for drawing some circles
### DemoSimple01
A simple demonstration of a GUI for drawing some circles
Demonstrates how to create a simple GUI with 4 inputs:
- A `ColorParameter` which creates a color picker.
- A `DoubleParameter` to control the radius of a circle.
- A `Vector2Parameter` to set the position of that circle.
- A `DoubleListParameter` which sets the radii of six circles.
The demo also shows how to use the variables controlled by the GUI
inside the program, so changes to those variables affect
the rendering in real time.
![DemoSimple01Kt](https://raw.githubusercontent.com/openrndr/orx/media/orx-jvm/orx-gui/images/DemoSimple01Kt.png)
@@ -237,6 +283,10 @@ A simple demonstration of a GUI for drawing some circles
### DemoXYParameter
Demonstrates the use of the `@XYParameter` annotation applied to a `Vector2` variable.
This annotation creates an interactive XY control in a GUI that can be used to update
a `Vector2` variable. In this demo it sets the position of a circle.
![DemoXYParameterKt](https://raw.githubusercontent.com/openrndr/orx/media/orx-jvm/orx-gui/images/DemoXYParameterKt.png)

View File

@@ -7,7 +7,10 @@ import org.openrndr.math.Vector2
import org.openrndr.shape.Circle
/**
* A simple demonstration of a GUI for drawing some circles
* Demonstrates how to customize the appearance of the GUI by using
* `GUIAppearance()`.
*
* In this demo, we make the GUI wider (400 pixels) and translucent.
*/
fun main() = application {
program {

View File

@@ -6,7 +6,7 @@ import org.openrndr.math.Vector2
import org.openrndr.shape.Circle
/**
* A simple demonstration of a GUI for drawing some circles
* Demonstrates how to hide the GUI when the mouse pointer is outside of it.
*/
fun main() = application {
program {
@@ -29,7 +29,7 @@ fun main() = application {
gui.add(settings)
extend(gui)
// note we can only change the visibility after the extend
// note we can only change the visibility after the `extend`
gui.visible = false
extend {

View File

@@ -6,7 +6,7 @@ import org.openrndr.window
import kotlin.system.exitProcess
/**
* Demonstration of multi window GUI in the manual way
* Demonstration of a multi window GUI in the manual way
*/
fun main() {
// skip this demo on CI

View File

@@ -4,7 +4,7 @@ import org.openrndr.extra.parameters.DoubleParameter
import kotlin.system.exitProcess
/**
* Demonstration of multi window GUI using WindowedGUI extension
* Demonstration of a multi window GUI using the `WindowedGUI` extension
*/
fun main() {
// skip this demo on CI

View File

@@ -5,7 +5,9 @@ import org.openrndr.extra.parameters.Description
import org.openrndr.extra.parameters.OptionParameter
/**
* A simple demonstration of a GUI with a drop down menu
* A simple demonstration of a GUI with a drop-down menu.
*
* The entries in the drop-down menu are taken from an `enum class`.
*/
enum class BackgroundColors {
@@ -15,6 +17,10 @@ enum class BackgroundColors {
}
fun main() = application {
configure {
width = 720
height = 360
}
program {
val gui = GUI()
gui.compartmentsCollapsedByDefault = false

View File

@@ -0,0 +1,43 @@
import org.openrndr.application
import org.openrndr.color.ColorRGBa
import org.openrndr.extra.gui.GUI
import org.openrndr.extra.parameters.Description
import org.openrndr.extra.parameters.OptionParameter
/**
* A simple demonstration of a GUI with a drop-down menu.
*
* The entries in the drop-down menu are taken from an `enum class`.
* The `enum class` entries contain both a name (used in the drop-down)
* and a `ColorRGBa` instance (used for rendering).
*/
enum class BackgroundColors2(val color: ColorRGBa) {
Pink(ColorRGBa.PINK),
Black(ColorRGBa.BLACK),
Yellow(ColorRGBa.YELLOW)
}
fun main() = application {
configure {
width = 720
height = 360
}
program {
val gui = GUI()
gui.compartmentsCollapsedByDefault = false
val settings = @Description("Settings") object {
@OptionParameter("Background color")
var option = BackgroundColors2.Pink
}
gui.add(settings)
extend(gui)
gui.onChange { name, value ->
println("$name: $value")
}
extend {
drawer.clear(settings.option.color)
}
}
}

View File

@@ -4,6 +4,18 @@ import org.openrndr.extra.parameters.Description
import org.openrndr.extra.parameters.PathParameter
import org.openrndr.extra.propertywatchers.watchingImagePath
/**
* Demonstrates how to include a button for loading images in a GUI, and how to display
* the loaded image.
*
* The program applies the `@PathParameter` annotation to a `String` variable, which gets
* rendered by the GUI as an image-picker button. Note the allowed file `extensions`.
*
* This mechanism only updates the `String` containing the path of an image file.
*
* The `watchingImagePath()` delegate property is used to automatically load an image
* when its `String` argument changes.
*/
fun main() = application {
program {
val gui = GUI()

View File

@@ -7,12 +7,18 @@ import org.openrndr.extra.parameters.Description
import org.openrndr.extra.parameters.IntParameter
/**
* Shows how to store and retrieve in-memory gui presets.
* Shows how to store and retrieve in-memory GUI presets,
* each containing two integer values and two colors.
*
* Keyboard controls:
* [Left Shift] + [0]..[9] => store current gui values to a preset
* [Left Shift] + [0]..[9] => store current GUI values to a preset
* [0]..[9] => recall a preset
*/
fun main() = application {
configure {
width = 720
height = 480
}
program {
val gui = GUI()
gui.compartmentsCollapsedByDefault = false
@@ -43,9 +49,9 @@ fun main() = application {
// Draw a pattern based on modulo
for (i in 0 until 100) {
if (i % settings.a == 0 || i % settings.b == 0) {
val x = (i % 10) * 64.0
val x = (i % 10) * 72.0
val y = (i / 10) * 48.0
drawer.rectangle(x, y, 64.0, 48.0)
drawer.rectangle(x, y, 72.0, 48.0)
}
}
}

View File

@@ -2,18 +2,29 @@ import org.openrndr.application
import org.openrndr.color.ColorRGBa
import org.openrndr.extra.gui.GUI
import org.openrndr.extra.gui.GUIAppearance
import org.openrndr.extra.parameters.*
import org.openrndr.math.Vector2
import org.openrndr.extra.parameters.ColorParameter
import org.openrndr.extra.parameters.Description
import org.openrndr.extra.parameters.DoubleParameter
import org.openrndr.panel.elements.draw
/**
* A simple demonstration of a GUI for drawing some circles
* Demonstrates the `GUI.enableSideCanvas` feature.
*
* When set to true, the `GUI` provides a `canvas` property where one can draw.
* The size of this canvas is the window size minus the GUI size.
*
* That's why if we draw a circle at `drawer.width / 2.0` it is centered
* on the `canvas`, not on the window.
*
* This demo sets the window to resizable, so if you resize the window
* you should see tha the circle stays at the center of the canvas.
*
*/
fun main() = application {
configure {
width = 800
height = 800
width = 720
height = 720
windowResizable = true
}
@@ -23,17 +34,11 @@ fun main() = application {
gui.enableSideCanvas = true
val settings = @Description("Settings") object {
@DoubleParameter("radius", 0.0, 100.0)
@DoubleParameter("radius", 0.0, 200.0)
var radius = 50.0
@Vector2Parameter("position", 0.0, 1.0)
var position = Vector2(0.6, 0.5)
@ColorParameter("color")
var color = ColorRGBa.PINK
@DoubleListParameter("radii", 5.0, 30.0)
var radii = mutableListOf(5.0, 6.0, 8.0, 14.0, 20.0, 30.0)
}
gui.add(settings)
extend(gui)
@@ -42,7 +47,7 @@ fun main() = application {
val width = drawer.width
val height = drawer.height
drawer.fill = settings.color
drawer.circle(width/2.0, height/2.0, 100.0)
drawer.circle(width / 2.0, height / 2.0, settings.radius)
}
}
}

View File

@@ -6,11 +6,22 @@ import org.openrndr.math.Vector2
import org.openrndr.shape.Circle
/**
* A simple demonstration of a GUI for drawing some circles
* Demonstrates how to create a simple GUI with 4 inputs:
* - A `ColorParameter` which creates a color picker.
* - A `DoubleParameter` to control the radius of a circle.
* - A `Vector2Parameter` to set the position of that circle.
* - A `DoubleListParameter` which sets the radii of six circles.
*
* The demo also shows how to use the variables controlled by the GUI
* inside the program, so changes to those variables affect
* the rendering in real time.
*/
fun main() = application {
configure {
width = 720
height = 450
}
program {
val gui = GUI()
gui.compartmentsCollapsedByDefault = false

View File

@@ -4,6 +4,13 @@ import org.openrndr.extra.parameters.Description
import org.openrndr.extra.parameters.XYParameter
import org.openrndr.math.Vector2
/**
* Demonstrates the use of the `@XYParameter` annotation applied to a `Vector2` variable.
*
* This annotation creates an interactive XY control in a GUI that can be used to update
* a `Vector2` variable. In this demo it sets the position of a circle.
*
*/
fun main() = application {
configure {
width = 800

View File

@@ -42,7 +42,15 @@ More info about the web client:
## Demos
### DemoRabbitControl
Demonstrates how to use RabbitControl to create a web-based user interface for your program.
A `settings` object is created using the same syntax used for `orx-gui`, including
annotations for different variable types.
The program then passes these `settings` to the `RabbitControlServer`. A QR-code is displayed
to open the web user interface. A clickable URL is also displayed in the console.
Once the UI is visible in a web browser we can use it to control the OPENRNDR program.
![DemoRabbitControlKt](https://raw.githubusercontent.com/openrndr/orx/media/orx-jvm/orx-rabbit-control/images/DemoRabbitControlKt.png)
@@ -50,7 +58,10 @@ More info about the web client:
### DemoRabbitControlManualOverlay
Demonstrates how the QR-code pointing at the Rabbit Control web-based user interface
can be displayed and hidden manually.
To display the QR-code overlay in this demo, hold down the HOME key in the keyboard.
![DemoRabbitControlManualOverlayKt](https://raw.githubusercontent.com/openrndr/orx/media/orx-jvm/orx-rabbit-control/images/DemoRabbitControlManualOverlayKt.png)
@@ -58,6 +69,12 @@ More info about the web client:
### DemoRabbitHole
Starts the RabbitControlServer with a `Rabbithole` using the key 'orxtest'.
`Rabbithole` allows you to access your exposed parameters from Internet
connected computers that are not in the same network.
To use it with this example use 'orxtest' as the tunnel-name in https://rabbithole.rabbitcontrol.cc
![DemoRabbitHoleKt](https://raw.githubusercontent.com/openrndr/orx/media/orx-jvm/orx-rabbit-control/images/DemoRabbitHoleKt.png)

View File

@@ -6,7 +6,17 @@ import org.openrndr.math.Vector2
import org.openrndr.math.Vector3
import org.openrndr.math.Vector4
/**
* Demonstrates how to use RabbitControl to create a web-based user interface for your program.
*
* A `settings` object is created using the same syntax used for `orx-gui`, including
* annotations for different variable types.
*
* The program then passes these `settings` to the `RabbitControlServer`. A QR-code is displayed
* to open the web user interface. A clickable URL is also displayed in the console.
*
* Once the UI is visible in a web browser we can use it to control the OPENRNDR program.
*/
fun main() = application {
configure {
width = 800

View File

@@ -4,6 +4,12 @@ import org.openrndr.color.ColorRGBa
import org.openrndr.extra.parameters.BooleanParameter
/**
* Demonstrates how the QR-code pointing at the Rabbit Control web-based user interface
* can be displayed and hidden manually.
*
* To display the QR-code overlay in this demo, hold down the HOME key in the keyboard.
*/
fun main() = application {
configure {
width = 800

View File

@@ -6,7 +6,15 @@ import org.openrndr.math.Vector2
import org.openrndr.math.Vector3
import org.openrndr.math.Vector4
/**
* Starts the RabbitControlServer with a `Rabbithole` using the key 'orxtest'.
*
* `Rabbithole` allows you to access your exposed parameters from Internet
* connected computers that are not in the same network.
*
* To use it with this example use 'orxtest' as the tunnel-name in https://rabbithole.rabbitcontrol.cc
*
*/
fun main() = application {
configure {
width = 800
@@ -14,13 +22,6 @@ fun main() = application {
}
program {
/**
* Start RabbitControlServer with a Rabbithole with key 'orxtest'
* Please visit https://rabbithole.rabbitcontrol.cc for more information.
*
* Rabbithole allows you to access your exposed parameter from the internet.
* To use it with this example just use 'orxtest' as tunnel-name on the main page.
*/
val rabbit = RabbitControlServer(false, 10000, 8080, "wss://rabbithole.rabbitcontrol.cc/public/rcpserver/connect?key=orxtest")
val font = loadFont("demo-data/fonts/IBMPlexMono-Regular.ttf", 20.0)
val settings = object {

View File

@@ -105,7 +105,15 @@ Demonstrate decal generation and rendering
### DemoAll
Demonstrates how to create various types of 3D meshes:
box, sphere, dodecahedron, cylinder, plane, cap and resolve.
Two textures are used: one generative with gradients, and the second
one is an image loaded from disk. The horizontal mouse position is used
to select which of the two textures to use.
The meshes are positioned in space using a 2D mesh, and displayed
rotating on the X and Y axes at different speeds.
![DemoAllKt](https://raw.githubusercontent.com/openrndr/orx/media/orx-mesh-generators/images/DemoAllKt.png)
@@ -113,6 +121,18 @@ Demonstrate decal generation and rendering
### DemoBox
Demonstrates how to create a 3D mesh box by specifying its width, height and depth.
The `box` is a `VertexBuffer` and contains texture coordinates which can be
used to apply a texture to its faces.
After creating the box, the program creates a texture with a gradient.
In it, the red component increases along the x-axis and the green component
along the y-axis.
The scene is rendered with an interactive `Orbital` 3D camera.
A shade style is used to apply the texture to the box.
![DemoBoxKt](https://raw.githubusercontent.com/openrndr/orx/media/orx-mesh-generators/images/DemoBoxKt.png)
@@ -121,7 +141,15 @@ Demonstrate decal generation and rendering
### DemoComplex01
Demonstrates how to use `buildTriangleMesh` to construct composite 3D meshes.
A DSL allows specifying the color and transformations of each mesh, in this case,
of a sphere and a box.
An interactive 3D Orbital camera is defined, specifying the location of its `eye` and
`lookAt` properties.
A minimal shade style is used to simulate a uni-directional light pointing along the view Z axis.
![DemoComplex01Kt](https://raw.githubusercontent.com/openrndr/orx/media/orx-mesh-generators/images/DemoComplex01Kt.png)
@@ -129,7 +157,7 @@ Demonstrate decal generation and rendering
### DemoComplex02
Demonstrates the creation of a 3D mesh composed of two hemispheres, a cylinder and 12 legs.
![DemoComplex02Kt](https://raw.githubusercontent.com/openrndr/orx/media/orx-mesh-generators/images/DemoComplex02Kt.png)
@@ -137,7 +165,14 @@ Demonstrate decal generation and rendering
### DemoComplex03
Demonstrates the creation of a 3D mesh composed of two hemispheres, a cylinder and 12 legs.
Additionally, the body of the shape features 5 ridges on the sides
of the cylinder.
The code reveals DSL keywords under `buildTriangleMesh`
affecting transformation matrices, for instance `isolated`, `translate` and `rotate`,
and mesh generating keywords like
`hemisphere`, `taperedCylinder` and `cylinder`.
![DemoComplex03Kt](https://raw.githubusercontent.com/openrndr/orx/media/orx-mesh-generators/images/DemoComplex03Kt.png)
@@ -145,7 +180,9 @@ Demonstrate decal generation and rendering
### DemoComplex04
Demonstrates the use of `buildTriangleMesh` to create
a composite 3D mesh and introduces a new mesh generating keyword:
`cap`.
![DemoComplex04Kt](https://raw.githubusercontent.com/openrndr/orx/media/orx-mesh-generators/images/DemoComplex04Kt.png)
@@ -153,6 +190,9 @@ Demonstrate decal generation and rendering
### DemoComplex05
Demonstrates how to create a 3D grid of extruded shapes
(short cylinders), then applies three 3D twists to the
composition to deform it.
![DemoComplex05Kt](https://raw.githubusercontent.com/openrndr/orx/media/orx-mesh-generators/images/DemoComplex05Kt.png)
@@ -161,8 +201,11 @@ Demonstrate decal generation and rendering
### DemoComplex06
Generates a grid of grids of boxes.
Interactive orbital camera.
Generates a grid of grids of 3D boxes using `buildTriangleMesh` and
renders them using an interactive orbital camera.
The cubes ar colorized using a shade style that sets colors based
on vertex positions in space, converting XYZ coordinates into RGB colors.
![DemoComplex06Kt](https://raw.githubusercontent.com/openrndr/orx/media/orx-mesh-generators/images/DemoComplex06Kt.png)
@@ -270,7 +313,13 @@ for a radial-symmetry effect.
### tangents/DemoTangents01
Tangent and bitangent vectors are used in shader programs for tangent space normal mapping / lighting
and certain forms of displacement mapping.
This demo shows:
- how to create a triangulated `MeshData`.
- how to estimate the tangents of this MeshData.
- How to use the tangent and bitangent attributes in GLSL code.
![tangents-DemoTangents01Kt](https://raw.githubusercontent.com/openrndr/orx/media/orx-mesh-generators/images/tangents-DemoTangents01Kt.png)

View File

@@ -8,6 +8,17 @@ import org.openrndr.math.Vector2
import org.openrndr.math.Vector3
import org.openrndr.shape.Rectangle
/**
* Demonstrates how to create various types of 3D meshes:
* box, sphere, dodecahedron, cylinder, plane, cap and resolve.
*
* Two textures are used: one generative with gradients, and the second
* one is an image loaded from disk. The horizontal mouse position is used
* to select which of the two textures to use.
*
* The meshes are positioned in space using a 2D mesh, and displayed
* rotating on the X and Y axes at different speeds.
*/
fun main() = application {
configure {
width = 720

View File

@@ -9,6 +9,21 @@ import org.openrndr.extra.camera.Orbital
import org.openrndr.extra.meshgenerators.boxMesh
import org.openrndr.math.Vector3
/**
* Demonstrates how to create a 3D mesh box by specifying its width, height and depth.
*
* The `box` is a `VertexBuffer` and contains texture coordinates which can be
* used to apply a texture to its faces.
*
* After creating the box, the program creates a texture with a gradient.
* In it, the red component increases along the x-axis and the green component
* along the y-axis.
*
* The scene is rendered with an interactive `Orbital` 3D camera.
*
* A shade style is used to apply the texture to the box.
*
*/
fun main() = application {
configure {
width = 720

View File

@@ -9,6 +9,17 @@ import org.openrndr.extra.meshgenerators.buildTriangleMesh
import org.openrndr.extra.meshgenerators.sphere
import org.openrndr.math.Vector3
/**
* Demonstrates how to use `buildTriangleMesh` to construct composite 3D meshes.
*
* A DSL allows specifying the color and transformations of each mesh, in this case,
* of a sphere and a box.
*
* An interactive 3D Orbital camera is defined, specifying the location of its `eye` and
* `lookAt` properties.
*
* A minimal shade style is used to simulate a uni-directional light pointing along the view Z axis.
*/
fun main() = application {
configure {
width = 720

View File

@@ -8,6 +8,9 @@ import org.openrndr.extra.meshgenerators.cylinder
import org.openrndr.extra.meshgenerators.hemisphere
import org.openrndr.math.Vector3
/**
* Demonstrates the creation of a 3D mesh composed of two hemispheres, a cylinder and 12 legs.
*/
fun main() = application {
configure {
width = 720

View File

@@ -6,6 +6,16 @@ import org.openrndr.extra.camera.Orbital
import org.openrndr.extra.meshgenerators.*
import org.openrndr.math.Vector3
/**
* Demonstrates the creation of a 3D mesh composed of two hemispheres, a cylinder and 12 legs.
* Additionally, the body of the shape features 5 ridges on the sides
* of the cylinder.
*
* The code reveals DSL keywords under `buildTriangleMesh`
* affecting transformation matrices, for instance `isolated`, `translate` and `rotate`,
* and mesh generating keywords like
* `hemisphere`, `taperedCylinder` and `cylinder`.
*/
fun main() = application {
configure {
width = 720

View File

@@ -7,6 +7,11 @@ import org.openrndr.extra.meshgenerators.*
import org.openrndr.math.Vector2
import org.openrndr.math.Vector3
/**
* Demonstrates the use of `buildTriangleMesh` to create
* a composite 3D mesh and introduces a new mesh generating keyword:
* `cap`.
*/
fun main() = application {
configure {
width = 720

View File

@@ -11,6 +11,12 @@ import org.openrndr.extra.meshgenerators.twist
import org.openrndr.math.Vector3
import org.openrndr.shape.Circle
/**
* Demonstrates how to create a 3D grid of extruded shapes
* (short cylinders), then applies three 3D twists to the
* composition to deform it.
*
*/
fun main() = application {
configure {
width = 720

View File

@@ -9,8 +9,11 @@ import org.openrndr.extra.noise.simplex
import org.openrndr.math.Vector3
/**
* Generates a grid of grids of boxes.
* Interactive orbital camera.
* Generates a grid of grids of 3D boxes using `buildTriangleMesh` and
* renders them using an interactive orbital camera.
*
* The cubes ar colorized using a shade style that sets colors based
* on vertex positions in space, converting XYZ coordinates into RGB colors.
*
*/
fun main() = application {

View File

@@ -10,6 +10,15 @@ import org.openrndr.extra.objloader.loadOBJMeshData
import org.openrndr.math.Vector3
import java.io.File
/**
* Tangent and bitangent vectors are used in shader programs for tangent space normal mapping / lighting
* and certain forms of displacement mapping.
*
* This demo shows:
* - how to create a triangulated `MeshData`.
* - how to estimate the tangents of this MeshData.
* - How to use the tangent and bitangent attributes in GLSL code.
*/
fun main() = application {
configure {
width = 720
@@ -34,7 +43,6 @@ fun main() = application {
//x_fill.rgb = normalize(viewTangent) * 0.5 + 0.5;
x_fill.rgb = vec3(c);
""".trimIndent()
}
drawer.vertexBuffer(objVB, DrawPrimitive.TRIANGLES)

View File

@@ -465,6 +465,31 @@ to round contours with linear segments.
[source code](src/jvmDemo/kotlin/hobbycurve/DemoHobbyCurve03.kt)
### hobbycurve/DemoHobbyCurve04
Demonstrates the use of the `tensions` argument when creating a Hobby curve.
The program starts by creating a random set of scattered points with enough separation between them.
The points are sorted using `hilbertOrder` to minimize the travel distance when visiting all the points.
Finally, we draw a set of 40 hobby translucent curves using those same points but with varying tensions.
![hobbycurve-DemoHobbyCurve04Kt](https://raw.githubusercontent.com/openrndr/orx/media/orx-shapes/images/hobbycurve-DemoHobbyCurve04Kt.png)
[source code](src/jvmDemo/kotlin/hobbycurve/DemoHobbyCurve04.kt)
### hobbycurve/DemoHobbyCurve05
Demonstrates the creation of a 40 hobby curves with 10 points each.
The control points in all hobby curves are almost identical, varying only
due to a slight increase in one of the arguments of a simplex noise call.
The program shows that minor displacements in control points can have
a large impact in the resulting curve.
![hobbycurve-DemoHobbyCurve05Kt](https://raw.githubusercontent.com/openrndr/orx/media/orx-shapes/images/hobbycurve-DemoHobbyCurve05Kt.png)
[source code](src/jvmDemo/kotlin/hobbycurve/DemoHobbyCurve05.kt)
### hobbycurve/DemoHobbyCurve3D01
Demonstrates how to use the 3D implementation of the `hobbyCurve` method, to draw a smooth curve passing
@@ -678,6 +703,22 @@ Demonstrate rectangle-rectangle intersection
[source code](src/jvmDemo/kotlin/primitives/DemoRectangleIntersection01.kt)
### primitives/DemoRectangleIrregularGrid02
Demonstrates how to use `Rectangle.irregularGrid()` to create a grid with varying column widths
and row heights. The widths and heights are specified as a list of 13 `Double` values, each
picked randomly between the values 1.0 and 4.0. This produces two types of columns and two
types of rows only: wide ones and narrow ones.
The program also demonstrates how to query a `row()` and a `column()` from a `RectangleGrid` instance,
both of which return a `List<Rectangle>`. Both `Rectangle` lists are rendered with translucent
colors, which makes the intersection of the column and the row slightly brighter.
![primitives-DemoRectangleIrregularGrid02Kt](https://raw.githubusercontent.com/openrndr/orx/media/orx-shapes/images/primitives-DemoRectangleIrregularGrid02Kt.png)
[source code](src/jvmDemo/kotlin/primitives/DemoRectangleIrregularGrid02.kt)
### primitives/DemoRectangleIrregularGrid
@@ -749,6 +790,21 @@ This serves as a demonstration of positioning and rendering shapes in a structur
[source code](src/jvmDemo/kotlin/primitives/DemoTear01.kt)
### primitives/DemoTear02
Demonstrates the use of `Tear()` to create drop-like shapes out of a Vector2 point and a Circle.
The tear locations are calculated using the `Rectangle.scatter()` function. Locations near the
center of the window are filtered out.
The radii of each tear is randomly chosen between three values. The orientation of each tear
is calculated by getting the normalized difference between the tear and the center of the window,
making them look as being emitted at the center of the window.
![primitives-DemoTear02Kt](https://raw.githubusercontent.com/openrndr/orx/media/orx-shapes/images/primitives-DemoTear02Kt.png)
[source code](src/jvmDemo/kotlin/primitives/DemoTear02.kt)
### rectify/DemoRectifiedContour01

View File

@@ -0,0 +1,38 @@
package hobbycurve
import org.openrndr.application
import org.openrndr.color.ColorRGBa
import org.openrndr.extra.noise.scatter
import org.openrndr.extra.shapes.hobbycurve.hobbyCurve
import org.openrndr.extra.shapes.ordering.hilbertOrder
import kotlin.random.Random
/**
* Demonstrates the use of the `tensions` argument when creating a Hobby curve.
*
* The program starts by creating a random set of scattered points with enough separation between them.
* The points are sorted using `hilbertOrder` to minimize the travel distance when visiting all the points.
* Finally, we draw a set of 40 hobby translucent curves using those same points but with varying tensions.
*/
fun main() = application {
configure {
width = 720
height = 720
}
program {
extend {
for (i in -20..20) {
val t = i / 10.0
val points = drawer.bounds.offsetEdges(-50.0)
.scatter(25.0, random = Random(0))
.hilbertOrder()
drawer.stroke = ColorRGBa.WHITE.opacify(0.5)
drawer.fill = null
drawer.contour(hobbyCurve(points, closed = false, tensions = { i, inAngle, outAngle ->
Pair(t, t)
}))
}
}
}
}

View File

@@ -0,0 +1,38 @@
package hobbycurve
import org.openrndr.application
import org.openrndr.color.ColorRGBa
import org.openrndr.extra.color.presets.WHITE_SMOKE
import org.openrndr.extra.noise.simplex
import org.openrndr.extra.noise.uniform
import org.openrndr.extra.shapes.hobbycurve.hobbyCurve
import org.openrndr.extra.shapes.ordering.hilbertOrder
import org.openrndr.math.Vector2
/**
* Demonstrates the creation of a 40 hobby curves with 10 points each.
* The control points in all hobby curves are almost identical, varying only
* due to a slight increase in one of the arguments of a simplex noise call.
*
* The program shows that minor displacements in control points can have
* a large impact in the resulting curve.
*/
fun main() = application {
program {
val seed = 68040
val curves = List(40) { n ->
hobbyCurve(List(10) {
Vector2(
simplex(seed, it * 13.3, n * 0.001) * 300.0 + 320.0,
simplex(seed / 2, it * 77.4, n * 0.001) * 300.0 + 240.0
)
}.hilbertOrder(), true)
}
extend {
drawer.clear(ColorRGBa.WHITE_SMOKE)
drawer.fill = null
drawer.stroke = ColorRGBa.BLACK.opacify(0.3)
drawer.contours(curves)
}
}
}

View File

@@ -0,0 +1,47 @@
package primitives
import org.openrndr.application
import org.openrndr.color.ColorRGBa
import org.openrndr.extra.color.presets.CORAL
import org.openrndr.extra.shapes.primitives.column
import org.openrndr.extra.shapes.primitives.irregularGrid
import org.openrndr.extra.shapes.primitives.row
import kotlin.random.Random
/**
* Demonstrates how to use `Rectangle.irregularGrid()` to create a grid with varying column widths
* and row heights. The widths and heights are specified as a list of 13 `Double` values, each
* picked randomly between the values 1.0 and 4.0. This produces two types of columns and two
* types of rows only: wide ones and narrow ones.
*
* The program also demonstrates how to query a `row()` and a `column()` from a `RectangleGrid` instance,
* both of which return a `List<Rectangle>`. Both `Rectangle` lists are rendered with translucent
* colors, which makes the intersection of the column and the row slightly brighter.
*
*/
fun main() = application {
configure {
width = 720
height = 720
}
program {
extend {
val r = Random(100)
val grid = drawer.bounds.irregularGrid(
List(13) { listOf(1.0, 4.0).random(r) },
List(13) { listOf(1.0, 4.0).random(r) }
)
drawer.fill = null
drawer.stroke = ColorRGBa.WHITE
drawer.rectangles(grid.flatten())
drawer.stroke = ColorRGBa.BLACK
drawer.fill = ColorRGBa.PINK.opacify(0.5)
drawer.rectangles(grid.column(2))
drawer.fill = ColorRGBa.CORAL.opacify(0.5)
drawer.rectangles(grid.row(6))
}
}
}

View File

@@ -0,0 +1,42 @@
package primitives
import org.openrndr.application
import org.openrndr.color.ColorRGBa
import org.openrndr.extra.noise.scatter
import org.openrndr.extra.shapes.primitives.Tear
import org.openrndr.shape.Circle
/**
* Demonstrates the use of `Tear()` to create drop-like shapes out of a Vector2 point and a Circle.
*
* The tear locations are calculated using the `Rectangle.scatter()` function. Locations near the
* center of the window are filtered out.
*
* The radii of each tear is randomly chosen between three values. The orientation of each tear
* is calculated by getting the normalized difference between the tear and the center of the window,
* making them look as being emitted at the center of the window.
*/
fun main() = application {
configure {
width = 720
height = 720
}
program {
val points = drawer.bounds.scatter(40.0, distanceToEdge = 80.0).filter {
it.distanceTo(drawer.bounds.center) > 80.0
}
val tears = points.map {
val radius = listOf(5.0, 10.0, 20.0).random()
val offset = (it - drawer.bounds.center).normalized * radius
Tear(it - offset, Circle(it + offset, radius))
}
extend {
drawer.clear(ColorRGBa.WHITE)
drawer.fill = ColorRGBa.PINK
drawer.stroke = ColorRGBa.BLACK
drawer.contours(tears.map { it.contour })
}
}
}

View File

@@ -37,6 +37,11 @@ Note that drawing inside the `repeat` action has no effect. Have a look at the d
## Demos
### DemoRepeat01
A simple demonstration on using the `repeat` method to execute a function
at regular intervals.
Note that drawing inside the repeat action has no effect.
See DemoRepeat02.kt to learn how to trigger drawing.
![DemoRepeat01Kt](https://raw.githubusercontent.com/openrndr/orx/media/orx-timer/images/DemoRepeat01Kt.png)
@@ -45,14 +50,29 @@ Note that drawing inside the `repeat` action has no effect. Have a look at the d
### DemoRepeat02
This demonstrates how to combine `repeat {}` with a postponed event to trigger drawing
This demonstrates how to combine `repeat {}` with a postponed event to trigger drawing.
![DemoRepeat02Kt](https://raw.githubusercontent.com/openrndr/orx/media/orx-timer/images/DemoRepeat02Kt.png)
[source code](src/demo/kotlin/DemoRepeat02.kt)
### DemoRepeat03
Shows how a `repeat` block can update a variable used
for rendering. In this demo, the `opacity` variable is
reduced on every animation frame, and increased to 1.0
every 2 seconds, creating a pulsating animation effect.
![DemoRepeat03Kt](https://raw.githubusercontent.com/openrndr/orx/media/orx-timer/images/DemoRepeat03Kt.png)
[source code](src/demo/kotlin/DemoRepeat03.kt)
### DemoTimeOut01
Demonstrates the `timeOut` function.
It is similar to the `repeat` function,
but it runs only once after the specified delay in seconds.
![DemoTimeOut01Kt](https://raw.githubusercontent.com/openrndr/orx/media/orx-timer/images/DemoTimeOut01Kt.png)

View File

@@ -1,6 +1,14 @@
import org.openrndr.application
import org.openrndr.extra.timer.repeat
/**
* A simple demonstration on using the `repeat` method to execute a function
* at regular intervals.
*
* Note that drawing inside the repeat action has no effect.
* See DemoRepeat02.kt to learn how to trigger drawing.
*
*/
fun main() = application {
program {
repeat(2.0) {

View File

@@ -4,7 +4,7 @@ import org.openrndr.events.Event
import org.openrndr.extra.timer.repeat
/**
* This demonstrates how to combine `repeat {}` with a postponed event to trigger drawing
* This demonstrates how to combine `repeat {}` with a postponed event to trigger drawing.
*/
fun main() = application {

View File

@@ -0,0 +1,25 @@
import org.openrndr.application
import org.openrndr.color.ColorRGBa
import org.openrndr.extra.timer.repeat
/**
* Shows how a `repeat` block can update a variable used
* for rendering. In this demo, the `opacity` variable is
* reduced on every animation frame, and increased to 1.0
* every 2 seconds, creating a pulsating animation effect.
*/
fun main() = application {
program {
var opacity = 0.0
repeat(2.0) {
opacity = 1.0
}
extend {
drawer.clear(ColorRGBa.PINK)
drawer.stroke = ColorRGBa.BLACK.opacify(opacity)
drawer.fill = ColorRGBa.WHITE.opacify(opacity)
drawer.circle(width / 2.0, height / 2.0, 200.0)
opacity *= 0.9
}
}
}

View File

@@ -1,6 +1,13 @@
import org.openrndr.application
import org.openrndr.extra.timer.timeOut
/**
* Demonstrates the `timeOut` function.
*
* It is similar to the `repeat` function,
* but it runs only once after the specified delay in seconds.
*
*/
fun main() = application {
program {
timeOut(2.0) {

View File

@@ -35,7 +35,6 @@ The language also holds some tools to manage the position and orientation of the
## Demos
### DemoTurtle01
/*
Drawing a square using the turtle interface.
![DemoTurtle01Kt](https://raw.githubusercontent.com/openrndr/orx/media/orx-turtle/images/DemoTurtle01Kt.png)
@@ -44,7 +43,6 @@ Drawing a square using the turtle interface.
### DemoTurtle02
/*
A simple random walk made using the turtle interface.
![DemoTurtle02Kt](https://raw.githubusercontent.com/openrndr/orx/media/orx-turtle/images/DemoTurtle02Kt.png)
@@ -53,7 +51,6 @@ A simple random walk made using the turtle interface.
### DemoTurtle03
/*
Drawing shape contours aligned to the turtle's orientation.
![DemoTurtle03Kt](https://raw.githubusercontent.com/openrndr/orx/media/orx-turtle/images/DemoTurtle03Kt.png)

View File

@@ -1,5 +1,3 @@
import org.gradle.internal.os.OperatingSystem
rootProject.name = "orx"
@@ -131,3 +129,4 @@ include(":math")
include(":desktop")
include(":icegps-common")
include(":icegps-shared")
include(":icegps-triangulation")